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Abstract This work deals with the unilateral problem for a nonlinear wave
equation with p-Laplacian operator and source term. Using an appropriate
penalization, we obtain a variational inequality for the equation perturbed
and then the existence of solutions is analyzed.
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1. Introduction
In this work we prove the existence of global weak solutions to the following mixed
unilateral problem

u′′ −∆pu+ |u|r−1u−∆u′ ≥ 0, in Q, (1.1)
u′(x, t) = 0, in Σ, (1.2)
u(x, t) = 0, in Σ, (1.3)
u(x, 0) = u0(x), u

′(x, 0) = u1(x), in Ω, (1.4)

that is related, from the physical point of view, to the motion of waves vibrating
against an obstacle. More precisely, here we consider a unilateral problem, i.e. a
variational inequality, see Lions [13], for the operator

L = u′′ −∆pu+ |u|r−1u−∆u′

taking into account the source term |u|r−1u, where 1 < r < ∞ if n ≤ p and
1 < r < pn/(n − p) if n > p. Making use of the penalty method and Galerkin’s
approximations, we prove the existence and uniqueness of solutions.

Throughout this paper we omit the space variable x of u(x, t) and simply de-
note u(x, t) by u(t) when no confusion arises. C denotes various positive constants
depending on the known constants and may be different at each appearance. Let
T > 0 be a real number, Ω ⊂ Rn be a bounded open set with sufficiently smooth
boundary Γ. We denote by Q = Ω × (0, T ) the cylinder with lateral boundary
Σ = Γ × (0, T ). Here we consider 2 ≤ p < ∞ and q such that 1

p
+

1

q
= 1.
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The duality pairing between the space W 1,p
0 (Ω) and its dual W−1,q(Ω) will be de-

noted using the form ⟨ · , · ⟩. According to Poincaré’s inequality, the standard norm
∥ · ∥W 1,p

0 (Ω) is equivalent to the norm ∥∇ · ∥p on W 1,p
0 (Ω). Henceforth, we put

∥ · ∥W 1,p
0 (Ω) = ∥∇ · ∥p. We denote ∥ · ∥L2(Ω) = | · |2 and the usual inner product

by ( · , · ). ∆pu = div
(
|∇u|p−2∇u

)
denotes the p-Laplacian operator which can be

extended to a monotone, bounded, hemicontinuous and coercive operator between
the spaces W 1,p

0 (Ω) and its dual by

−∆p : W
1,p
0 (Ω) →W−1,q(Ω), ⟨−∆pu, v⟩p =

∫
Ω

|∇u|p−2∇u∇v dx.

Now, we present a small literature overview including some new contributions
on the problems with p-Laplacian operator. The existence of a global solution for
wave equation of p-Laplacian type

u′′ −∆pu = 0 (1.5)

without an additional dissipation term is an open problem. For n = 1, Derher [8]
proved the local in time existence of solution and showed by a generic counter-
example that the global in time solution can not use expected. Adding a strong
damping −∆u′ in (1.5) the well-posedness and asymptotic behavior was studied by
Greenberg [10]. Weak solutions and blow-up for wave equations of the p-Laplacian
type with supercritical sources was considered in [16]. Ma and Soriano [14] gave the
weak solution for the problem with a dissipative source term g(u) where g(u)u ≥ 0
has a growth bound. Nevertheless, if the strong damping is replaced by a weaker
damping u′, then global existence and uniqueness are only know for n = 1, 2, see
the works of Chueshov and Lasiecka [5] and Zhijian [22]. The damping term −∆u′

played an essential role in order to obtain global solutions. In [9] Gao and Ma
analyzed existence of solution with the damping (−∆)αu′ with 0 < α ≤ 1

u′′ −∆pu+ (−∆)αu′ + g(u) = f, (1.6)

and extended the result of [14] for g(u) without the sign condition g(u)u ≥ 0.
The global existence of solution and asymptotic behaviour for wave equation

with source term and p-Laplacian operator

u′′ −∆pu+ |u|r−1u−∆u′ = 0,

can be obtained from (1.6) putting α = 1, f = 0, and source term g(u) = |u|r−1u.
It is well known that the energy of a PDE system with source term |u|r−1u is, in

some sense, split into kinetic and potential energy. Following the idea of Y. Ye [21]
can be built a set of stability for (1.6) with weaker damping (α = 0) and f = 0. In
fact there is a valley or a “well” of depth d created by the potential energy. If this
height d is strictly positive, for the initial data in the “good part” of the well, the
potential energy of the solution can never escape of the well. As a result, the total
energy of the solution remains finite on any time interval [0, T ), which provides the
global existence of the solution. In this way see for instance [17, 19] and references
therein.

Unilateral problems for Klein-Gordon operator of Kirchhoff-Carrier type was
studied by Raposo et al in [18]. Unilateral mixed problem with thermal effect was
studied by Clark [6]. For unilateral problems related to the wave model subject to
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degenerate and localized nonlinear damping on a compact Riemannian manifold we
cite the recent work of Cavalcanti et al [4]. For variational problems see the works
of Medeiros and Milla [15], Lar’kin and Medeiros [12] and references therein.

Unilateral problem is very interesting because in general, dynamic contact prob-
lems are characterized by nonlinear hyperbolic variational inequalities. For contact
problem in elasticity and finite element method see Kikuchi-Oden [11] and reference
therein. For Contact Problem Viscoelastic Materials see Rivera and Oquendo [20].
For dynamic contact problems with friction, for example problems involving uni-
lateral contact with dry friction of Coulomb, see Ballard and Basseville [1].

2. The Galerkin basis
We will show that there exists a Hilbert space Hs

0(Ω) with 0 < s such that Hs
0(Ω) ↪→

W p
0 (Ω) is continuous and Hs

0(Ω) ↪→ L2(Ω) is continuous and compact.
For v ∈ H1(Rn) consider

v̂(ξ) =
1

(2π)n/2

∫
Rn

e−(ξ.x)iv(x) dx

the Fourier transform of v and

Hs(Rn) = {v ∈ L2(Rn) : (1 + ||ξ||s/2v̂(ξ)) ∈ L2(Rn)}.

Since that Ω is a bounded open set with sufficiently smooth boundary, we have
Hs(Ω) is the set of restrictions on Ω of the functions v ∈ Hs(Rn), then

||v||Hs(Ω) = inf{||V ||Hs(Rn) : V = v a.e. in Ω}

and
Hs

0(Ω) = C∞
0 (Ω)

Hs(Ω)
.

We need
Wm,q

0 (Ω) ↪→Wm−k,qk
0 (Ω),

1

qk
=

1

q
− k

n
.

Choosing qk = p, m− k = 1 and q = 2 we get

m = 1 +
n

2
− n

p
.

For s > m we have

Hs
0(Ω) ↪→W 1,p

0 (Ω) ↪→ H1
0 (Ω) ↪→ L2(Ω)

from where follows our goal. Now, from spectral theory the problem

((vj , v))Hs
0 (Ω) = λj(vj , v), for all v ∈ Hs

0(Ω)

has solution and moreover {vj}j∈N precisely, is a Schauder basis for Hs
0(Ω)∩Lr+1(Ω)

with elements that are orthogonal in L2(Ω).
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3. Penalty method
The method consists in to consider a perturbation of the inequality (1.1) with adding
singular term, called penalization, depending on a parameter ε > 0. We solve the
mixed problem for that penalized equation that allow to pass to the limit when
ε→ 0, in order to obtain a function which is the solution of our problem.

First of all, let us consider the penalty operators β : L2(Ω) → L2(Ω) associated
to the closed convex sets K, see Lions ( [13], p. 370). The operator β is monotonous,
hemicontinuous, takes bounded sets of L2(Ω) into bounded sets of L2(Ω) and its
kernel is

K = {v ∈ L2(Ω); v ≥ 0 a.e. in Ω}

be a closed and convex subset of L2(Ω) with 0 ∈ K, and

β : L2(0, T ;L2(Ω)) → L2(0, T ;L2(Ω))

is monotone and hemicontinuous.
The penalized problem associated with the variational inequality (1.1)-(1.4) con-

sists in given 0 < ε < 1 find uε solution in Q of the mixed problem

u′′ε −∆puε + |uε|r−1uε −∆u′ε +
1

ε
β(u′ε) = 0, in Q, (3.1)

uε(x, t) = 0, in Σ, (3.2)
u′ε(x, t) = 0, in Σ, (3.3)
uε(x, 0) = uε0(x), u′ε(x, 0) = uε1(x), in Ω. (3.4)

Definition 3.1. We suppose uε0 ∈ W 1,p
0 (Ω) ∩ Lr+1(Ω), uε1 ∈ H1

0 (Ω). A weak
solution to the problem (3.1)-(3.4) is a function

uε ∈ L∞(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;Lr+1(Ω)),

where
u′ε ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)),

and u′′ε ∈ Lq(0, T ;W−1,q(Ω)) such that for all ϕ ∈W 1,p
0 (Ω) in D′(0, T ),

d

dt
(u′ε(t), ϕ)−⟨∆puε(t), ϕ⟩+ (|uε(t)|r−1uε(t), ϕ)+(∇u′ε(t),∇ϕ)+

1

ε
(β(u′ε(t)), ϕ)=0,

with uε(0) = uε0 , u
′
ε(0) = uε1 .

The solution of (3.1)-(3.4) is given by the following theorem.

Theorem 3.1. Assume uε0 ∈ W 1,p
0 (Ω) ∩ Lr+1(Ω), uε1 ∈ H1

0 (Ω). Then for each
0 < ε < 1 there exists a weak solution of (3.1)-(3.4).

Proof. Let s be an integer for which Hs
0(Ω) ↪→ W 1,p

0 (Ω) is continuous. Then
the eigenfunctions −∆vj = λjvj in Hs

0(Ω) yields a Galerkin basis (vj)
∞
j=1 for both

W 1,p
0 (Ω) and L2(Ω) with (vj)

∞
j=1 orthogonal in L2(Ω).

Let Vm = span{v1, . . . , vm}. Let us consider

uεm(t) =

m∑
j=1

ξεjm(t)vj
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solution of the approximate problem

(u′′εm(t), w) + ⟨−∆puεm(t), w⟩+ (|uεm(t)|r−1uεm(t), w)

+ (∇u′εm(t),∇w) + 1

ε
(β(u′εm(t)), w) = 0, ∀ w ∈ Vm, (3.5)

uεm(0) = uε0m → uε0 strongly in W 1,p
0 (Ω) ∩ Lr+1(Ω), (3.6)

u′εm(0) = uε1m → uε1 strongly in H1
0 (Ω). (3.7)

Putting w = vi, i = 1, . . . ,m, we observe that (3.5)-(3.7) is a system of ODEs
in the variable t and has a local solution uεm(t) defined in [0, tm), 0 < tm ≤ T . In
the next step we obtain the a priori estimates for the solution uεm(t) so that it can
be extended to the whole interval [0, T ].

3.1. A priori estimates
We consider w = u′εm(t) in (3.5) to obtain

d

dt

[
1

2
|u′εm(t)|22 +

1

p
∥∇uεm(t)∥pp +

1

r + 1
|uεm(t)|r+1

r+1

]
+ |∇u′εm(t)|22 +

1

ε

(
β(u′εm(t)), u′εm(t)

)
= 0. (3.8)

We have, (β(u′εm(t)), u′εm(t)) ≥ 0, then

d

dt

[
1

2
|u′εm(t)|22 +

1

p
∥∇uεm(t)∥pp +

1

r + 1
|uεm(t)|r+1

r+1

]
+ |∇u′εm(t)|22 ≤ 0.

3.2. The approximate energy

Eεm(t) =
1

2
|u′εm(t)|22 +

1

p
∥∇uεm(t)∥pp +

1

r + 1
|uεm(t)|r+1

r+1

satisfies d

dt
Eεm(t) ≤ −|∇u′εm(t)|22.

Integrating from 0 to t, t ≤ tm, and using (3.6)-(3.7) we obtain

Eεm(t) +

∫ t

0

|∇u′εm(s)|22 ds ≤ Eεm(0) ≤ C, (3.9)

being C positive constant independent of m and t. Therefore,

uεm is bounded in L∞(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;Lr+1(Ω)), (3.10)

u′εm is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), (3.11)

−∆puεm is bounded in L∞(0, T ;W−1,q(Ω)), (3.12)

|uεm |r−1uεm is bounded in L
r+1
r (0, T ;L

r+1
r (Ω)). (3.13)

3.3. Passage to the limit
By the estimates (3.10)-(3.13) implies that the existence of subsequence of (uεm),
still denoted by (uεm) such that

uεm
∗
⇀ uε in L∞(0, T ;W 1,p

0 (Ω)) ∩ L∞(0, T ;Lr+1(Ω)), (3.14)
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u′εm
∗
⇀ u′ε in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)), (3.15)
−∆puεm

∗
⇀ X in L∞(0, T ;W−1,q(Ω)), (3.16)

|uεm |r−1uεm ⇀ ψ2 weakly in L
r+1
r (0, T ;L

r+1
r (Ω)). (3.17)

For x, y ∈ R and p ≥ 2, consider the elementary inequalities∣∣∣|x| p−2
2 x− |y|

p−2
2 y

∣∣∣ ≤ C
(
|x|

p−2
2 + |y|

p−2
2

)
|x− y|, (3.18)∣∣|x|p−2x− |y|p−2y

∣∣ ≤ C
(
|x|

p−2
2 + |y|

p−2
2

) ∣∣∣|x| p−2
2 x− |y|

p−2
2 y

∣∣∣ . (3.19)

The inequality (3.18) is a consequence of the mean value theorem and (3.19) can
be found in [7]. As in [19] applying (3.18), (3.19) and Hölder generalized inequality
with

p− 2

4p
+
p− 2

4p
+

1

2
+

1

p
= 1

we deduce for all v ∈W 1,p
0 (Ω)∣∣∣∣∣

∫ T

0

⟨−∆pum(t), v⟩p − ⟨−∆puε(t), v⟩p dt

∣∣∣∣∣ ≤ C

∫ T

0

|∇um(t)−∇uε(t)|2 dt. (3.20)

Now we are going to obtain an estimate for u′′εm(t). Since our Galerkin basis
was taken in the Hilbert space L2(Ω) we can use the standard projection arguments
as described in Lions [13]. Then from the approximate equation and the estimates
(3.10)-(3.13) we get

u′′εm is bounded in L∞(0, T ;W−1,q(Ω)). (3.21)

Applying Aubin-Lions compactness lemma, see [13], we get respectively by
(3.14), (3.15) and (3.21),

uεm → uε strongly in L2(0, T ;L2(Ω)) and a.e. in Q, (3.22)
u′εm → u′ε strongly in L2(0, T ;L2(Ω)) and a.e. in Q. (3.23)

Using (3.22) we get that um → u almost everewhere in Ω× (0, T ) and by from
(3.20) we have that,

−∆puεm
∗
⇀ −∆puε in L∞(0, T ;W−1,q(Ω)). (3.24)

From (3.16), (3.24) and uniqueness of the limit we conclude that X = −∆puε.
By statements (3.23), the continuity of β imply

β(u′εm) −→ β(u′ε) a.e. in Q. (3.25)

To prove that ψ2 = |uε|r−1uε note that∫
Q

∣∣|uεm(t)|r−1uεm(t)
∣∣ r+1

r dxdt =

∫
Q

|uεm(t)|r+1
dxdt ≤ C.

By (3.22) we have

|uεm |r−1uεm −→ |uε|r−1uε a.e. in Q.
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Therefore from [13] lemma 1.3, we infer that

|uεm |r−1uεm ⇀ |uε|r−1uε weak in L
r+1
r (0, T ;L

r+1
r (Ω)) (3.26)

so have from (3.17) and (3.26) that ψ2 = |uε|r−1uε.
Now, with the convergence (3.14), (3.17), (3.25), (3.26) we can pass to the limit

in the approximate equation (3.5) and we obtain

d

dt
(u′ε(t), ϕ)+⟨−∆puε(t), ϕ⟩+(|uε(t)|r−1uε(t), ϕ)

+(∇u′ε(t), ϕ)+
1

ε
(β(u′ε(t)), ϕ) = 0, (3.27)

for all ϕ ∈W 1,p
0 (Ω) in D′(0, T ) at the sense of distributions.

4. Global weak solutions
Now we in position to present our principal result. The existence of global weak
solutions to the mixed unilateral problem (1.1)-(1.4).

Theorem 4.1. If u0 ∈ W 1,p
0 (Ω) ∩ Lr+1(Ω) and u1 ∈ H1

0 (Ω) ∩K then there exists
a function u : Ω× (0, T ) → R such that

u ∈ L∞(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;Lr+1(Ω)), (4.1)

u′ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), (4.2)

u′′ ∈ Lq(0, T ;W−1,q(Ω)), (4.3)

satisfying for all v(t) ∈ K a.e. in (0, T )∫ T

0

⟨−∆pu(s), v(s)− u′(s)⟩ds+
∫ T

0

(∇u′(s),∇v(s)−∇u′(s)) ds

+

∫ T

0

(|u(s)|r−1u(s), v(s)− u′(s)) ds+ |u1(x)|22 − |u′(x, T )|22 (4.4)

+ (u′(x, T ), v(x, T ))− (u1(x), v(x, 0)) ≥ 0,

(4.5)
u(x, 0) = u0(x), u

′(x, 0) = u1(x). (4.6)

Proof. Let v ∈ L2(0, T ;H1
0 (Ω)), v(t) ∈ K a.e. for t ∈ [0, T ]. From (3.27) it

follows that∫ T

0

d

ds
(u′ε(s), v(s)− u′ε(s)) ds+

∫ T

0

⟨−∆puε(s), v(s)− u′ε(s)⟩ds

+

∫ T

0

(
|uε(s)|r−1uε(s), v(s)− uε(s)

)
ds+

∫ T

0

(∇u′ε(s),∇v(s)−∇u′ε(s)) ds

+
1

ε

∫ T

0

(β(u′ε(s)), v(s)− u′ε(s)) ds = 0,
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so, ∫ T

0

⟨−∆puε(s), v(s)− u′ε(s)⟩ ds+
∫ T

0

(
|uε(s)|r−1uε(s), v(s)− uε(s)

)
ds

+

∫ T

0

(∇u′ε(s),∇v(s)−∇u′ε(s)) ds+ (u′ε(x, T ), v(x, T )− u′ε(x, T ))

− (uε1(x), v(x, 0)− uε1(x)) =
1

ε

∫ T

0

(β(u′ε(s)), u
′
ε(s)− v(s)) ds ≥ 0,

because v(t) ∈ K (β(v) = 0) and β is monotone.
Therefore∫ T

0

⟨−∆puε(s), v(s)− u′ε(s)⟩ds+
∫ T

0

(|uε(s)|r−1uε(s), v(s)− u′ε(s)) ds

+

∫ T

0

(∇u′ε(s),∇v(s)−∇u′ε(s)) ds+ (u′ε(x, T ), v(x, T )) (4.7)

− |u′ε(x, T )|22 + |uε1(x)|22 − (uε1(x), v(x, 0)) ≥ 0.

From (3.17), (3.21), (3.22), (3.23) and Banach-Steinhauss Theorem, it follows
that there exists a subsequence (uε)0<ε<1 such that it converges to u as ε → 0, in
the sense of (3.14)-(3.23), that is,

uε
∗
⇀ u in L∞(0, T ;W 1,p

0 (Ω)) ∩ L∞(0, T ;Lr+1(Ω)), (4.8)
u′ε

∗
⇀ u′ in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)), (4.9)
uε → u strongly in L2(0, T ;L2(Ω)) and a.e. in Q, (4.10)
u′ε → u′ strongly in L2(0, T ;L2(Ω)) and a.e. in Q. (4.11)

By (4.11) we have in particular

u′ε(x, T ) −→ u′(x, T ) weakly in L2(Ω). (4.12)

The convergence above are sufficient to pass to the limit in (4.7) with ε→ 0 to
conclude that (4.4) is valid.

To complete the proof of Theorem 4.1, it remains to show that u′(t) ∈ K a.e.
in [0, T ].

Integrating (3.8) from 0 to t we obtain

Eεm(t) +

∫ t

0

|∇uεm(s)|22 ds+
1

ε

∫ t

0

(
β(u′εm(s)), u′εm(s)

)2
2
ds = Eεm(0) ≤ C,

∀ m ≥ m0 and ∀ t ∈ [0, T ].
So,

0 ≤ 1

ε

∫ t

0

(
β(u′εm(s)), u′εm(s)

)2
2
ds ≤ C.

Taking t = T we have

0 ≤ 1

ε

∫ T

0

(
β(u′εm(s)), u′εm(s)

)2
2
ds ≤ C.
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By the properties of β according to Brezis [3] we obtain∫ T

0

∣∣β(u′εm(s))
∣∣2
2
ds ≤

∫ T

0

(
β(u′εm(s)), u′εm(s)

)2
2
ds ≤ εC.

Taking the limit when m→ ∞ we obtain

lim
m→∞

∫ T

0

∣∣β(u′εm(s))
∣∣2
2
ds ≤ εC.

By (3.23) and continuity of β we have∫ T

0

∣∣β(u′εm(s))
∣∣2
2
ds −→

∫ T

0

|β(u′ε(s))|
2
2 ds.

Thus, ∫ T

0

|β(u′ε(s))|
2
2 ds ≤ εC. (4.13)

Now, taking the limit when ε→ 0 in (4.13) we obtain,∫ T

0

|β(u′ε(s))|
2
2 ds −→ 0.

Thus, β(u′ε(t)) → 0 in L2(0, T ;L2(Ω)). By (4.11) and continuity of β we have

β(u′ε) −→ β(u′) in L2(0, T ;L2(Ω)). (4.14)

By (4.13),(4.14) and the uniqueness of the limit we have β(u′(t)) = 0. So, u′(t) ∈ K
a.e. in Ω and the proof of existence of solution is complete.
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