
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 11, Number 1, February 2021, 532–545 DOI:10.11948/20200133

QUADRATIC APPROXIMATION OF
SOLUTIONS FOR SET-VALUED FUNCTIONAL

DIFFERENTIAL EQUATIONS∗

Peiguang Wang1,† and Yameng Wang1

Abstract This paper investigates nonlinear set-valued functional differential
equations with initial value conditions. By introducing the notion of Hukuhara
partial derivative of set-valued function, using the comparison principle and
the method of quasilinearization, we obtain monotone iterative sequences of
approximate solutions which converge uniformly and quadratically to the so-
lutions of such problems.

Keywords Set-valued functional differential equations, coupled lower and
upper solutions, quasilinearization, convergence.

MSC(2010) 34A12, 34K07, 39B12.

1. Introduction
Recently, many researchers have shown great interest in set-valued differential equa-
tions in a semilinear metric space due to its applicability to multivalued differen-
tial inclusions and fuzzy differential equations and its inclusion of ordinary dif-
ferential systems as a special case. For some interest results on its basic theory
and applications, we can refer the reader to the results of the local existence
and uniqueness of solutions, the continuous dependence of solutions, the exis-
tence of extremum solutions and global existence [4, 9, 17, 20, 25, 27]; the com-
parison principle, stability and instabilty of solutions for set-valued differential
equations [5–8, 10, 16, 19, 22–24, 26, 29]. For a complete framework of set-valued
differential equations, we can see the monograph of Lakshmikantham et al. [18],
and the references cited therein. Meanwhile, the results of various kinds of set-
valued differential equations have appeared successively. For example, Ahmad and
Sivasundaram [2] investigated the monotone iterative technique for impulsive hy-
brid set integro-differential equations; Blasi, Lakshmikantham, and Bhaskar [11,12]
gave the result of existence of solution for set-valued differential inclusions in a
semilinear metric space; Drice and Mcrae [14, 15] obtained some basic results on
existence, uniqueness, and continuous dependence of solutions with respect to ini-
tial values for set-valued differential equations with causal operators; Lupulescu [20]
studied the successive approximations of solutions for set-valued differential equa-
tions and the differential inclusion and control in compact but non-convex spaces;
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Appala Naidu, Dhaigude and Devi [3], Bashir and Sivasundaram [5, 6], Hong [16]
and Slyn¡ko [28] obtained some basic results and stability criteria in terms of two
measures for set-valued differential equations involving causal operators, set-valued
perturbed hybrid integro-differential equations with impulse, set-valued differential
equations on time scales and set difference equations in space conv Rn respectively.
We can also find some interesting results for set-valued functional differential equa-
tions in [1,13,21,30]. However, we noticed that the previous studies mainly focused
on the existence of solutions and the stability of solutions. There are few results of
convergence for set-valued differential equations and fewer results of convergence
for set-valued functional differential equations. In this paper, by introducing the
notion of Hukuhara partial derivative of set-valued function, using the comparison
principle and the method of quasilinearization, we consider quadratic approximation
of solutions for the following set-valued functional differential equations{

DHU(t) = F (t, U(t), U(δ(t))), t ∈ J,

U(t) = Ψ(t) ∈ Kc(Rn), t ∈ J0,
(1.1)

where U ∈ C = C[J,Kc(Rn)], F : J × C × C → Kc(Rn), Ψ : J0 → Kc(Rn) are
continuous set-valued mapping; J = [0, T ], J0 = [−r, 0], t− r ≤ δ(t) ≤ t, r > 0 is a
constant; Kc(Rn) is a family of all nonempty compact and convex subsets of Rn.

2. Preliminaries
We first give the notations and concepts for set-valued differential equations which
can be found in [18].

Let A and B be the nonempty closed subsets of the space Kc(Rn), the Hausdorff
metric between A and B is determined by the formula

D[A,B] = max
[
sup
x∈B

d(x,A), sup
y∈A

d(y,B)
]
,

where d(x,A) = inf[d(x, y) : y ∈ A].
It is known that (Kc(Rn), D) is a complete metric space. For any nonempty

subsets A,B,C,A′ and B′ of the space Kc(Rn), λ ∈ R+, we have

D[A+ C,B + C] = D[A,B], D[A,B] = D[B,A],

D[λA, λB] = λD[A,B],

D[A,B] ≤ D[A,C] +D[C,B],

D[A+A′, B +B′] ≤ D[A,B] +D[A′, B′].

Definition 2.1 ( [18]). Given any A,B ∈ Kc(Rn), if there exists an element C ∈
Kc(Rn) such that A = B + C, then we define the A−B as geometric difference of
A and B. if there exists a C ∈ Kc(Rn) such that A = B + C, and for any c ∈ C is
a nonnegative(positive) vector of n components satisfying ci ≥ 0 for i = 1, 2, · · · , n,
then we define the A ≥ B. Similarly, one can define A ≤ B.

For any compact set J ⊆ R+, we give the Hukuhara integral of F by

U(t) = U(t0) +

∫ t

t0

DHU(s) ds, t ∈ J,



534 P. Wang & Y. Wang

that is

U(t) = U(t0) +

∫ t

t0

F (s, U(s), U(δ(s))) ds, t ∈ J,

where the Hukuhara integral as follow∫
J

F (s) ds =
[ ∫

J

f(s) ds : f is a continuous selector of F
]
.

Corollary 2.1. If F : J → Kc(Rn) is integrable, then∫ t2

t0

F (s) ds =

∫ t1

t0

F (s) ds+

∫ t2

t1

F (s) ds, t0 ≤ t1 ≤ t2,∫ t

t0

λF (s) ds = λ

∫ t

t0

F (s) ds, λ ∈ R.

Corollary 2.2. If F,G : J → Kc(Rn) is integrable, then D[F (·), G(·)] : J → R is
integrable and

D

[∫ t

t0

F (s) ds,

∫ t

t0

G(s) ds

]
≤

∫ t

t0

D
[
F (s), G(s)

]
ds.

Definition 2.2 ( [18]). The set-valued mapping F : J × Kc(Rn) × Kc(Rn) →
Kc(Rn) is Hukuhara differentiable at a point t0 ∈ J , if the limits

lim
h→0+

F (t0 + h,U, U(δ))− F (t0, U, U(δ))

h

and
lim

h→0+

F (t0, U, U(δ))− F (t0 − h,U, U(δ))

h

exist in Kc(Rn) and equal to DHF (t0).

Next, we give the concept of Hukuhara partial derivatives of set-valued function
which are useful in proving the main results.

Definition 2.3. The set-valued mapping F : J ×Kc(Rn) ×Kc(Rn) → Kc(Rn) is
Hukuhara partial differentiable at U0, if there exists DHU0

F (t, U0, U(δ)) ∈ 2Kc(Rn)

such that the limits

lim
h→0+

F (t, U0 + hek, U(δ))− F (t, U0, U(δ))

h

and
lim

h→0+

F (t, U0, U(δ))− F (t, U0 − hek, U(δ))

h

exist in the topology of (Kc(Rn), D) and are equal to DHU0
F (t, U0, U(δ)), where

ek = (e1k, · · · , enk ) is the vector that ejk = 0, k ̸= j and ekk = 1.

Similarly, we can define the second partial derivative of F with respect to U0.
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Definition 2.4. The set-valued mapping DHU0
F : J × Kc(Rn) → 2Kc(Rn) is

Hukuhara partial differentiable at U0, if there exists DH2
U0
F (t, U0, U(δ)) such that

the limits
lim

h→0+

DHU0
F (t, U0 + hek, U(δ))−DHU0

F (t, U0, U(δ))

h

and
lim

h→0+

DHU0
(t, U0, U(δ))−DHU0

F (t, U0 − hek, U(δ))

h

exist and are equal to DH2
U0
F (t, U0, U(δ)), where ek = (e1k, · · · , enk ) is the vector

that ejk = 0, k ̸= j and ekk = 1.

In addition, we give some suitable forms for the Hukuhara partial derivatives.
We first identify DHU0

F (t, U0, U(δ)) in the following form:

DHU0
F (t, U0, U(δ)) =

[∂F (t, U0, U(δ))

∂u0
: u0 ∈ U0 ∈ Kc(Rn)

]
∈ 2Kc(Rn),

where
∂F (t, U0, U(δ))

∂u0
=

(∂F (t, U0, U(δ))

∂u01
, · · · , ∂F (t, U0, U(δ))

∂u0n

)
,

such that ∂F (t,U0,U(δ))
∂u0i

∈ Kc(Rn) for each i. In the special case, when U0, F are
single-valued mapping, DHU0

F (t, U0, U(δ)) reduces to n vectors

∂F (t, U0, U(δ))

∂u0
=

(∂F (t, U0, U(δ))

∂u01
, · · · , ∂F (t, U0, U(δ))

∂u0n

)
,

which is usually written as an n × n matrix so that one can treat it as a linear
operator mapping any vector into another vector or any matrix into another matrix.
Similarly, we can identify DH2

U0
F (t, U0, U(δ)) in the following suitable form:

DH2
U0
F (t, U0, U(δ)) =

[∂F 2(t, U0, U(δ))

∂u2
0

: u0 ∈ U0 ∈ Kc(Rn)
]
,

where
∂F 2(t, U0, U(δ))

∂u2
0

=
(∂ ∂F (t,U0,U(δ))

∂u0

∂u01
, · · · ,

∂ ∂F (t,U0,U(δ))
∂u0

∂u0n

)
,

such that ∂
∂F (t,U0,U(δ))

∂u0

∂u0i
∈ 2Kc(Rn) for each i. In the special case when U0, F are

single-valued DH2
U0
F (t, U0, U(δ)) reduces to n vectors or n× n matrix

∂F 2(t, U0, U(δ))

∂u2
0

=
(∂ ∂F (t,U0,U(δ))

∂u0

∂u01
, · · · ,

∂ ∂F (t,U0,U(δ))
∂u0

∂u0n

)

=



∂2F (t,U0,U(δ))
∂u2

01

∂2F (t,U0,U(δ))
∂u01∂u02

· · · ∂2F (t,U0,U(δ))
∂u01∂u0n

∂2F (t,U0,U(δ))
∂u02∂u01

∂2F (t,U0,U(δ))
∂u2

02
· · · ∂2F (t,U0,U(δ))

∂u02∂u0n

...
... . . . ...

∂2F (t,U0,U(δ))
∂u0n∂u01

∂2F (t,U0,U(δ))
∂u0n∂u02

· · · ∂2F (t,U0,U(δ))
∂u2

0n


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which is usually written as an n × n2 matrix so that one can treat it as a linear
operator mapping.

Definition 2.5. Let A = {aij}N be a matrix, i, j = 1, N ∈ N+. We call that A > θ
if aij > θ for i, j = 1, 2, ..., N , where θ is the element in Rn, which is regarded as a
point set.

3. Quadratic Convergence
In this section, the quadratic convergence of approximate iterative sequences are
proved by the quasilinearization method.

Let θ be a null set of Kc(Rn), P ∈ Kc(Rn), we denote ||P || = {(|P 1|, · · · , |Pn|)},
||P ||2 = {(|P 1|2, · · · , |Pn|2)}.

Definition 3.1. There exist V,W ∈ C(J0,Kc(Rn)) ∪ C1(J,Kc(Rn)), and V,W are
said to be

(I) natural lower and upper solutions of the problem (1.1) if{
DHV (t) ≤ F (t, V (t), V (δ(t))), t ∈ J,

V (t) ≤ Ψ(t), t ∈ J0,

and {
DHW (t) ≥ F (t,W (t),W (δ(t))), t ∈ J,

W (t) ≥ Ψ(t), t ∈ J0,

(II) coupled lower solution and upper solutions of the problem (1.1) if{
DHV (t) ≤ F (t, V (t),W (δ(t))), t ∈ J,

V (t) ≤ Ψ(t), t ∈ J0,

and {
DHW (t) ≥ F (t,W (t), V (δ(t))), t ∈ J,

W (t) ≥ Ψ(t), t ∈ J0.

Firstly, we give some lemmas which plays an important role in the proof of our
results.

Lemma 3.1. Assume that the following conditions hold:

(A3.1) V,W ∈ C(J0,Kc(Rn))
∪
C1(J,Kc(Rn)) are natural lower and upper solu-

tions of the problem (1.1);
(A3.2) F ∈ C[J ×Kc(Rn) ×Kc(Rn),Kc(Rn)], F (t,X, Y ) is nondecreasing in both

X and Y for t ∈ J ; and for any X1, X2, Y1, Y2 ∈ Kc(Rn), X1 ≥ X2, Y1 ≥ Y2,
satisfy

Fi(t,X1, Y1) ≤ Fi(t,X2, Y2) + L1

n∑
j=1

[
(X1j −X2j) + (Y1j − Y2j)

]
,

where L1 > 0 is a constant, and Fi is a submap of the ith component of the
mapping F , i = 1, · · · , n.
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Then V (t) ≤ W (t) for t ∈ [−r, T ].

Proof. For t ∈ J0, by the condition (A3.1), it’s easy to see that the inequality
holds. When t ∈ J , putting ϵ = (ϵ, ϵ, · · · , ϵ) > 0 and defining W (t) = W (t) +
ϵe2(n+1)L1t. Noting that V (0) ≤ W (0) < W (0), we can only prove that V (t) < W (t)
to arrive at the conclusion, due to the fact ϵ is arbitrary. Suppose that t1 > 0 is the
supremum of all positive numbers ν, we have V (t) < W (t) on [0, ν] by V (0) < W (0),
it implies that V (δ(t1)) < W (δ(t1)). Now using the nondecreasing of F (t, U, U(δ))
in both U and U(δ) and the assumption (A3.2), we have

DHVi(t1) ≤Fi(t1, V (t1), V (δ(t1)))

≤Fi(t1,W (t1),W (δ(t1)))

+ L1

n∑
j=1

[
(W j(t1)−Wj(t1)) + (W j(δ(t1))−Wj(δ(t1)))

]
<DHWi(t1) + 2(n+ 1)L1ϵe

2(n+1)L1t1

=DHW i(t1).

Therefore there exists an η > 0 satisfying

Vi(t1)−W i(t1) ≤ Vi(t)−W i(t), t1 − η < t < t1.

This contradicts that t1 > 0 is the supremum due to the continuity of the functions
involved and consequently V (t) ≤ W (t) is true for t ∈ [−r, T ].

Remark 3.1. Assume that (A3.2) holds and there exists
P ∈ C(J0,Kc(Rn))

∪
C1(J,Kc(Rn)) satisfying{
DHP (t) ≤ F (t, P (t), P (δ(t))), t ∈ J,

P (t) ≤ θ, t ∈ J0.

Then P (t) ≤ θ for t ∈ [−r, T ].

Lemma 3.2. Assume that the following conditions hold:

(A3.3) V,W ∈ C(J0,Kc(Rn))
∪
C1(J,Kc(Rn)) are coupled lower and upper solu-

tions of the problem (1.1);
(A3.4) F ∈ C[J ×Kc(Rn)×Kc(Rn),Kc(Rn)], F (t,X, Y ) is nondecreasing in X for

each (t, Y ) and nonincreasing in Y for each (t,X); and for any X1, X2, Y1, Y2 ∈
Kc(Rn), X1 ≥ X2, Y1 ≥ Y2, t ∈ J , satisfy

Fi(t,X1, Y ) ≤ Fi(t,X2, Y ) + L2

n∑
j=1

(X1j −X2j),

Fi(t,X, Y1) ≥ Fi(t,X, Y2)− L2

n∑
j=1

(Y1j − Y2j),

where L2 > 0 is a constant, and Fi is a submap of the ith component of the
mapping F , i = 1, · · · , n.

Then V (t) ≤ W (t) for t ∈ [−r, T ].
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Proof. For t ∈ J0, by the condition (A3.3), it’s easy to see that the inequality
holds. When t ∈ J , putting ϵ = (ϵ, ϵ, · · · , ϵ) > 0 and defining W (t) = W (t) +
ϵe3(n+1)L2t, V (t) = V (t)− ϵe3(n+1)L2t. Noting that V (0) < V (0) ≤ W (0) < W (0),
we can prove that V (t) < W (t) to arrive at the conclusion V (t) ≤ W (t) for t ∈ J .
In order to prove that conclusion, suppose that t1 > 0 is the supremum of all
positive mumbers ν, we have V (t) < W (t) on [0, ν] by V (0) < W (0), it implies that
V (δ(t1)) < W (δ(t1)). Now using the assumption (A3.4), we have

DHV i(t1) ≤ Fi(t1, V (t1),W (δ(t1)))− 3(n+ 1)L2ϵe
3(n+1)L2t

≤ Fi(t1,W (t1),W (δ(t1)))− (n+ 3)L2ϵe
3(n+1)L2t

≤ Fi(t1,W (t1), V (δ(t1)))− (n+ 3)L2ϵe
3(n+1)L2t

+ L2

n∑
j=1

(W j(t1)−Wj(t1)) + L2

n∑
j=1

(Vj(δ(t1))− Vj(δ(t1))

< DHWi(t1) + 3(n+ 1)L2ϵe
3(n+1)L2t1

= DHW i(t1).

Therefore there exists an η > 0 satisfying Vi(t1)−W i(t1) ≤ Vi(t)−W i(t), t1−η <
t < t1. This contradicts that t1 > 0 is the supremum due to the continuity of the
functions involved and consequently V (t) ≤ W (t) is true for t ∈ [−r, T ].

Remark 3.2. Assume that (A3.4) holds and if
P,Q ∈ C(J0,Kc(R

n))
∪
C1(J,Kc(R

n)) are satisfying{
DHP (t) ≤ F (t, P (t), Q(δ(t))), t ∈ J,

P (t) ≤ θ, t ∈ J0,{
DHQ(t) ≥ F (t,Q(t), P (δ(t))), t ∈ J,

Q(t) ≥ θ, t ∈ J0.

Then P (t) ≤ θ ≤ Q(t) for t ∈ [−r, T ].

Lemma 3.3 ( [18]). Let U ∈ C1(J,Kc(Rn)). If DHU ≤ ÂU + α. Then the
following inequality

U(t) ≤ U(t0)e
Ât +

∫ t

t0

eÂ(t−s)α(s)ds, t ∈ J

holds, where Â = (aij) is a n×n matrix satisfying aij ≥ θ, i ̸= j, α ∈ C(J,Kc(Rn)).

In order to prove the convergence of the approximate solutions, we will apply the
method of lower and upper solutions coupled with the method of quasilinearization,
and will give the following two theorems finally.

Theorem 3.1. Assuming that the following conditions are satisfied:

(C3.1) V0,W0 ∈ C(J0,Kc(Rn)) ∪ C1(J,Kc(Rn)) are coupled lower and upper solu-
tions of the problem (1.1);

(C3.2) there exist bound matric mappings DH1
F ≥ θ, DH2

F ≤ θ, and DHiHj
F ,

i, j = 1, 2. Moreover, the quadratic form K(F (t,X, Y )) satisfying K(F ) ≥ θ
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on J ×Kc(Rn)×Kc(Rn) is given by

K(F ) =(X − α)TDH1H1F (t,X1, Y1)(X − α)

+ 2(X − α)TDH1H2
F (t,X1, Y1)(β − Y )

+ (β − Y )TDH2H2
F (t,X1, Y1)(β − Y ),

where V0 ≤ α ≤ X1 ≤ X ≤ W0, V0 ≤ β ≤ Y1 ≤ Y ≤ W0.

Then there exist monotone sequences {Vn(t)}, {Wn(t)} converging uniformly to the
solution U(t) of the problem (1.1) and the convergence are quadratic.

Proof. Let DH1
F (t,X, Y ) = A(t,X, Y ), DH2

F (t,X, Y ) = B(t,X, Y ). Consider
the sequences {Vn(t)}, {Wn(t)} as follows

DHVn+1(t) = F (t, Vn(t),Wn(δ)) +A(t, Vn(t),Wn(δ(t))
[
Vn+1(t)− Vn(t)

]
+B(t, Vn(t),Wn(δ))

[
Wn+1(δ(t))−Wn(δ(t))

]
, t ∈ J,

Vn+1(t) = Ψ(t), t ∈ J0,

(3.1)

and
DHWn+1(t) = F (t,Wn(t), Vn(δ)) +A(t, Vn(t),Wn(δ))

[
Wn+1(t)−Wn(t)

]
+B(t, Vn(t),Wn(δ))

[
Vn+1(δ(t))− Vn(δ(t))

]
, t ∈ J,

Wn+1(t) = Ψ(t), t ∈ J0.

(3.2)

Firstly, we show that V0(t) ≤ V1(t) ≤ W1(t) ≤ W0(t) for t ∈ [−r, T ]. Putting
P (t) = V0(t)− V1(t), Q(t) = W0(t)−W1(t).

Case 1. For t ∈ J0, by V1(t) = Ψ(t) = W1(t) and the condition (C3.1), we can
see that

P (t) = V0(t)− V1(t) ≤ θ and Q(t) = W0(t)−W1(t) ≥ θ.

Case 2. For t ∈ J , by (3.1) and (3.2), we have

DHP (t) ≤A(t, V0(t),W0(δ))P (t) +B(t, V0(t),W0(δ))Q(δ(t)),

DHQ(t) ≥A(t, V0(t),W0(δ))Q(t) +B(t, V0(t),W0(δ))P (δ(t)).

In view of Remark 3.2, we obtain that P (t) ≤ θ ≤ Q(t) on [−r, T ] and we have
V0(t) ≤ V1(t), W1(t) ≤ W0(t) for t ∈ [−r, T ].

Similarly, we can show that V1(t) ≤ W1(t) for t ∈ [−r, T ]. Putting P (t) =
V1(t)−W1(t).

Case 1. For t ∈ J0, since V1(t) = Ψ(t) = W1(t) and the condition (C3.1), we
can see that P (t) = V1(t)−W1(t) = θ.

Case 2. For t ∈ J , using the condition (C3.2) with

K(F (t,W0(t), V0(δ)))

=
[
W0(t)− V0(t)

]T
DH1H1

F (t,X2, Y2)
[
W0(t)− V0(t)

]
+ 2

[
W0(t)−V0(t)

]T
DH1H2F (t,X2, Y2)

[
V0(δ(t))−W0(δ(t))

]
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+
[
V0(δ(t))−W0(δ(t))

]T
DH2H2

F (t,X2, Y2)
[
V0(δ(t))−W0(δ(t))

]
,

where V0 ≤ X2 ≤ W0, V0 ≤ Y2 ≤ W0. Then we have

DHP (t) =F (t, V0(t),W0(δ)) +A(t, V0(t),W0(δ))
[
V1(t)− V0(t)

]
+B(t, V0(t),W0(δ))

[
W1(δ(t))−W0(δ(t))

]
− F (t,W0(t), V0(δ))−A(t, V0(t),W0(δ))

[
W1(t)−W0(t)

]
−B(t, V0(t),W0(δ))

[
V1(δ(t))− V0(δ(t))

]
≤A(t, V0(t),W0(δ))P (t)−B(t, V0(t),W0(δ))P (δ(t)).

In view of Remark 3.1, we obtain that P (t) ≤ θ on [−r, T ], which means V1(t) ≤
W1(t) on [−r, T ]. Thus, it proves that

V0(t) ≤ V1(t) ≤ W1(t) ≤ W0(t), t ∈ [−r, T ].

Next, we will show that V1(t), W1(t) are coupled lower solution and upper
solutions of the problem (1.1).

For t ∈ J0, by (3.1) and (3.2), we know that V1(t) = Ψ(t) = W1(t). For t ∈ J ,
using (3.1) and the condition (C3.2) with

K(F (t, V1(t),W1(δ)))

=
[
V1(t)− V0(t)

]T
DH1H1

F (t,X3, Y3)
[
V1(t)− V0(t)

]
+ 2

[
V1(t)− V0(t)

]T
DH1H2F (t,X3, Y3)

[
W1(δ(t))−W0(δ(t))

]
+
[
W1(δ(t))−W0(δ(t))

]T
DH2H2

F (t,X3, Y3)
[
W1(δ(t))−W0(δ(t))

]
,

where V0 ≤ X3 ≤ V1, W1 ≤ Y3 ≤ W0. Then, we have

DHV1(t) =F (t, V0(t),W0(δ)) +A(t, V0,W0(δ))
[
V1(t)− V0(t)

]
+B(t, V0,W0(δ))

[
W1(δ(t))−W0(δ(t))

]
≤F (t, V1(t),W1(δ)).

Similarly, we have

DHW1(t) ≥F (t,W1(t), V1(δ(t))),

which means that V1(t) and W1(t) are coupled lower solution and upper solutions
of the problem (1.1). Therefore, by induction we can show that

V0(t) ≤ V1(t) ≤ . . . ≤ Vn(t) ≤ Wn(t) ≤ . . . ≤ W1(t) ≤ W0(t), t ∈ [−r, T ]

and Vn(t), Wn(t) are coupled lower solution and upper solutions of the problem
(1.1).

Next, we can show that the sequences {Vn(t)}, {Wn(t)} are uniformly bounded
and equicontinuous. Obviously, the sequences {Wn(t)} are uniformly bounded, we
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only prove that sequences {Wn(t)} are equicontinuous on [−r, T ]. For s, t ∈ [−r, T ],
when s < t, we have

D[Wn(t),Wn(s)] ≤D

[
Wn−1(0) +

∫ t

0

{
F (s,Wn−1(s), Vn−1(δ(s)))

+A(s, Vn−1(s),Wn−1(δ))
[
Wn(s)−Wn−1(s)

]
+B(s, Vn−1(s),Wn−1(δ))

[
Vn(δ(s))− Vn−1(δ(s))

]}
ds,

Wn−1(0) +

∫ s

0

{
F (t,Wn−1(t), Vn−1(δ(t)))

+A(t, Vn−1(t),Wn−1(δ))
[
Wn(t)−Wn−1(t)

]
+B(t, Vn−1(t),Wn−1(δ))

[
Vn(δ(t))− Vn−1(δ(t))

]}
dt

]

=D

[∫ t

s

{
F (ζ,Wn−1(ζ), Vn−1(δ(ζ)))

+A(ζ, Vn−1(ζ),Wn−1(δ))
[
Wn(ζ)−Wn−1(ζ)

]
+B(ζ, Vn−1(ζ),Wn−1(δ))

[
Vn(δ(ζ))− Vn−1(δ(ζ))

]}
ds, θ

]

≤
∫ t

s

D

[
F (ζ,Wn−1(ζ), Vn−1(δ(ζ)))

+A(ζ, Vn−1(ζ),Wn−1(δ))
[
Wn(ζ)−Wn−1(ζ)

]
+B(ζ, Vn−1(ζ),Wn−1(δ))

[
Vn(δ(ζ))− Vn−1(δ(ζ))

]
, θ

]
dζ

≤M |t− s|.

Analogically we can show that the sequences {Vn(t)} are equicontinuous on
[−r, T ]. In view of Ascoli-Arzela theorem, there exist the subsequences {Vnk

} and
{Wnk

} converging uniformly on J to continuous functions V and W respectively.
When there exists a unique solution of the problem (1.1), then, V = W for

t ∈ [−r, T ]; When the solution of problem (1.1) is not unique, let U(t) be one
solution of the problem (1.1), it is easily to obtain that V ≤ U ≤ W , that is V,W
are the minimal and maximal solutions of (1.1), respectively.

Finally, we show quadratic convergence of the approximate solution.
Let U(t) be the solution of the problems (1.1), and putting

Pn+1(t) = U(t)− Vn+1(t) ≥ θ and Qn+1(t) = Wn+1(t)− U(t) ≥ θ.

Case 1. For t ∈ J0, since Vn+1(t) = Ψ(t) = Wn+1(t), we have

Pn+1(t) = U(t)− Vn+1(t) = θ ≤ maxP 2
n(t) + maxQ2

n(t),

Qn+1(t) = Wn+1(t)− U(t) = θ ≤ maxP 2
n(t) + maxQ2

n(t).
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Case 2. For t ∈ J , by (3.1) and (3.2), we have

DHPn+1(t) ≤A(t, U, U(δ))Pn(t)−A(t, Vn,Wn(δ))
[
Pn(t)− Pn+1(t)

]
B(t, Vn,Wn(δ))

[
Qn+1(δ(t))−Qn(δ(t))

]
≤A(t, Vn,Wn(δ))Pn+1(t)−B(t, Vn,Wn(δ))Qn+1(δ(t))

+ PT
n (t)

[∫ 1

0

DH2
1
F (t, sU(t) + (1− s)Vn(t), U(δ))ds

]
Pn(t)

+QT
n (t)

[∫ 1

0

DH2
2
F (t, Vn(t), sWn(δ) + (1− s)U(δ))ds

]
Qn(δ(t))

−QT
n (δ(t))

[∫ 1

0

DH1H2
F (t, Vn(t), sU(δ) + (1− s)Vn(δ))ds

]
Pn(t)

≤A1Pn+1(t) +A2Qn+1(δ(t)) + C1P
2
n(t) +D1Q

2
n(δ(t)),

where DH1F ≤ A1, −A2 ≤ DH2F ≤ A2, DH2
1
F ≤ B1, −B2 ≤ DH1H2F ≤ B2,

−B3 ≤ DH2H1
F ≤ B3, DH2

2
F ≤ B4, C1 = B1 +

1
2B2, D1 = B4 +

1
2B2 and Ai, Bj

are nonnegative matrices, i = 1, 2, j = 1, 2, 3, 4.
Similarly, we can show that

DHQn+1(t) ≤A(t, Vn,Wn(δ))Qn+1(t)−B(t, Vn,Wn(δ))Pn+1(δ)

+

[∫ 1

0

DH1
F (t, SWn(t) + (1− s)U(t), Vn(δ))ds

]
Qn(t)

−
[∫ 1

0

DH2F (t, U, sVn(δ)(1− s)U(δ))ds

]
pn(δ)

+B(t, Vn,Wn(δ))pn(δ)−A(t, Vn,Wn(δ))Qn(t)

≤A1Qn+1(t)+A2Pn+1(δ)+C2P
2
n(t)+C3P

2
n(δ)+D2Q

2
n(t)+D3Q

2
n(δ),

where C2 = 1
2 (B1+B3), C3 = 1

2 (B2+B3+3B4), D2 = 3
2B1+B2, D3 = 1

2 (B2+B4).
Consider the following problems{

DHξ1(t) = A1Pn+1(t) +A2Qn+1(δ(t)) + C1P
2
n(t) +D1Q

2
n(δ(t)), t ∈ J,

ξ1(t) = Pn+1(t), t ∈ J0,

and 
DHξ2(t) = C2P

2
n(t) + C3P

2
n(δ(t)) +D2Q

2
n(t) +D3Q

2
n(δ(t))

+A1Qn+1(t) +A2Pn+1(δ(t)), t ∈ J,

ξ2(t) = Qn+1(t), t ∈ J0.

Then, in view of DHξ1(t) ≥ θ, DHξ2(t) ≥ θ and Pn+1(t) ≤ ξ1(t), Qn+1(t) ≤ ξ2(t)
for t ∈ J , we have{

DHξ1(t) ≤A1ξ1(t) +A2ξ2(t) + C1P
2
n(t) +D1Q

2
n(δ(t)),

DHξ2(t) ≤A1ξ2(t) +A2ξ1(t) + C2P
2
n(t) + C3P

2
n(δ(t)) +D2Q

2
n(t) +D3Q

2
n(δ(t)),

Furthermore, by Lemma 3.3, we have

Rn+1(t) ≤ξ(t) ≤
∫ t

0

eB(t−s)
{
E1R

2
n(s) + E2R

2
n(δ)

}
ds ≤ B−1eBTA||Rn||2, t ∈ J,
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where Rn+1(t)=

 Pn+1(t)

Qn+1(t)

 , ξ(t)=

 ξ1(t)

ξ2(t)

 , B=

A1 A2

A2 A1

, E1 =

C1 θ

C2 D2

,

E2=

 θ D1

C3 D3

, A = E1 + E2.

Therefore, we have

maxPn+1(t) ≤ K1 maxP 2
n(t) +K2 maxQ2

n(t),

maxQn+1(t) ≤ K3 maxP 2
n(t) +K4 maxQ2

n(t),

where Ki are suitable positive matrices, i = 1, 2, 3, 4.
Similar to the proof of Theorem 3.1, we have the following result.

Theorem 3.2. Assuming that the conditions V0, W0 are natural lower and upper
solutions of the problem (1.1), and (C3.2) hold.

Then there exist monotone sequences {Vn(t)}, {Wn(t)} converging uniformly to
the solution U(t) of the problem (1.1) and the convergence are quadratic.

In fact, we can consider the sequences {Vn(t)}, {Wn(t)} as follow
DHVn+1(t) = F (t, Vn(t), Vn(δ(t))) +A(t, Vn(t), Vn(δ))

[
Vn+1(t)− Vn(t)

]
+B(t, Vn(t), Vn(δ))

[
Vn+1(δ(t))− Vn(δ(t))

]
, t ∈ J,

Vn+1(t) = Ψ(t), t ∈ J0,

and
DHWn+1(t) = F (t,Wn(t),Wn(δ(t))) +A(t, Vn(t), Vn(δ))

[
Wn+1(t)−Wn(t)

]
+B(t, Vn(t), Vn(δ))

[
Wn+1(δ(t))−Wn(δ(t))

]
, t ∈ J,

Wn+1(t) = Ψ(t), t ∈ J0,

for n = 0, 1, 2, · · · . Similar to the proof of Theorem 3.1, We can show that monotone
sequences {Vn(t)}, {Wn(t)} converging uniformly to the solution U(t) of (1.1) and
its convergence is quadratic. We omit its details here.
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