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Abstract The study in this paper is made on the nonlinear fractional d-
ifferential equation whose nonlinearity involves the explicit fractional order
Dβ

0+
u(t). The corresponding Green’s function is derived first, and then the

completely continuous operator is proved. Besides, based on the Schauder’s
fixed point theorem and the Krasnosel’skii’s fixed point theorem, the sufficient
conditions for at least one or two existence of positive solutions are estab-
lished. Furthermore, several other sufficient conditions for at least three, n or
2n− 1 positive solutions are also obtained by applying the generalized Avery-
Henderson fixed point theorem and the Avery-Peterson fixed point theorem.
Finally, several simulation examples are provided to illustrate the main results
of the paper. In particularly, a novel efficient iterative method is employed for
simulating the examples mentioned above, that is, the interesting point of this
paper is that the approximation graphics for the solutions are given by using
the iterative method.
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1. Introduction

Generally speaking, the fractional differential equation comprises integer order dif-
ferential equation, and therefore, in the description of properties of various mate-
rials, fractional order models are more accurate than integer order models. Frac-
tional calculus provides potentially the useful tools for solving differential and in-
tegral equations, and other problems [13, 15]. The fractional differential equation
or fractional calculus has enjoyed considerable popularity due to their applications
in various sciences, such as physics, chemistry, biology, engineering, finance and
dynamical control, etc [1, 4, 11, 12, 21, 22, 25, 29]. More recent results are described
in [3, 8, 14,18–20,23,24,26–28].
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In [6], Goodrich investigated the following problem
Dα

0+u(t) + f (t, u(t)) = 0, t ∈ (0, 1) , n− 1 < α ≤ n,
u(i)(0) = 0, i = 0, 1, · · · , n− 2,[
Dβ

0+u(t)
]
t=1

= 0, 1 ≤ β ≤ n− 2,

where Dα
0+ is the standard Riemann-Liouville fractional derivative of order α (n−

1 < α ≤ n) and f : [0, 1] × [0,+∞) → [0,+∞) is continuous. By applying the
Krasnosel’skii’s fixed point theorem, he proved the existence of at least one positive
solution.

In [5], Chen et al. studied the following fractional differential equation
Dα

0+u(t) + f (t, u(t), u′(t))) = 0, t ∈ (0, 1) , n− 1 < α ≤ n,
u(i)(0) = 0, i = 0, 1, · · · , n− 2,[
Dβ

0+u(t)
]
t=1

= 0, 2 ≤ β ≤ n− 2,

where n > 4 (n ∈ N), Dα
0+ is the standard Riemann-Liouville fractional derivative of

order α and f(t, u, u′) : [0, 1]× [0, +∞)×R→ [0, +∞) satisfies the Carathéodory
type condition. They obtained sufficient conditions for the existence of at least
one or multiple positive solutions to the above equation by using the fixed point
theorems.

In [10], Luca considered the following fractional differential equation
Dα

0+u(t) + f (t, u(t)) = 0, t ∈ (0, 1) ,

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = 0,

Dp
0+u(1) =

∫ 1

0
Dq

0+u(t)dH(t),

where α ∈ R, α ∈ (n− 1, n], n ∈ N, n ≥ 3, p, q ∈ R, p ∈ [1, n− 2], q ∈ [0, p], Dk
0+

is the standard Riemann-Liouville fractional derivative of order k (k = α, p, q), and
the nonlinearity f may change sign and may be singular in the points t = 0, 1. Luca
obtained the existence and multiplicity of positive solutions for the above equation
by means of the Guo-Krasnosel’skii fixed point theorem and some height functions
defined on special bounded sets.

For the existence of positive solutions to the nonlinear fractional differential e-
quation, some authors have obtained a few results, for details, see [14, 18–20, 23,
24, 26–28] and the references therein. It is also noted that the above mentioned
references [5, 6, 14, 18–20, 24, 26–28] only considered the existence of positive solu-
tions of fractional differential equation whose nonlinear terms are not involved with
fractional derivative. Besides, they failed to further provide numerical simulation
and comprehensive results of positive solutions to fractional differential equations.
Therefore, it is quite necessary to give the numerical simulation and existence for
positive solutions to fractional differential equations whose nonlinearity involves the
explicit fractional order Dβ

0+u(t) in all respects.
Motivated by above-mentioned ideas, we all-sidedly consider the following frac-

tional differential equation
Dα

0+u(t) + f
(
t, u(t), Dβ

0+u(t)
)

= 0, t ∈ (0, 1) , 0 < β ≤ θ − 1,

u(i)(0) = 0, i = 0, 1, · · · , n− 2,[
Dθ

0+u(t)
]
t=1
− λu(1) = 0, 0 < λ < Γ(α)

Γ(α−θ) , 0 < θ ≤ n− 2,

(1.1)
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where n > 4 (n ∈ N), α ∈ (n − 1, n], Dα
0+ is the standard Riemann-Liouville frac-

tional derivative of order α and f(t, u,Dβ
0+u(t)) : [0, 1] × [0, +∞) × R → [0, +∞)

is a the nonnegative continuous function. The numerical simulation and existence
of positive solutions are discovered in the study. The corresponding Green’s func-
tion is derived first, and then the completely continuous operator of equation (1.1)
is proved. Besides, based on the Schauder’s fixed point theorem and the Kras-
nosel’skii’s fixed point theorem, the sufficient conditions for at least one or two
existence of positive solutions to equation (1.1) are established. Furthermore, sev-
eral other sufficient conditions for at least three, n or 2n − 1 positive solutions
to equation (1.1) are also obtained by applying the generalized Avery-Henderson
fixed point theorem and the Avery-Peterson fixed point theorem. Finally, several
simulation examples are provided to illustrate the main results of the paper. In
particularly, a novel efficient iterative method is employed for simulating the ex-
amples mentioned above, that is, the interesting point of this paper is that the
approximation graphics for the solutions are given by using the iterative method.

This paper is organized as follows. Section 1 is the introduction of the paper.
In Section 2, we state some basic definitions and technical lemmas which lay the
way for the latter part. In Section 3, the corresponding Green’s function and some
properties for equation (1.1) are listed. In Section 4, the completely continuous
operator of fractional differential equation (1.1) is derived. In Section 5, by applying
the Schauder’s fixed point theorem and the Krasnosel’skii’s fixed point theorem,
we discussed the existence of single or twin positive solutions to problem (1.1).
Moreover, we provide two examples and the approximation graphics of the solutions.
In Section 6, by using the generalized Avery-Henderson fixed point theorem and
the Avery-Peterson fixed point theorem, the existence criteria for at least three or
arbitrary n or 2n− 1 positive solutions to problem (1.1) are established. And two
examples with graphics are given here to illustrate our main results.

2. Preliminaries

In this section, some basic definitions and technical lemmas are introduced first to
help us understand the discussions in what follows.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a
function y: (0, +∞)→ R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds,

provided that the right side is pointwise defined on (0,+∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a
function y : (0,+∞)→ R is given by

Dα
0+y(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1y(s)ds,

provided that the right side is pointwise defined on (0,+∞), where n = [α] + 1.

Definition 2.3. Let E be a real Banach space. A nonempty closed convex set
P ⊂ E is called a cone if for all x ∈ P and λ ≥ 0, λx ∈ P and if x,−x ∈ P then
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x = 0. Every cone P ⊂ E induces an ordering in E given by x < y if and only if
y − x ∈ P.

Definition 2.4. A map δ is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if δ : P → [0,+∞) is continuous and

δ(tx+ (1− t)y) ≥ tδ(x) + (1− t)δ(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map η is a continuous convex
functional on a cone P of a real Banach space E if η : P → [0,+∞) is continuous
and

η(tx+ (1− t)y) ≤ tη(x) + (1− t)η(y)

for all x, y ∈ P and t ∈ [0, 1].

Lemma 2.1 (Lemma 1, [9]). If α > 0, β > 0, u(t) ∈ L[0, 1], then

(i) Dβ
0+I

α
0+u(t) = Iα−β0+ u(t), α > β;

(ii) Dα
0+I

α
0+u(t) = u(t);

(iii) Iα0+D
α
0+u(t) = u(t) +

∑n
i=1 cit

α−i, n− 1 < α ≤ n, ci ∈ R, i = 1, 2, · · · , n,
Dα

0+u(t) ∈ L[0, 1];

(iv) Dα
0+t

β = Γ(β+1)
Γ(β+1−α) t

β−α, β > −1, β > α− 1, t > 0.

Lemma 2.2 (Lemma 2, [9]). Let α > 0. Then the differential equation

Dα
0+u = 0

has unique solution u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, ci ∈ R, i = 1, 2, · · · , n,

here n− 1 < α ≤ n.

Lemma 2.3 (Lemma 3, [7]). Let P be a cone in a Banach space E. Assume Ω1

and Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. If A: P ∩ (Ω2\Ω1)→ P is
a completely continuous operator such that either

(i) ‖Tx‖ ≤ ‖x‖ ,∀x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖ ,∀x ∈ P ∩ ∂Ω2, or

(ii) ‖Tx‖ ≥ ‖x‖ ,∀x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖ ,∀x ∈ P ∩ ∂Ω2. Then A has a
fixed point in P ∩ (Ω2\Ω1).

For each d > 0, let P (ν, d) = {x ∈ P : ν(x) < d} , where ν is a nonnegative
continuous functional on a cone P of a real Banach space E.

Lemma 2.4 (Lemma 4, [16]). Let P be a cone in a real Banach space E. Let ψ, ζ
and ν be increasing, nonnegative continuous functionals on P such that for some
c > 0 and H > 0, ν(x) ≤ ζ(x) ≤ ψ(x) and ‖x‖ ≤ Hν(x) for all x ∈ P (ν, c). Suppose
that there exist positive numbers a and b with a < b < c, and T : P (ν, c) → P is a
completely continuous operator such that:

(i) ν(Tx) < c for all x ∈ ∂P (ν, c);

(ii) ζ(Tx) > b for all x ∈ ∂P (ζ, b);

(iii) P (ψ, a) 6= ∅ and ψ(Tx) < a for x ∈ ∂P (ψ, a).

Then T has at least three fixed points x1, x2 and x3 belonging to P (ν, c) such that

0 ≤ ψ(x1) < a < ψ(x2), ζ(x2) < b < ζ(x3) and ν(x3) < c.
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Lemma 2.5 (Lemma 5, [17]). Let P be a cone in a real Banach space E. Let ψ, ζ
and ν be increasing, nonnegative continuous functionals on P such that for some
c > 0 and H > 0, ν(x) ≤ ζ(x) ≤ ψ(x) and ‖x‖ ≤ Hν(x) for all x ∈ P (ν, c). Suppose
that there exist positive numbers a and b with a < b < c, and T : P (ν, c) → P is a
completely continuous operator such that:

(i) ν(Tx) > c for all x ∈ ∂P (ν, c);

(ii) ζ(Tx) < b for all x ∈ ∂P (ζ, b);

(iii) P (ψ, a) 6= ∅ and ψ(Tx) > a for x ∈ ∂P (ψ, a).

Then T has at least three fixed points x1, x2 and x3 belonging to P (ν, c) such that

0 ≤ ψ(x1) < a < ψ(x2), ζ(x2) < b < ζ(x3) and ν(x3) < c.

Let η and ϕ be nonnegative continuous convex functionals on P , δ be a non-
negative continuous concave functional on P and θ be a nonnegative continuous
functional on P. We define the following convex sets:

P (ϕ, δ, b, d) = {x ∈ P : b ≤ δ(x), ϕ(x) ≤ d} ,

P (ϕ, η, δ, b, c, d) = {x ∈ P : b ≤ δ(x), η(x) ≤ c, ϕ(x) ≤ d} ,

and
R(ϕ, θ, a, d) = {x ∈ P : a ≤ θ(x), ϕ(x) ≤ d} .

Lemma 2.6 (Lemma 6, [2]). Let P be a cone in a real Banach space E, and η, ϕ, δ
and θ be defined as the above. Moreover, θ satisfies θ(λ′x) ≤ λ′θ(x) for 0 ≤ λ′ ≤ 1
such that for some positive numbers h and d,

δ(x) ≤ θ(x) and ‖x‖ ≤ hϕ(x) (2.1)

holds for all x ∈ P (ϕ, d). Suppose that T : P (ϕ, d) → P (ϕ, d) is completely contin-
uous and there exist positive real numbers a, b, c, with a < b such that:

(i) {x ∈ P (ϕ, η, δ, b, c, d) : δ(x) > b} 6= ∅ and δ(T (x)) > b for x ∈ P (ϕ, η, δ, b, c, d);

(ii) δ(T (x)) > b for x ∈ P (ϕ, δ, b, d) with η(T (x)) > c;

(iii) 0 /∈ R(ϕ, θ, a, d) and θ(T (x)) < a for all x ∈ R(ϕ, θ, a, d) with θ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (ϕ, d) such that

ϕ(xi) ≤ d for i=1, 2, 3, b < δ(x1), a < θ(x2) and δ(x2) < b with θ(x3) < a.

3. The Properties of Green’s Function

In this section, the corresponding Green’s function and some properties of the
Green’s function are derived which are needed in the discussions.

Lemma 3.1 (Lemma 7). Assume that y(t) ∈ L[0, 1], then the following fractional
differential equation

Dα
0+u(t) + y(t) = 0, t ∈ (0, 1) , n− 1 < α ≤ n, n > 4,

u(i)(0) = 0, i = 0, 1, · · · , n− 2,[
Dθ

0+u(t)
]
t=1
− λu(1) = 0, 0 < λ < Γ(α)

Γ(α−θ) , 0 < θ ≤ n− 2,

(3.1)
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has the unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds,

where

G(t, s) =


tα−1(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]−L(t−s)α−1

LΓ(α) , 0 ≤ s ≤ t ≤ 1,

tα−1(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]
LΓ(α) , 0 ≤ t ≤ s ≤ 1,

(3.2)

is the Green’s function of problem (3.1) with n > 4, here L = Γ(α)− λΓ(α− θ).

Proof. According to Lemma 2.1, the general solution to problem (3.1) is

u(t) = −Iα0+y(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n, (3.3)

where n− 1 < α ≤ n, ci ∈ R, i = 1, 2, · · · , n. Observe that

u′(t) = −Iα−1
0+ y(t) + c1(α− 1)tα−2 + c2(α− 2)tα−3 + · · ·+ cn(α− n)tα−n−1,

u′′(t) = −Iα−2
0+ y(t) + c1(α− 1)(α− 2)tα−3 + · · ·+ cn(α− n)(α− n− 1)tα−n−2.

The boundary conditions u(i)(0) = 0, i = 0, 1, · · · , n − 2 implies that c2 = · · · =
cn = 0. In view of the boundary conditions [Dθ

0+u(t)]t=1 − λu(1) = 0, we get

λu(1) = −λ[Iα0+y(t)]t=1 + λc1,

[Dθ
0+u(t)]t=1 = −Iα−θ0+ y(t)]t=1 + c1[Dθ

0+tα−1]t=1,

and
λ[Iα0+y(t)]t=1 − λc1 − [Iα−θ0+ y(t)]t=1 + c1[Dθ

0+tα−1]t=1 = 0.

Based on the Definition 2.1 and the equality mentioned above, the following equality
is derived

c1 =

∫ 1

0

(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]
Γ(α)[Γ(α)− λΓ(α− θ)]

y(s)ds. (3.4)

Finally, take c1 into (3.3), and with the fact that ci = 0, i = 2, · · ·n, we get that

u(t) =

∫ t

0

− (t− s)α−1

Γ(α)
y(s)ds

+

∫ 1

0

tα−1(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]
Γ(α)[Γ(α)− λΓ(α− θ)]

y(s)ds

=

∫ 1

0

G(t, s)y(s)ds.

Thus, the proof is completed.

Lemma 3.2 (Lemma 8). Let G(t, s) be given as (3.2) and 0 ≤ β∗ ≤ θ− 1 ≤ n− 3,
then we have

(i) Dβ∗

t G(t, s) is a continuous function on the unit square [0, 1]× [0, 1];
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(ii) Dβ∗

t G(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, 1];

(iii) maxt∈[0,1]D
β∗

t G(t, s) = Dβ∗

t G(1, s) for each s ∈ [0, 1];

(iv) there exists a constant γ∗ ∈ (0, 1) such that

min
t∈[ 12 ,1]

Dβ∗

t G(t, s) ≥ γ∗ max
t∈[0,1]

Dβ∗

t G(t, s) = γ∗Dβ∗

t G(1, s),

where Dβ∗

t denotes fractional partial differential of order β∗ with respect to t,
and

γ∗ =

(
1

2

)α−β∗−1

.

Proof. Note that

Dβ∗

0+[tα−1] =
Γ(α)

Γ(α− β∗)
tα−β

∗−1.

By Definition 2.2 and Lemma 2.1, we have

Dβ∗

t G(t, s)=


tα−β

∗−1(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]−L(t−s)α−β
∗−1

LΓ(α−β∗) , 0 ≤ s ≤ t ≤ 1,

tα−β
∗−1(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]

LΓ(α−β∗) , 0 ≤ t ≤ s ≤ 1.

(3.5)
Let

Dβ∗

t G1(t, s) = tα−β
∗−1(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]−L(t−s)α−β

∗−1

LΓ(α−β∗) , 0 ≤ s ≤ t ≤ 1,

and

Dβ∗

t G2(t, s) = tα−β
∗−1(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]

LΓ(α−β∗) , 0 ≤ t ≤ s ≤ 1.

It is easy to see that property (i) holds since Dβ∗

t G1 and Dβ∗

t G2 are continuous

on their domains and Dβ∗

t G1(s, s) = Dβ∗

t G2(s, s).
Now, we consider that

Dβ∗+1
t G(t, s) =


tα−β

∗−2(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]−L(t−s)α−β
∗−2

LΓ(α−β∗−1) , 0 ≤ s ≤ t ≤ 1,

tα−β
∗−2(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]

LΓ(α−β∗−1) , 0 ≤ t ≤ s ≤ 1.

Evidently, for 0 ≤ t ≤ s ≤ 1, since 0 < λ < Γ(α)
Γ(α−θ) , we observe

Γ(α)− λΓ(α− θ)(1− s)θ > Γ(α)− Γ(α)(1− s)θ = Γ(α)[1− (1− s)θ] ≥ 0,

which implies Dβ∗+1
t G2(t, s) ≥ 0 on its domain. Similarly, for 0 ≤ s ≤ t ≤ 1, by

0 ≤ β∗ ≤ θ − 1, we have

tα−β
∗−2(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]− L(t− s)α−β

∗−2

=tα−β
∗−2{(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]

− [Γ(α)− λΓ(α− θ)](1− s

t
)α−β

∗−2}
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≥tα−β
∗−2{(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]

− [Γ(α)− λΓ(α− θ)](1− s)α−β
∗−2}

=tα−β
∗−2(1− s)α−θ−1{[Γ(α)− λΓ(α− θ)(1− s)θ]

− [Γ(α)− λΓ(α− θ)](1− s)θ−β
∗−1}

=tα−β
∗−2(1− s)α−θ−1{Γ(α)[1− (1− s)θ−β

∗−1]

+ λΓ(α− θ)(1− s)θ−β
∗−1[1− (1− s)β

∗+1]}
≥0,

which means Dβ∗+1
t G1(t, s) ≥ 0, for each s.

It implies that Dβ∗

t G(t, s) is increasing on t for each s. Consequently, (iii) holds.

Now observe that, for every fixed admissible s, we have that Dβ∗

t G(0, s) = 0. Then,

as (iii) implies that Dβ∗

t G(t, s) is increasing on its domain, we get Dβ∗

t G(t, s) ≥ 0,
for (t, s) ∈ [0, 1]× [0, 1]. So, (ii) holds.

It follows from the property (iii) that

min
t∈[ 1

2 ,1]
Dβ∗

t G(t, s) = Dβ∗

t G

(
1

2
, s

)
=

Dβ∗

t G1

(
1
2 , s
)
, s ∈

(
0, 1

2

]
,

Dβ∗

t G2

(
1
2 , s
)
, s ∈

[
1
2 , 1
)
,

=


( 1
2 )α−β

∗−1(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]−L( 1
2−s)

α−β∗−1

LΓ(α−β∗) , s ∈
(
0, 1

2

]
,

( 1
2 )α−β

∗−1(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]

LΓ(α−β∗) , s ∈
[

1
2 , 1
)
.

Let

φ(s) =
Dβ∗

t G
(

1
2 , s
)

Dβ∗

t G (1, s)
. (3.6)

Observe that for 0 < s ≤ 1
2

φ(s) =
( 1

2 )α−β
∗−1(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]− L

(
1
2 − s

)α−β∗−1

(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]− L(1− s)α−β∗−1

=

(
1

2

)α−β∗−1
(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]− L (1− 2s)

α−β∗−1

(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]− L(1− s)α−β∗−1

≥
(

1

2

)α−β∗−1
(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]− L (1− s)α−β

∗−1

(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]− L(1− s)α−β∗−1

=

(
1

2

)α−β∗−1

.

Now, according to (3.6) and L’Hospital’s rule, we get

lim
s→0+

φ(t, s)

= lim
s→0+

( 1
2 )α−β

∗−1(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]− L
(

1
2 − s

)α−β∗−1

(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]− L(1− s)α−β∗−1

= lim
s→0+

(
1

2

)α−β∗−1
Γ(α)− λΓ(α− θ)(1− s)θ − L (1− 2s)

θ−β∗

Γ(α)− λΓ(α− θ)(1− s)θ − L(1− s)θ−β∗
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L′H
= lim

s→0+

(
1

2

)α−β∗−1
λθΓ(α− θ)(1− s)θ−1 + 2(θ − β∗)L (1− 2s)

θ−β∗−1

λθΓ(α− θ)(1− s)θ−1 + (θ − β∗)L (1− s)θ−β
∗−1

=

(
1

2

)α−β∗−1
λθΓ(α− θ) + 2(θ − β∗)L
λθΓ(α− θ) + (θ − β∗)L

≥
(

1

2

)α−β∗−1

. (3.7)

On the other hand, by 0 < λ < Γ(α)
Γ(α−θ) , for 1

2 ≤ s < 1, we have

φ(s) =
( 1

2 )α−β
∗−1(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]

(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]− L(1− s)α−β∗−1

=

(
1

2

)α−β∗−1
Γ(α)− λΓ(α− θ)(1− s)θ

Γ(α)− λΓ(α− θ)(1− s)θ − [Γ(α)− λΓ(α− θ)](1− s)θ−β∗

=

(
1

2

)α−β∗−1
Γ(α)− λΓ(α− θ)(1− s)θ

Γ(α)[1− (1− s)θ−β∗ ] + λΓ(α− θ)[(1− s)θ−β∗ − (1− s)θ]

≥
(

1

2

)α−β∗−1
Γ(α)− Γ(α)(1− s)θ

Γ(α)[1− (1− s)θ−β∗ ] + Γ(α)[(1− s)θ−β∗ − (1− s)θ]

=

(
1

2

)α−β∗−1
Γ(α)[1− (1− s)θ]
Γ(α)[1− (1− s)θ]

=

(
1

2

)α−β∗−1

.

Hence, for 1
2 ≤ s ≤ 1, by the above, let

φ(s) =

(
1

2

)α−β∗−1
Γ(α)− λΓ(α− θ)(1− s)θ

Γ(α)− λΓ(α− θ)(1− s)θ − L(1− s)θ−β∗
≥
(

1

2

)α−β∗−1

.

Define

γ∗(s) :=


( 1
2 )α−β

∗−1(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]−L( 1
2−s)

α−β∗−1

(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]−L(1−s)α−β∗−1 , s ∈
[
0, 1

2

]
,(

1
2

)α−β∗−1 Γ(α)−λΓ(α−θ)(1−s)θ
Γ(α)−λΓ(α−θ)(1−s)θ−L(1−s)θ−β∗ , s ∈

[
1
2 , 1
]
.

Let

γ∗ =

(
1

2

)α−β∗−1

,

where γ∗(0) = lims→0+ γ
∗(s) > 0 due to (3.7). It is obvious that 0 < γ∗ < 1.

Consequently, we have

min
t∈[ 1

2 ,1]
Dβ∗

t G(t, s) ≥ γ∗ max
t∈[0,1]

Dβ∗

t G(t, s) = γ∗Dβ∗

t G(1, s).

Remark 3.1. In equality (3.5), considering the special case β∗ = 0 , we have

(i) G(t, s) is a continuous function on the unit square [0, 1]× [0, 1];

(ii) G(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, 1];
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(iii) maxt∈[0,1]G(t, s) = G(1, s) for each s ∈ [0, 1];

(iv) there exists a constant γ0 ∈ (0, 1) such that

min
t∈[ 1

2 ,1]
G(t, s) ≥ γ0 max

t∈[0,1]
G(t, s) = γ0G(1, s),

where

γ0 =

(
1

2

)α−1

.

Remark 3.2. In equality (3.5), choosing β > 0, by Lemma 3.2, we have

min
t∈[ 1

2 ,1]
Dβ
t G(t, s) ≥ γ max

t∈[0,1]
Dβ
t G(t, s) = γDβ

t G(1, s),

where

γ =

(
1

2

)α−β−1

.

Then,
min {γ, γ0} = γ0.

Lemma 3.3 (Lemma 9). Let G(t, s) be given as (3.2), 0 < β ≤ θ − 1 ≤ n− 3, and
n− 1 < α ≤ n, and then we have

Dβ
t G(1, s) ≤ Γ(α)

Γ(α− β)
G(1, s),

for all s ∈ [0, 1].

Proof. According to 0 < β < α, there is

Dβ
t G(1, s)

G(1, s)
=


(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]−L(1−s)α−β−1

(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]−L(1−s)α−1

LΓ(α)
LΓ(α−β) , 0 ≤ s ≤ t ≤ 1,

(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]
(1−s)α−θ−1[Γ(α)−λΓ(α−θ)(1−s)θ]

LΓ(α)
LΓ(α−β) , 0 ≤ t ≤ s ≤ 1,

≤


Γ(α)

Γ(α−β) , 0 ≤ s ≤ t ≤ 1,

Γ(α)
Γ(α−β) , 0 ≤ t ≤ s ≤ 1.

Thus, for any s ∈ [0, 1], we can conclude

Dβ
t G(1, s) ≤ Γ(α)

Γ(α− β)
G(1, s).

4. The Completely Continuous Operator

In this section, we establish the completely continuous operator for equation (1.1),
and then we obtain that finding the solution to fractional differential equation (1.1)
is equivalent to finding the fixed points of the associated completely continuous
operator.
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Suppose that E = C1([0, 1] , R), then E is a Banach space endowed with norm

‖u‖ =
(
‖u‖21 + ‖u‖22

) 1
2 ,

where
‖u‖1 = max

t∈[0,1]
|u(t)| ,

and
‖u‖2 = max

t∈[0,1]

∣∣∣Dβ
0+u(t)

∣∣∣ .
The cone P ⊂ E is defined by

P =

{
u ∈ E : u(t) ≥ 0, min

t∈[ 1
2 ,1]

u(t) ≥ γ0‖u‖1, min
t∈[ 1

2 ,1]
Dβ

0+u(t) ≥ γ0‖u‖2, t ∈ [0, 1]

}
.

(4.1)

Assume that y(t) = f
(
t, u(t), Dβ

0+u(t)
)

, then it follows from Lemma 3.1 that

the solutions of fractional differential equation (1.1) are the corresponding fixed
points of the operator T : E → E, which is defined by

Tu =

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds (4.2)

=

∫ 1

0

tα−1(1− s)α−θ−1[Γ(α)− λΓ(α− θ)(1− s)θ]f
(
s, u(s), Dβ

0+u(s)
)
ds

Γ(α)[Γ(α)− λΓ(α− θ)]

−
∫ t

0

(t− s)α−1f
(
s, u(s), Dβ

0+u(s)
)
ds

Γ(α)
.

For our later convenience, we denote

M =

∫ 1

0

G(1, s)ds, N =

∫ 1

0

Dβ
t G(1, s)ds,

S =

∫ 1

1
2

G(1, s)ds, T =

∫ 1

1
2

Dβ
t G(1, s)ds.

Lemma 4.1 (Lemma 10). Suppose that f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)), then
the operator T : P → P is completely continuous.

Proof. Firstly, we prove that T : P → P is continuous.
Let u ∈ P, from Lemma 3.2 and Remark 3.1, we know u(t) ∈ P , u(t) ≥

0, and Dβ
0+u(t) ≥ 0. Also, since f is nonnegative continuous function, we have

min
t∈[ 1

2 ,1]
Tu = min

t∈[ 1
2 ,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

=

∫ 1

0

min
t∈[ 1

2 ,1]
G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≥
∫ 1

0

γ0 max
t∈[0,1]

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds
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=γ0‖Tu‖1,

and

min
t∈[ 1

2 ,1]
T (Dβ

0+u) = min
t∈[ 1

2 ,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

=

∫ 1

0

min
t∈[ 1

2 ,1]
Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≥γ‖Tu‖2 ≥ γ0‖Tu‖2.

It implies TP ⊂ P . Hence, T : P → P is well defined. Since f ∈ C([0, 1] ×
[0,+∞)×R, [0,+∞)), G(t, s) ∈ C([0, 1]× [0, 1]) and Dβ

t G(t, s) ∈ C([0, 1]× [0, 1]),
the continuity of T is obvious.

Secondly, we show that T is compact. Let Ω ⊂ P be bounded, i.e. there
exists a constant r > 0 such that for each u ∈ Ωr = {u ∈ P : ‖u‖ ≤ r} . By
virtue of the continuity and nonnegativity of f , there exists a K > 0 such that∣∣∣f (s, u(s), Dβ

0+u(s)
)∣∣∣ = f

(
s, u(s), Dβ

0+u(s)
)
≤ K, for each (t, u,Dβ

0+u) ∈ [0, 1] ×
[0, r]× [−r, r]. By the definition of ‖u‖, we have

‖Tu‖1 = max
t∈[0,1]

|Tu(t)| (4.3)

= max
t∈[0,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

≤K max
t∈[0,1]

∫ 1

0

G(t, s)ds

≤K
∫ 1

0

max
t∈[0,1]

G(t, s)ds

≤K
∫ 1

0

G(1, s)ds

=KM,

and

‖Tu‖2 = max
t∈[0,1]

∣∣∣TDβ
0+u(t)

∣∣∣ (4.4)

= max
t∈[0,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≤K
∫ 1

0

max
t∈[0,1]

Dβ
t G(t, s)ds

≤K
∫ 1

0

Dβ
t G(1, s)ds

=KN.

Hence, we get

‖Tu‖ =
(
‖Tu‖21 + ‖Tu‖22

) 1
2 ≤ K

(
M2 +N2

) 1
2 .
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Thirdly, we prove that T maps bounded sets into equicontinuous sets of P.
From Lemma 3.2 and Remark 3.1, we know Dβ

t G(t, s) and G(t, s) are continuous in

[0, 1]× [0, 1]. Then Dβ
t G(t, s) and G(t, s) are uniformly continuous in [0, 1]× [0, 1].

Take t1, t2 ∈ [0, 1]. For any ε > 0, there exists δ > 0, whenever |t1 − t2| < δ, we
have

|G(t2, s)−G(t1, s)| < ε
K ,

and ∣∣∣Dβ
t G(t2, s)−Dβ

t G(t1, s)
∣∣∣ < ε

K .

Without loss of generality, we assume t1 < t2. Using (4.3) and (4.4), for any u ∈ Ωr,
we have

‖Tu(t2)− Tu(t1)‖1 ≤ max
t∈[0,1]

∣∣∣∣∫ 1

0

[G(t2, s)−G(t1, s)] f
(
s, u(s), Dβ

0+u(s)
)
ds

∣∣∣∣
≤ max
t∈[0,1]

∫ 1

0

|G(t2, s)−G(t1, s)|
∣∣∣f (s, u(s), Dβ

0+u(s)
)∣∣∣ ds

<ε,

and

‖Tu(t2)− Tu(t1)‖2

≤ max
t∈[0,1]

∣∣∣∣∫ 1

0

[
Dβ
t G(t2, s)−Dβ

t G(t1, s)
]
f
(
s, u(s), Dβ

0+u(s)
)
ds

∣∣∣∣
≤ max
t∈[0,1]

∫ 1

0

∣∣∣Dβ
t G(t2, s)−Dβ

t G(t1, s)
∣∣∣ ∣∣∣f (s, u(s), Dβ

0+u(s)
)∣∣∣ ds

<ε.

Therefore, we get

‖Tu(t2)− Tu(t1)‖ =
[
‖Tu(t2)− Tu(t1)‖21 + ‖Tu(t2)− Tu(t1)‖22

] 1
2 <
√

2ε.

It follows from Arzela-Ascoli theorem that the operator T : P → P is completely
continuous. The proof is complete.

5. Existence of One or Two Solutions

In this section, the existence of single or twin positive solutions to problem (1.1)
are discussed.

Theorem 5.1. Suppose that f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)) and it meets the
growth condition: there exists a nonnegative function m(t) ∈ L(0, 1) ∩ C[0, 1] such
that

|f(t, u, v)| ≤ m(t) + λ1 |u|σ1 + λ2 |v|σ2 , λi > 0, 0 < σi < 1, i = 1, 2.

Then there exists one positive solution to the problem (1.1).
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Proof. Take c ≥ max
{

3τ, (3λ1M)
1

1−σ1 , (3λ2N)
1

1−σ2

}
. Let

P c = {u ∈ E : ‖u‖ < c} ,

where τ =
∫ 1

0
G(1, s)m(s)ds+

∫ 1

0
Dβ
t G(1, s)m(s)ds. Then, it follows from the above

that τ ≤ c
3 , λ1M ≤ c1−σ1

3 , λ1N ≤ c1−σ2

3 .

Now we show that T : P c → P c. If u ∈ P c, then we have

0 ≤u(t) ≤ max
t∈[0,1]

|u(t)| ≤ ‖u‖ < c,

0 ≤|Dβ
0+u(t)| ≤ max

t∈[0,1]

∣∣∣Dβ
0+u(t)

∣∣∣ ≤ ‖u‖ < c.

So,

|f(t, u, v)| ≤ m(t) + λ1 |c|σ1 + λ2 |c|σ2 , λi > 0, 0 < σi < 1, i = 1, 2.

Also,

‖Tu‖1 = max
t∈[0,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

≤(λ1 |c|σ1 + λ2 |c|σ2)

∫ 1

0

G(1, s)ds+

∫ 1

0

G(1, s)m(s)ds

=(λ1 |c|σ1 + λ2 |c|σ2)M +

∫ 1

0

G(1, s)m(s)ds,

and

‖Tu‖2 = max
t∈[0,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≤(λ1 |c|σ1 + λ2 |c|σ2)

∫ 1

0

Dβ
t G(1, s)ds+

∫ 1

0

Dβ
t G(1, s)m(s)ds

=(λ1 |c|σ1 + λ2 |c|σ2)N +

∫ 1

0

Dβ
t G(1, s)m(s)ds.

Thus,

‖Tu‖ =
(
‖Tu‖21 + ‖Tu‖22

) 1
2

≤ ‖Tu‖1 + ‖Tu‖2 ≤ τ + (λ1 |c|σ1 + λ2 |c|σ2)(M +N) ≤ c

3
+
c

3
+
c

3
= c.

Consequently, T : P c → P c. From Lemma 4.1, we know T : P c → P c is
completely continuous. Also, by Schauder’s fixed point theorem, there exists a
solution to problem (1.1), which completes the proof.

We now provide the following example to illustrate the our theoretical result.

Example 5.1. Consider the following the fractional equation problem
D

11
3

0+u(t) + f
(
t, u(t), D

1
2

0+u(t)
)

= 0, t ∈ (0, 1) ,

u(i)(0) = 0, i = 0, 1, 2,

D
5
3

0+u(t)t=1 − 2u(1) = 0, t ∈ (0, 1) ,

(5.1)
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where v = D
1
2

0+u(t) and

f (t, u, v) = t+ 2u
1
2 + v

2
3 .

Since |f | ≤ t+ 2u
1
2 + |v| 23 , it is easy to see that the conditions of the Theorem

5.1 are satisfied. Then, applying the Theorem 5.1, this problem has one positive
solution. To obtain the approximation of the solution, we now use the iterative
method which is similar to what Wei et al. proposed in [23]. Firstly, given Ψ ∈
C[0, 1], let

u(t) =

∫ 1

0

G(t, s)Ψ(s)ds, v(t) =

∫ 1

0

D
1
2
t G(t, s)Ψ(s)ds.

Define an operator A : C[0, 1]→ C[0, 1], by

(AΨ)(t) = f

(
t,

∫ 1

0

G(t, s)Ψ(s)ds,

∫ 1

0

D
1
2
t G(t, s)Ψ(s)ds

)
.

According to the continuity of G(t, s) and Ψ(s), it is easy to prove that A is con-
tinuous operator. By the definition of the Green’s function, it is easy to see that if
Ψ(s) is a fixed point of the operator A, then

u(t) =

∫ 1

0

G(t, s)Ψ(s)ds

is a solution to problem (5.1). And the vice versa.

Let

Ψ0(t) = f(t, 0, 0) for t ∈ [0, 1],

Ψk+1(t) = f

(
t,

∫ 1

0

G(t, s)Ψk(s)ds,

∫ 1

0

D
1
2
t G(t, s)Ψk(s)ds

)
,

where k = 0, 1, · · · .
From the proof of Wei et al. in [23], we know the operator A is contraction and

this iterative method converges with the rate of geometric progression. Therefore,

u(t) =
∫ 1

0
G(t, s)Ψ∗(s)ds is a solution of problem (5.1), where Ψ∗ is a fixed point of

operator A.

Now we give the the numerical simulation of solution to problem (5.1) , that is,
the approximation of the solution to problem (5.1) is given in Figure 1.

Theorem 5.2. Suppose that f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)) and the following
conditions hold:

(A1) there exists a constant a > 0 such that f (t, u, v) ≤ aΛ1 for (t, u, v) ∈ [0, 1]×
[0, a]× [−a, a], where Λ1 = min

{
(
√

2M)−1, (
√

2N)−1
}

;

(A2) there exists a constant b > 0 such that f (t, u, v) ≥ bΛ2 for (t, u, v) ∈ [ 1
2 , 1]×

[0, b]× [−b, b] , where Λ2 = max
{

(
√

2S)−1, (
√

2T )−1
}
, and a 6= b.

Then problem (1.1) has at least one positive solution u such that ‖u‖ lies between
a and b.
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Figure 1. the approximation of the solution to problem (5.1)

Proof. Without loss of generality, we assume that a < b. Let

Ωa = {u ∈ E : ‖u‖ < a} .

For any u ∈ P ∩ ∂Ωa, there is

max
t∈[0,1]

|u(t)| ≤ ‖u‖ < a and max
t∈[0,1]

∣∣∣Dβ
0+u(t)

∣∣∣ ≤ ‖u‖ < a.

It follows from Lemma 3.2 and condition (A1) that

‖Tu‖1 = max
t∈[0,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

≤
∫ 1

0

G(1, s)aΛ1ds

=aΛ1

∫ 1

0

G(1, s)ds

=aM min
{

(
√

2M)−1, (
√

2N)−1
}

≤ a√
2
,

and

‖Tu‖2 = max
t∈[0,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≤aΛ1

∫ 1

0

Dβ
t G(1, s)ds

=aN min
{

(
√

2M)−1, (
√

2N)−1
}

≤ a√
2
.
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Hence, we get

‖Tu‖ =
(
‖Tu‖21 + ‖Tu‖22

) 1
2 ≤ a.

which implies that
‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωa. (5.2)

Define
Ωb = {u ∈ E : ‖u‖ < b} ,

for arbitrary u ∈ P ∩ ∂Ωb, we have

max
t∈[0,1]

|u(t)| ≤ ‖u‖ < b and max
t∈[0,1]

∣∣∣Dβ
0+u(t)

∣∣∣ ≤ ‖u‖ < b.

On the other hand, it follows from Lemma 3.2 and condition (A2) that

‖Tu‖1 = max
t∈[0,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

= max
t∈[0,1]

[∫ 1
2

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds+

∫ 1

1
2

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

]

≥ max
t∈[0,1]

∫ 1

1
2

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

=

∫ 1

1
2

max
t∈[0,1]

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

≥
∫ 1

1
2

G(1, s)bΛ2ds

=bΛ2

∫ 1

1
2

G(1, s)ds

=bSmax
{

(
√

2S)−1, (
√

2T )−1
}

≥ b√
2
,

and

‖Tu‖2 = max
t∈[0,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≥ max
t∈[0,1]

∫ 1

1
2

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≥
∫ 1

1
2

Dβ
t G(1, s)bΛ2ds

=bΛ2

∫ 1

1
2

Dβ
t G(1, s)ds

=bT max
{

(
√

2S)−1, (
√

2T )−1
}

≥ b√
2
.
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Hence, we get

‖Tu‖ =
(
‖Tu‖21 + ‖Tu‖22

) 1
2 ≥ b,

which implies that
‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ωb. (5.3)

Using (5.2), (5.3) and Lemma 2.3, problem (1.1) has a positive solution u in
P ∩ (Ωb\Ωa). The proof is complete.

For u, v ∈ P , we denote

g0 = lim
(u,v)→(0,0)

sup
t∈[0,1]

f (t, u, v)

u
, h0 = lim

(u,v)→(0,0)
sup
t∈[0,1]

f (t, u, v)

|v|
,

f0 = lim
(u,v)→(0,0)

sup
t∈[0,1]

f (t, u, v)

u+ |v|
, g∞ = lim

(u,v)→(∞,∞)
sup
t∈[0,1]

f (t, u, v)

u
,

h∞ = lim
(u,v)→(∞,∞)

sup
t∈[0,1]

f (t, u, v)

|v|
, f∞ = lim

u+|v|→∞
sup
t∈[0,1]

f (t, u, v)

u+ |v|
,

f0 = lim
(u,v)→(0,0)

inf
t∈[0,1]

f (t, u, v)

u+ |v|
, f∞ = lim

u+|v|→∞
inf

t∈[0,1]

f (t, u, v)

u+ |v|
.

Now, we prove the following results.

Theorem 5.3. Suppose that f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)) and the following
conditions hold:

(i) h0 ∈ [0,Λ1) ;

(ii) f∞ ∈
(

Λ2

γ0
,∞
)
∪ {∞}.

Then problem (1.1) has at least one positive solution.

Proof. According to h0 < Λ1, for any ε1 > 0, there exists a constant r1 > 0 such
that for 0 < u < r1, there is

f
(
t, u,Dβ

0+u
)
≤ (h0 + ε1)|Dβ

0+u| ≤ Λ1|Dβ
0+u| ≤ Λ1r1 (5.4)

for
(
t, u,Dβ

0+u
)
∈ [0, 1]× [0, r1]× [−r1, r1]. Let

Ωr1 = {u ∈ E : ‖u‖ < r1} .

By (5.4) and Theorem 5.2, we have

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωr1 .

On the other hand, using (4.1), we get

u+ |Dβ
0+u| ≥ γ0(‖u‖1 + ‖u‖2) ≥ γ0(‖u‖21 + ‖u‖22)

1
2 = γ0‖u‖.

Also, it follows from f∞ > Λ2

γ0
that there exists an H > 2r1 such that

f
(
t, u,Dβ

0+u
)
≥ Λ2

γ0
(u+ |Dβ

0+u|) ≥
Λ2

γ0
γ0‖u‖ = Λ2‖u‖, (5.5)
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for all t ∈ [0, 1] with u+
∣∣∣Dβ

0+u
∣∣∣ ≥ H. Set

ΩH =
{
u ∈ E : u+

∣∣∣Dβ
0+u

∣∣∣ < H
}
,

then we see that Ωr1 ⊂ ΩH .

For any u ∈ P ∩ ∂ΩH , we have u+
∣∣∣Dβ

0+u
∣∣∣ = H. Using (5.5), we get

‖Tu‖1 = max
t∈[0,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

≥ max
t∈[0,1]

∫ 1

1
2

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

=

∫ 1

1
2

max
t∈[0,1]

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

≥
∫ 1

1
2

G(1, s)Λ2‖u‖ds

≥Λ2

∫ 1

1
2

G(1, s)ds‖u‖ ≥ ‖u‖√
2
,

and

‖Tu‖2 = max
t∈[0,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≥ max
t∈[0,1]

∫ 1

1
2

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≥Λ2

∫ 1

1
2

Dβ
t G(1, s)ds‖u‖ ≥ ‖u‖√

2
.

Thus, we obtain
‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ωr1 .

Consequently, by Lemma 2.3, we conclude that problem (1.1) has a positive
solution u in P ∩ (ΩH\Ωr1).

We now provide the following example to illustrate the our theoretical result.

Example 5.2. consider the following the fractional equation problem
Dα

0+u(t) + f
(
t, u(t), Dβ

0+u(t)
)

= 0, t ∈ (0, 1) , n− 1 < α ≤ n, 0 < β ≤ θ − 1,

u(i)(0) = 0, i = 0, 1, · · · , n− 2,

Dθ
0+u(t)t=1 − λu(1) = 0, 0 < λ < Γ(α)

Γ(α−θ) , 0 < θ ≤ n− 2,

where v = D
1
2

0+u(t) and

f
(
t, u(t), Dβ

0+u(t)
)

= eu+vu2v2.



Existence of solutions to FDEs 505

We can easily verify that h0 = 0 and f∞ = ∞. This implies that all the
conditions of the Theorem 5.3 are satisfied. According to the Theorem 5.3, this
problem has at least one positive solution.

Theorem 5.4. Suppose that f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)) and the following
conditions hold:

(i) f0 ∈
(

Λ2

γ0
,∞
)
∪ {∞};

(ii) h∞ ∈ [0,Λ1) .

Then problem (1.1) has at least one positive solution.

Proof. Since f0 >
Λ2

γ0
, choose ε2 = f0 − Λ2

γ0
(> 0), there exists a constant r2 > 0

such that for 0 < u < r2, it holds

f
(
t, u,Dβ

0+u
)
≥ (f0 − ε2)(u+ |Dβ

0+u|) =
Λ2

γ0
(u+ |Dβ

0+u|) ≥
Λ2

γ0
γ0‖u‖ = Λ2‖u‖

for
(
t, u,Dβ

0+u
)
∈ [0, 1]× [0, r2]× [−r2, r2].

From the above inequality, for
(
t, u,Dβ

0+u
)
∈
[

1
2 , 1
]
× [0, r2]× [−r2, r2], we get

f
(
t, u,Dβ

0+u
)
≥ Λ2‖u‖. (5.6)

Let
Ωr2 = {u ∈ E : ‖u‖ < r2} .

Taking (5.6) into account, by exactly the same way as in the proof of Theorem 5.3,
we can get

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ωr2 .

Let ε3 = Λ1 − h∞ (> 0). Since h∞ < Λ1, there exists a r3 (> r2) such that

f
(
t, u,Dβ

0+u
)
≤ (h∞ + ε3) |Dβ

0+u| = Λ1|Dβ
0+u| (5.7)

for
(
t, u,Dβ

0+u
)
∈ [0, 1]× [r3,+∞)× (−∞,−r3] ∪ [r3,+∞). Considering that

f ∈ C([0, 1]× [0,+∞)× R, [0,+∞)),

there exists a C3 > 0 satisfying

f
(
t, u,Dβ

0+u
)
≤ C3 for

(
t, u,Dβ

0+u
)
∈ [0, 1]× [0, r3]× [−r3, r3] . (5.8)

By (5.7) and (5.8), we have

f
(
t, u,Dβ

0+u
)
≤ max

{
C3,Λ1|Dβ

0+u|
}

for
(
t, u,Dβ

0+u
)
∈ [0, 1]× [0,+∞)× R.

Take r3 > max{C3/Λ1, 2r2}. Let Ωr3 = {u ∈ E : ‖u‖ < r3} , if u ∈ P ∩ ∂Ωr3 , we
have ‖u‖ = r3,

‖Tu‖1 = max
t∈[0,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds



506 A. Sun, Y. Su , Q. Yuan & T. Li

≤
∫ 1

0

max
t∈[0,1]

G(t, s) max
{
C3,Λ1|Dβ

0+u|
}
ds

≤Λ1r3

∫ 1

0

G(1, s)ds

=Λ1r3M

≤ r3√
2
,

and

‖Tu‖2 = max
t∈[0,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≤
∫ 1

0

max
t∈[0,1]

Dβ
t G(t, s) max

{
C3,Λ1|Dβ

0+u|
}
ds

≤Λ1r3

∫ 1

0

Dβ
t G(1, s)ds

=Λ1r3N

≤ r3√
2
.

Hence,

‖Tu‖ =
(
‖Tu‖21 + ‖Tu‖22

) 1
2 ≤ r3.

This implies that problem (1.1) has at least one positive solution.

Theorem 5.5. Assume that one of the following two conditions hold:

(i) g0 ∈ [0,Λ1), and f∞ ∈
(

Λ2

γ0
,∞
)
∪ {∞};

(ii) f0 ∈
(

Λ2

γ0
,∞
)
∪ {∞}, and g∞ ∈ [0,Λ1).

Then problem (1.1) has at least one positive solution.

Proof. Under the above assumptions, by using the similar way, it is easy to prove
that the conditions in Theorem 5.2 or Theorem 5.3 are satisfied. So we omit the
proof.

Theorem 5.6. Assume that f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)) and the following
conditions hold:

(i) f0 ∈
[
0, 1

2Λ1

)
;

(ii) f∞ ∈
(

Λ2

γ0
,∞
)
∪ {∞}.

Then problem (1.1) has at least one positive solution.

Proof. Since f0 ∈
[
0, 1

2Λ1

)
, there exists a r4 > 0, such that

f
(
t, u,Dβ

0+u
)
≤ 1

2
Λ1(u+ |Dβ

0+u|) ≤
1

2
Λ12‖u‖ = Λ1‖u‖ (5.9)

for
(
t, u,Dβ

0+u
)
∈ [0, 1]× [0, r4]× [−r4, r4].
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Let Ωr4 = {u ∈ E : ‖u‖ < r4} , in view of (5.9), we have

f
(
t, u,Dβ

0+u
)
≤ Λ1‖u‖ ≤ Λ1r4,

which implies that the condition (A1) of Theorem 5.2 holds. Thus,

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωr4 .

Notice that the condition (ii), in exactly the same way as in the proof of Theorem
5.2, we can get

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ωr5 ,

where r5 > r4, and Ωr5 = {u ∈ E : ‖u‖ < r5} . So, we have completed the proof.

Theorem 5.7. Assume that f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)) and the following
conditions hold:

(i) f0 ∈
(

Λ2

γ0
,∞
)
∪ {∞};

(ii) f∞ ∈
[
0, 1

2Λ1

)
.

Then problem (1.1) has at least one positive solution.

Proof. Firstly, since f0 ∈
(

Λ2

γ0
,∞
)
∪ {∞}, in view of condition (ii) of Theorem

5.4, we have
‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ωr2 .

Secondly, according to f∞ ∈
[
0, 1

2Λ1

)
, there exists a r6 (> r2) such that

f
(
t, u,Dβ

0+u
)
≤ 1

2Λ1|u+Dβ
0+u| ≤ 1

2Λ12‖u‖ = Λ1‖u‖ (5.10)

for
(
t, u,Dβ

0+u
)
∈ [0, 1]× [r6,+∞)× (−∞,−r6] ∪ [r6,+∞).

Considering (5.10), and using the technique similar to the second part of the
proof in Theorem 5.4, we obtain that

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωr6 ,

where Ωr6 = {u ∈ E : ‖u‖ < r6}. Therefore, fractional differential equation (1.1)
has at least one positive solution.

Next, we investigate the existence of at least two distinct positive solutions to
problem (1.1).

Theorem 5.8. Assume that f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)). If h0 = 0, h∞ =
0 and the condition (A2) in Theorem 5.2 is satisfied, then problem (1.1) has at least
two distinct positive solutions u1, u2 ∈ P .

Proof. Since h0 = 0, take 0 < ε1 < Λ1, then there exists a ρ1 > 0 such that

f
(
t, u,Dβ

0+u
)
≤ ε1|Dβ

0+u| ≤ Λ1|Dβ
0+u| ≤ Λ1ρ1

for
(
t, u,Dβ

0+u
)
∈ [0, 1]× [0, ρ1]× [−ρ1, ρ1], which implies that the condition (A1)

of Theorem 5.2 holds. Hence, we can get

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωρ1 ,
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where Ωρ1 = {u ∈ E : ‖u‖ < ρ1} .
Further, using the condition (A2) in Theorem 5.2, we can get that

‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ωb,

where Ωb = {u ∈ E : ‖u‖ < b} . Then we see that Ωρ1 ⊂ Ωb. By virtue of Lemma
2.3, fractional differential equation (1.1) has at least a single positive solution u1 ∈
P ∩ (Ωb\Ωρ1).

Finally, taking 0 < ε2 < Λ1, it follows from h∞ = 0 that there exists an H1 > b
such that

f
(
t, u,Dβ

0+u
)
≤ ε2|Dβ

0+u| ≤ Λ1|Dβ
0+u| ≤ Λ1‖u‖ (5.11)

for
(
t, u,Dβ

0+u
)
∈ [0, 1]× [H1,+∞)× (−∞, H1] ∪ [H1,+∞).

Let ΩH1
= {u ∈ E : ‖u‖ < H1} . Then we see that Ωb ⊂ ΩH1

. For any u ∈
P ∩ ∂ΩH1

, we have ‖u‖ = H1. By (5.11), we get

f
(
t, u,Dβ

0+u
)
≤ Λ1H1,

which indicates that condition (A1) of Theorem 5.2 is satisfied. Thus, we obtain
that

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂ΩH1 .

Consequently, it follows from Lemma 2.3 that problem (1.1) has at least a single
positive solution u2 in P ∩ (ΩH1

\Ωb) with

b ≤ ‖u2‖ and |u2|+ |Dβ
0+u2| ≤ H1.

Evidently, u1 and u2 are distinct.
In a way closely similar to the above, we can obtain the following result.

Theorem 5.9. Assume that f ∈ C([0, 1] × [0,+∞) × R, [0,+∞)) and one of the
following two conditions hold:

(i) f0 =∞, f∞ =∞, and the condition (A1) in Theorem 5.2 is satisfied;

(ii) g0 = 0, g∞ = 0, and the condition (A2) in Theorem 5.2 is satisfied.

Then problem (1.1) has at least two distinct positive solutions u1, u2 ∈ P .

6. Existence of Triple or Multiple Solutions

In this section, we will further discuss the existence of at least 3, n or 2n − 1
positive solutions to fractional differential equation (1.1) by using different fixed
point theorems in cone.

6.1. Three Solutions

Now, we define the nonnegative, continuous, increasing functionals ψ, ν, ζ as fol-
lows,

ψ(u) = max
t∈[0,1]

u(t) + max
t∈[0,1]

|Dβ
0+u(t)| = ‖u‖1 + ‖u‖2,
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ν(u) = ζ(u) = max

{
min
t∈[ 1

2 ,1]
|Dβ

0+u(t)|, min
t∈[ 1

2 ,1]
u(t)

}
.

We have

ν(u) = ζ(u) ≤ ψ(u) for each u ∈ P,

and

‖u‖ ≤ ψ(u) ≤ 2‖u‖.

Moreover, we know u(t) =
∫ 1

0
G(t, s)y(s)ds, by Lemma 3.3, we have

max
t∈[0,1]

|Dβ
0+u(t)| ≤ Γ(α)

Γ(α− β)
max
t∈[0,1]

u(t). (6.1)

Thus,

‖u‖2 ≤
Γ(α)

Γ(α− β)
‖u‖1.

Since ‖u‖ =
(
‖u‖21 + ‖u‖22

) 1
2 , we get

‖u‖ ≤
(
‖u‖21 +

Γ2(α)

Γ2(α− β)
‖u‖21

) 1
2

=

√
Γ(α− β)2 + Γ(α)2

Γ(α− β)
‖u‖1 ≤

√
Γ(α− β)2 + Γ(α)2

γ0Γ(α− β)
min
t∈[ 1

2 ,1]
|u(t)|.

Consequently,

‖u‖ ≤
√

Γ(α− β)2 + Γ(α)2

γ0Γ(α− β)
ν(u) =

√
Γ(α− β)2 + Γ(α)2

γ0Γ(α− β)
ζ(u). (6.2)

Theorem 6.1. Assume that there exist real numbers a, b, c such that 0 < a < b <
γ0
l c, where l =

√
Γ(α−β)2+Γ(α)2

Γ(α−β) . In addition, if f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)),

and f (t, u, v) satisfies the following conditions:

(H1) f (t, u, v) < c
max{M,N} for (t, u, v) ∈ [0, 1]×

[
0, l

γ0
c
]
×
[
− l
γ0
c, l
γ0
c
]
;

(H2) f (t, u, v) > b
γ0 max{S,T} for (t, u, v) ∈

[
1
2 , 1
]
×
[
0, l

γ0
b
]
×
[
− l
γ0
b, l
γ0
b
]
;

(H3) f (t, u, v) < a
M+N for (t, u, v) ∈ [0, 1]× [0, a]× [−a, a].

Then problem (1.1) has at least three distinct positive solutions u1, u2, u3 ∈ P (ν, c)
such that

0 < ‖u1‖1 + ‖u1‖2 < a < ‖u2‖1 + ‖u2‖2,

max

{
min
t∈[ 1

2 ,1]
|Dβ

0+u2|, min
t∈[ 1

2 ,1]
u2

}
< b,

b < max

{
min
t∈[ 1

2 ,1]
|Dβ

0+u3|, min
t∈[ 1

2 ,1]
u3

}
< c.
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Proof. Using a way similar to the first part of the proof of Lemma 4.1, it is easy
to see that T : P (ν, c) → P. Now, we show that the conditions of Lemma 2.4 are
satisfied.

Firstly, according to (6.2), for any u ∈ ∂P (ν, c), we have that ν(u) = c and

‖u‖ ≤
√

Γ(α−β)2+Γ(α)2

γ0Γ(α−β) c. This implies that

0 ≤ u(t) ≤ l

γ0
c and − l

γ0
c ≤ Dβ

0+u(t) ≤ l

γ0
c for t ∈ [0, 1],

where l =

√
Γ(α−β)2+Γ(α)2

Γ(α−β) . By condition (H1), we have

ν(Tu) = max

{
min
t∈[ 1

2 ,1]
|TDβ

0+u(t)|, min
t∈[ 1

2 ,1]
Tu(t)

}

= max

{
min
t∈[ 1

2 ,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds ,

min
t∈[ 1

2 ,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

}

≤ max

{∫ 1

0

Dβ
t G(1, s)f

(
s, u(s),Dβ

0+u(s)
)
ds,

∫ 1

0

G(1, s)f
(
s, u(s),Dβ

0+u(s)
)
ds

}
< max

{
c

max{M,N}

∫ 1

0

Dβ
t G(1, s)ds,

c

max{M,N}

∫ 1

0

G(1, s)ds

}
< c.

This implies condition (ii) of Lemma 2.4 is true.
Secondly, for arbitrary u ∈ ∂P (ζ, b), we have ζ(u) = ν(u) = b and ‖u‖ ≤ l

γ0
b.

Similarly, there is

0 ≤ u(t) ≤ l

γ0
b and − l

γ0
b ≤ Dβ

0+u(t) ≤ l

γ0
b for t ∈

[
1

2
, 1

]
.

According to condition (H2), we obtain

ζ(Tu) =ν(Tu) = max

{
min
t∈[ 1

2 ,1]
|TDβ

0+u(t)|, min
t∈[ 1

2 ,1]
Tu(t)

}

= max

{
min
t∈[ 1

2 ,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds,

min
t∈[ 1

2 ,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

}

= max

{∫ 1

0

min
t∈[ 1

2 ,1]
Dβ
t G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds,

∫ 1

0

min
t∈[ 1

2 ,1]
G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

}

≥γ0 max

{∫ 1

1
2

Dβ
t G(1, s)f

(
s, u,Dβ

0+u
)
ds,

∫ 1

1
2

G(1, s)f
(
s, u,Dβ

0+u
)
ds

}
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>γ0 max

{
b

γ0 max{S, T}

∫ 1

1
2

Dβ
t G(1, s)ds,

b

γ0 max{S, T}

∫ 1

1
2

G(1, s)ds

}
>b,

which means condition (i) of Lemma 2.4 is true.
Thirdly, for each u ∈ ∂P (ψ, a), we have that ψ(u) = a and ‖u‖ ≤ a. Hence, we

have
0 ≤ u(t) ≤ a and − a ≤ Dβ

0+u(t) ≤ a for t ∈ [0, 1].

Since a
3 ∈ ∂P (ψ, a), then P (ψ, a) 6= ∅. Further, it follows from condition (H3) that

ψ(Tu) = max
t∈[0,1]

|Dβ
0+Tu(t)|+ max

t∈[0,1]
Tu(t)

= max
t∈[0,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u,Dβ

0+u
)
ds+ max

t∈[0,1]

∫ 1

0

G(t, s)f
(
s, u,Dβ

0+u
)
ds

=

∫ 1

0

max
t∈[0,1]

Dβ
t G(t, s)f

(
s, u,Dβ

0+u
)
ds+

∫ 1

0

max
t∈[0,1]

G(t, s)f
(
s, u,Dβ

0+u
)
ds

=

∫ 1

0

Dβ
t G(1, s)f

(
s, u,Dβ

0+u
)
ds+

∫ 1

0

G(1, s)f
(
s, u,Dβ

0+u
)
ds

<
a

M +N

[∫ 1

0

Dβ
t G(1, s)ds+

∫ 1

0

G(1, s)ds

]
< a.

Therefore, condition (iii) of Lemma 2.4 is satisfied and the operator T has at least
three distinct positive solutions u1, u2, u3 ∈ P (ν, c) such that

0 < ‖u1‖1 + ‖u1‖2 < a < ‖u2‖1 + ‖u2‖2,

max

{
min
t∈[ 1

2 ,1]
|Dβ

0+u2|, min
t∈[ 1

2 ,1]
u2

}
< b,

b < max

{
min
t∈[ 1

2 ,1]
|Dβ

0+u3|, min
t∈[ 1

2 ,1]
u3

}
< c.

We now provide the following example to illustrate the our main result and give
the numerical simulation of the solution.

Example 6.1. consider the following fractional equation problem
D

11
3

0+u(t) + f
(
t, u(t), D

1
2

0+u(t)
)

= 0, t ∈ (0, 1) ,

u(i)(0) = 0, i = 0, 1, 2,

D
5
3

0+u(t)t=1 − 2u(1) = 0, t ∈ (0, 1) ,

(6.3)

where v = D
1
2

0+u(t) and

f (t, u, v) =

t
2 + 160u10 +

(
v

600

)2
, u ≤ 1,

t2 + 160 +
(
v

600

)2
, u > 1.
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Notice that α = 11
3 , β = 1

2 , θ = 5
3 , λ = 2. By calculation, we get that

M =

∫ 1

0

G(1, s)ds =

∫ 1

0

(1− s)− (1− s) 8
3

Γ( 11
3 )− 2Γ(2)

ds ≈ 0.1129,

N =

∫ 1

0

Γ( 11
3 )[(1− s)− (1− s) 13

6 ] + 2Γ(2)[(1− s) 13
6 − (1− s) 8

3 ]

Γ( 19
6 )(Γ( 11

3 )− 2Γ(2))
ds ≈ 0.1749,

S =

∫ 1

1
2

G(1, s)ds =

∫ 1

1
2

(1− s)− (1− s) 8
3

Γ( 11
3 )− 2Γ(2)

ds ≈ 0.0514, (6.4)

T =

∫ 1

1
2

Γ( 11
3 )[(1− s)− (1− s) 13

6 ] + 2Γ(2)[(1− s) 13
6 − (1− s) 8

3 ]

Γ( 19
6 )(Γ( 11

3 )− 2Γ(2))
ds ≈ 0.0822,

γ0 =

(
1

2

) 11
3 −1

= 0.1575.

Choosing a = 1
2 , b = 2 and c = 35, we have a < b < γ0

l c and

f (t, u, v) <
c

max{M,N}
≈ 200.1570,

for (t, u, v) ∈ [0, 1]× [0, 440.4098]× [−440.4098, 440.4098] ;

f (t, u, v) >
b

γ0max{S, T}
≈ 154.5319,

for (t, u, v) ∈
[

1

2
, 1

]
× [0, 25.1663]× [−25.1663, 25.1663] ;

f (t, u, v) <
a

M +N
≈ 1.7373, for (t, u, v) ∈ [0, 1]×

[
0,

1

2

]
×
[
−1

2
,

1

2

]
;

It follows from the Theorem 6.1 that this problem has at least three distinct
positive solutions such that

0 < ‖u1‖1 + ‖u1‖2 <
1

2
< ‖u2‖1 + ‖u2‖2,

max

{
min
t∈[ 1

2 ,1]
|D

1
2
0+u2|, min

t∈[ 1
2 ,1]

u2

}
< 2,

2 < max

{
min
t∈[ 1

2 ,1]
|D

1
2
0+u3|, min

t∈[ 1
2 ,1]

u3

}
< 35.

By the iterative method of Example 5.1, the numerical simulation of existence
to the solutions is obtained. With the same scale set in the graph, the solution u3

is very small and not easy to observe, and that is the reason why another graph is
established with larger scale. The graph of the approximation of the solutions is
given in Figure 2.

Theorem 6.2. Assume that there exist real numbers a, b, c such that 0 < a < b <
γ0
l c, here l =

√
Γ(α−β)2+Γ(α)2

Γ(α−β) . In addition, if f ∈ C([0, 1]× [0,+∞)× R, [0,+∞))

and f (t, u, v) satisfies the following conditions:

(H1) f (t, u, v) > c
γ0 max{S,T} for (t, u, v) ∈

[
1
2 , 1
]
×
[
0, l

γ0
c
]
×
[
− l
γ0
c, l
γ0
c
]
;
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Figure 2. the approximation of the solutions to problem (6.3)

(H2) f (t, u, v) < b
max{M,N} for (t, u, v) ∈ [0, 1]×

[
0, l

γ0
b
]
×
[
− l
γ0
b, l
γ0
b
]
;

(H3) f (t, u, v) > a
γ0(S+T ) for (t, u, v) ∈ [0, 1]× [0, a]× [−a, a].

Then problem (1.1) has at least three distinct positive solutions u1, u2, u3 ∈ P (ν, c)
such that

0 < ‖u1‖1 + ‖u1‖2 < a < ‖u2‖1 + ‖u2‖2,

max

{
min
t∈[ 1

2 ,1]
|Dβ

0+u2|, min
t∈[ 1

2 ,1]
u2

}
< b,

b < max

{
min
t∈[ 1

2 ,1]
|Dβ

0+u3|, min
t∈[ 1

2 ,1]
u3

}
< c.

Proof. According to the Lemma 2.5, and using a way similar to the proof of
Theorem 6.1, we can obtain the desired result.

Now, for u ∈ P , we define the following functionals, by

ϕ(u) = max
t∈[0,1]

|Dβ
0+u(t)|+ max

t∈[0,1]
|u(t)|,

θ(u) =η(u) = max
t∈[0,1]

|u(t)|,

δ(u) = min
t∈[ 1

2 ,1]
u(t).

It is obvious that ϕ and η are nonnegative continuous convex functionals on P , δ is a
nonnegative continuous concave functional on P and θ is a nonnegative continuous
functional on P . Moreover, for any u ∈ P , we have

ϕ(u) ≤ 2‖u‖ and γ0η(u) ≤ δ(u) ≤ η(u) = θ(u) ≤ ‖u‖.
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Theorem 6.3. Suppose that f ∈ C([0, 1]× [0,+∞)× R, [0,+∞)) and there exist
constants a, b, d such that 0 < a < b < γ0d. In addition, f (t, u, v) satisfies the
following conditions:

(R1) f (t, u, v) ≤ d
M+N for (t, u, v) ∈ [0, 1]× [0, Γ(α−β)

Γ(α)+Γ(α−β)d]× [−d, d];

(R2) f (t, u, v) > b
γ0S

for (t, u, v) ∈
[

1
2 , 1
]
× [b, bγ0 ]× [−d, d];

(R3) f (t, u, v) < a
M for (t, u, v) ∈ [0, 1]× [0, a]× [−d, d].

Then problem (1.1) has at least triple positive solutions u1, u2, u3 ∈ P such that

max
t∈[0,1]

|Dβ
0+ui|+ max

t∈[0,1]
|u(t)| ≤ d, i = 1, 2, 3,

b < min
t∈[ 1

2 ,1]
|u1|, a < max

t∈[0,1]
|u2|, min

t∈[ 1
2 ,1]
|u2| < b, max

t∈[0,1]
|u3| < a.

Proof. For arbitrary u ∈ P , we have δ(u) ≤ η(u) and

‖u‖ ≤ ‖u‖1 + ‖u‖2 = max
t∈[0,1]

|Dβ
0+u(t)|+ max

t∈[0,1]
|u(t)| = ϕ(u).

This implies that the inequality (2.1) of Lemma 2.6 is satisfied.
Firstly, we show that T : P (ϕ, d)→ P (ϕ, d). For any u ∈ P (ϕ, d), we have

ϕ(u) = max
t∈[0,1]

|Dβ
0+u(t)|+ max

t∈[0,1]
|u(t)| ≤ d,

By (6.1) and the above inequality, we have

max
t∈[0,1]

|u(t)| ≤ Γ(α− β)

Γ(α) + Γ(α− β)
d.

Using the condition (R1) that is f (t, u, v) ≤ d
M+N , we get

ϕ(Tu) = max
t∈[0,1]

|Dβ
0+Tu(t)|+ max

t∈[0,1]
|Tu(t)|

= max
t∈[0,1]

∫ 1

0

Dβ
t G(t, s)f

(
s, u,Dβ

0+u
)
ds+ max

t∈[0,1]

∫ 1

0

G(t, s)f
(
s, u,Dβ

0+u
)
ds

=

∫ 1

0

max
t∈[0,1]

Dβ
t G(t, s)f

(
s, u,Dβ

0+u
)
ds+

∫ 1

0

max
t∈[0,1]

G(t, s)f
(
s, u,Dβ

0+u
)
ds

≤ d

M +N

(∫ 1

0

Dβ
t G(1, s)ds+

∫ 1

0

G(1, s)ds

)
= d.

Hence, T : P (ϕ, d)→ P (ϕ, d).
Secondly, taking u(t) = b

γ0
, since 0 < γ0 < 1, then we have δ(u) = δ( b

γ0
) = b

γ0
>

b, η(u) = η( b
γ0

) = b
γ0
, ϕ( b

γ0
) = b

γ0
< d. This implies that

b

γ0
∈ {u ∈ P (ϕ, η, δ, b,

b

γ0
, d) : δ(u) > b}.

Moreover, for u ∈ P (ϕ, η, δ, b, bγ0 , d), we have b ≤ u(t) ≤ b
γ0
, |Dβ

0+u(t)| ≤ d, t ∈[
1
2 , 1
]
. By the condition (R2), we obtain

δ(Tu) = min
t∈[ 1

2 ,1]
Tu = min

t∈[ 1
2 ,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds
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=

∫ 1

0

min
t∈[ 1

2 ,1]
G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≥
∫ 1

1
2

min
t∈[ 1

2 ,1]
G(t, s)f

(
s, u(s), Dβ

0+u(s)
)
ds

≥γ0

∫ 1

1
2

G(1, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

>γ0

∫ 1

1
2

G(1, s)
b

γ0S
ds = b,

which means condition (i) of Lemma 2.6 is true.
Thirdly, when u ∈ P (ϕ, δ, b, d) with η(Tu) > b

γ0
, we have

δ(Tu) > γ0η(Tu) > γ0
b

γ0
= b.

Thus, condition (ii) of Lemma 2.6 is satisfied.
Finally, we prove that condition (iii) of Lemma 2.6 holds. By θ(0) = 0 < a, we

know 0 /∈ R(ϕ, θ, a, d). When u ∈ R(ϕ, θ, a, d) with θ(u) = a, using condition (R3),
we obtain

θ(Tu) = max
t∈[0,1]

|Tu(t)|

= max
t∈[0,1]

∫ 1

0

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

=

∫ 1

0

max
t∈[0,1]

G(t, s)f
(
s, u(s), Dβ

0+u(s)
)
ds

<

∫ 1

0

G(1, s)
a

M
ds = a.

This gives the desired result.
Consequently, by Lemma 2.6, problem (1.1) has at least triple positive solutions

u1, u2, u3 ∈ P such that

max
t∈[0,1]

|Dβ
0+ui|+ max

t∈[0,1]
|ui| ≤ d, i = 1, 2, 3,

b < min
t∈[ 1

2 ,1]
|u1|, a < max

t∈[0,1]
|u2|, min

t∈[ 1
2 ,1]
|u2| < b, max

t∈[0,1]
|u3| < a.

Example 6.2. Let the fractional equation be given as (6.3) and

f (t, u, v) =


8, u ∈ [0, 1],

327u− 319, u ∈ [1, 2],

335. u ∈ [2,+∞).

(6.5)

By means of (6.4), choosing a = 1, b = 2 and d = 100, we have a < b < γ0d and

f (t, u, v) ≤ d

M +N
≈ 347.4647, for (t, u, v) ∈ [0, 1] ,× [0, 36.8880]× [−100, 100] ;
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f (t, u, v) >
b

γ0S
≈ 246.8517, for (t, u, v) ∈

[
1

2
, 1

]
,× [2, 12.6992]× [−100, 100] ;

f (t, u, v) <
a

M
≈ 8.8546, for (t, u, v) ∈ [0, 1]× [0, 1]× [−100, 100] ;

Using the Theorem 6.3, this problem has at least three distinct positive solutions
such that

max
t∈[0,1]

|Dβ
0+ui|+ max

t∈[0,1]
|ui| ≤ 100, i = 1, 2, 3,

2 < min
t∈[ 1

2 ,1]
|u1|, 1 < max

t∈[0,1]
|u2|, min

t∈[ 1
2 ,1]
|u2| < 2, max

t∈[0,1]
|u3| < 1.

By the use of the iterative method of Example 5.1, the numerical simulation
of existence to the solutions is obtained. The graph of the approximation of the
solutions is given in Figure 3.
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Figure 3. the approximation of the solutions to problem (6.5)

6.2. Arbitrary n Solutions

In this subsection, we will obtain that the existence for multiple positive solutions
to the problem (1.1) by using the generalized Avery and Henderson fixed point
Theorem.

Theorem 6.4. If there exist real numbers ai, bi, ci such that 0 < a1 < b1 <
l
γ0
c1 <

· · · < an < bn <
l
γ0
cn, where l =

√
Γ(α−β)2+Γ(α)2

Γ(α−β) and i = 1, 2, · · · , n. In addition, if

f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)) and f (t, u, v) satisfies the following conditions:

(HH1) f (t, u, v) < ci
max{M,N} for (t, u, v) ∈ [0, 1]×

[
0, l

γ0
ci

]
×
[
− l
γ0
ci,

l
γ0
ci

]
;

(HH2) f (t, u, v) > bi
γ0 max{S,T} for (t, u, v) ∈

[
1
2 , 1
]
×
[
0, l

γ0
bi

]
×
[
− l
γ0
bi,

l
γ0
bi

]
;

(HH3) f (t, u, v) < ai
M+N for (t, u, v) ∈ [0, 1]× [0, ai]× [−ai, ai].

Then problem (1.1) has at least n distinct positive solutions.
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Proof. Now, we use mathematic induction to prove the result.
When n = 1, from the condition (HH3), we have

T : P a1 → Pa1 ⊂ P a1 .

By Schauder fixed point theorem, we can obtain that T has at least one fixed point
u01 ∈ P a1 .

When n = 2, let a = a1, b = b1, c = c1, then it implies that the conditions of
Theorem 6.1 are satisfied. Thus, T has at least three distinct positive solutions u11,
u12 and u13 such that

0 < ‖u11‖1 + ‖u11‖2 < a1 < ‖u12‖1 + ‖u12‖2,

max

{
min
t∈[ 1

2 ,1]
|Dβ

0+u12|, min
t∈[ 1

2 ,1]
u12

}
< b1,

b1 < max

{
min
t∈[ 1

2 ,1]
|Dβ

0+u13|, min
t∈[ 1

2 ,1]
u13

}
< c1,

Thus, the statement is valid for n = 2.
Assume that it is true for n = k. Then for n = k+1, let a = ak+1, b = bk+1, c =

ck+1, we denote the solution by ui again. In addition, from the solution position
and local properties, we know that

0 < max

{
min
t∈[ 1

2 ,1]
|Dβ

0+ui|, min
t∈[ 1

2 ,1]
ui

}
< ck, i = 1, 2, · · · , k, (6.6)

where c0 = a1.
By Theorem 6.1, T has at least three distinct positive solutions uk+1,1, uk+1,2

and uk+1,3 such that

0 < ‖uk+1,1‖1 + ‖uk+1,1‖2 < ak+1 < ‖uk+1,2‖1 + ‖uk+1,2‖2,

max
{

mint∈[ 1
2 ,1]
|Dβ

0+uk+1,2|, mint∈[ 1
2 ,1]

uk+1,2

}
< b1,

b1 < max
{

mint∈[ 1
2 ,1]
|Dβ

0+uk+1,3|, mint∈[ 1
2 ,1]

uk+1,3

}
< ck+1.

(6.7)

By (6.6) and (6.7), we get that

max
{

mint∈[ 1
2 ,1]
|Dβ

0+ui|, mint∈[ 1
2 ,1]

ui

}
< ck < bk+1,

bk+1 < max
{

mint∈[ 1
2 ,1]
|Dβ

0+uk+1,3|, mint∈[ 1
2 ,1]

uk+1,3

}
.

(6.8)

Thus, we have
ui 6= uk+1,3, i = 1, 2, · · · , k.

Therefore, the statement holds for n = k + 1, that is, problem (1.1) has at least n
distinct positive solutions.

Theorem 6.5. If there exist real numbers ai, bi, ci such that 0 < a1 < b1 <
l
γ0
c1 <

· · · < an < bn <
l
γ0
cn, where l =

√
Γ(α−β)2+Γ(α)2

Γ(α−β) and i = 1, 2, · · · , n. In addition, if

f ∈ C([0, 1]× [0,+∞)×R, [0,+∞)) and f (t, u, v) satisfies the following conditions:
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(HH1’) f (t, u, v) > ci
γ0 max{S,T} for (t, u, v) ∈

[
1
2 , 1
]
×
[
0, l

γ0
ci

]
×
[
− l
γ0
ci,

l
γ0
ci

]
;

(HH2’) f (t, u, v) < bi
max{M,N} for (t, u, v) ∈ [0, 1]×

[
0, l

γ0
bi

]
×
[
− l
γ0
bi,

l
γ0
bi

]
;

(HH3’) f (t, u, v) > ai
γ0(S+T ) for (t, u, v) ∈

[
1
2 , 1
]
× [0, ai]× [−ai, ai].

Then problem (1.1) has at least n distinct positive solutions.

6.3. Arbitrary 2n− 1 Solutions

In this subsection, we will provide the existence for arbitrary odd positive solu-
tions to problem (1.1) by using Avery-Peterson fixed point Theorem.

Similarly, by mathematical induction, we get the following result.

Theorem 6.6. Assume that f ∈ C([0, 1] × [0,+∞) × R, [0,+∞)) and there exist
constants ai, bi, di such that

0 < a1 < b1 < γ0d1 < a2 < b2 < γ0d2 < a3 < · · · < an < bn < γ0dn, n ∈ N,

where i = 1, 2, · · · , n. In addition, f satisfies the following conditions:

(RR1) f (t, u, v) ≤ di
M+N for (t, u, v) ∈ [0, 1]× [0, Γ(α−β)

Γ(α)+Γ(α−β)di]× [−di, di];

(RR2) f (t, u, v) > bi
γ0S

for (t, u, v) ∈
[

1
2 , 1
]
× [bi,

bi
γ0

]× [−di, di];

(RR3) f (t, u, v) < ai
M for (t, u, v) ∈ [0, 1]× [0, ai]× [−di, di].

Then problem (1.1) has at least 2n− 1 positive solutions.
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