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GROUND STATES FOR A FRACTIONAL
REACTION-DIFFUSION SYSTEM
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Abstract In this paper, we prove the existence of the ground state of a
strongly indefinite fractional reaction-diffusion system based on the Non-Nehari
method established by Tang-Chen-Lin-Yu [J. Differ. Equ., 2020(268), 4663–
4690]. In particular, neither any monotonicity condition nor any Ambrosetti-
Rabinowitz growth condition is required. To our knowledge, this is the first
result about the ground states with the strongly indefinite case for fractional
reaction-diffusion system.
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1. Introduction
The present paper addresses the ground state of the following fractional reaction-
diffusion system ∂tu+ (−∆)su+ V (x)u = Fv(t, x, u, v),

−∂tv + (−∆)sv + V (x)v = Fu(t, x, u, v),
(1.1)

where 0 < s < 1, z = (u, v) : R × RN → RM × RM and the fractional Laplacian
operator (−∆)s is defined by

(−∆)sw = C(N, s)P.V.

∫
RN

w(t, x)− w(t, y)

|x− y|N+2s
dy,

here P.V. means the Cauchy principle value on the integral and C(N, s) represents
a normalizing constant which depends upon N and s, precisely given by

C(n, s) =

(∫
RN

1− cos(ζ1)

|ζ|n+2s
dζ

)−1

= 22sπ−n
2
Γ(n2 + s)

|Γ(−s)|
.

Fractional diffusion problem arises in optimal control of systems governed by frac-
tional partial differential equations [16]. One of the most interesting and physically
important features of space fractional diffusion is well known as anomalous dif-
fusion [19]. In particular, there has been tremendous interest in developing the
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fractional Laplace problem in various fields, for instance, phase transitions, strat-
ified materials, thin obstacle problems, anomalous diffusion, crystal dislocation,
conservation laws etc. Quite different from the classical Laplace operator, the
usual analytical methods for elliptic PDEs cannot be directly applied to (1.1) since
the operator (−∆)s is nonlocal. In the past two decades, a great deal of math-
ematical effort has been devoted to the study of solutions of reaction-diffusion
system. There have been extensive work in the case of bounded domain, sys-
tems like or analogous to (1.1) with s = 1 were studied by a number of authors,
see [2, 5–8, 10, 11, 15, 17, 20, 22, 31]. Especially, variational methods and other topo-
logical methods have attracted considerable attention in the existence of solutions
for reaction-diffusion system, see [1–11,14,18,24–30].

Recently, Ding and Guo [12] considered (1.1) and obtained the homoclinic solu-
tion by using strongly indefinite theory which is established by Ding [9]. However,
another question arises: whether the result [12] on the existence of ground state
solution, i.e., a nontrivial solution for (1.1) with the minimal energy for (1.1) can
be obtained? Answering this question constitutes the goal of this paper.

As a motivation, we recall a notable work of Szulkin and Weth [20], they de-
veloped a powerful approach to find ground state solutions for strongly indefinite
periodic Schrödinger equation under a strict monotone condition, which plays an
important role in generalized Nehari manifold, but this method is invalid with-
out monotone assumption. Recently, completely different from the one of Szulkin
and Weth [20], Tang [21–23] developed a new approach which is called Non-Nehari
method to find ground state solution of Nehari-Pankov type for Schrödinger equa-
tion, it is a powerful tool to resolve the ground state solution of strongly indef-
inite problem. However, to the best of our knowledge, there is no result about
ground states for fractional reaction-diffusion system (1.1), motivated by the pa-
pers [4,12,21–23,29], we will continue to study the existence of ground state solutions
of problem (1.1) under some weaker conditions by means of Non-Nehari method.
Now, we are in a position to state our assumptions for problem (1.1):
Assume that V and F satisfy the following conditions:
(V) V ∈ C(RN ,R) is Ti-periodic in xi for i = 1, ..., N and a := minx∈RN V (x) > 0;
(F1) F ∈ C1(R×RN×R2M ,R+) is T0-periodic in t, Ti-periodic in xi for i = 1, ..., N
and there exists a constant C > 0 such that

|Fz(t, x, z)| ≤ C(1 + |z|p−1), ∀ (t, x, z) ∈ R× RN × R2M ,

where p ∈ (2, N∗), and

N∗ =



4Ns+ 2N

2Ns+N − 2s
, if N > max{2, 4s}

2N + 8s

N + 2s
, if 4s < N ≤ 2 (0 < s <

1

2
)

2(N + 2)

N + 1
, if 2 < N ≤ 4s (

1

2
< s < 1)

8

3
, if N ≤ min{2, 4s}

(1.2)

(F2) Fz(t, x, z) = o(|z|) as |z| → 0 uniformly in (t, x);

(F3) lim|z|→∞
|F (t,x,z)|

|z|2 = ∞ uniformly in (t, x);
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(F4) For all κ ≥ 0, z, ζ ∈ R2M ,

F (t, x, κz + ζ)− F (t, x, z) +
1− κ2

2
Fz(t, x, z) · z − κFz(t, x, z) · ζ ≥ 0.

The present paper is organized as follows. The variational form for I and some
preliminaries are introduced in Section 2. Furthermore, our main results are ob-
tained. The proofs of our theorem are given in Section 3.

2. The variational setting and main results
Before giving our main result, we shall introduce some notation and definitions.

Throughout this paper, we always assume that hypotheses of (V), (F1)-(F4)
hold. | · |q stands for the usual Lq-norm, (·, ·)2 denotes the usual L2 inner product,
c, ci or Ci stand for different positive constants. Setting

J =

 0 −I

I 0

 , J0 =

 0 I

I 0

 , S = (−∆)s + V, A0 := J0S.

Denote A = J ∂tz +A0, then (1.1) can be rewritten as follows

Az = J ∂tz +A0z = Hz(t, x, z), z = (u, v).

Note that the time-dependent Besov space is defined as follows

Bs
r
.
= Br(R× RN ,R2M )

.
=W 1,r(R, Lr(RN ,R2M )) ∩ Lr(R,W 2s,r(RN ,R2M ).

When 0 < s < 1/2, we have the equivalent norm as

∥z∥Bs
r
=

(∫
R

(∫
RN

|z|r + |∂tz|r +
∫
RN

∫
RN

|z(t, x)− z(t, y)|r

|x− y|n+2sr
dxdy

)
dt

) 1
r

.

When 1/2 < s < 1, we have the equivalent norm as

∥z∥Bs
r
=

(
|z|rr + |∂tz|rr + |Dz|rr +

∫
R

∫
RN×RN

|Dz(t, x)−Dz(t, y)|r

|x− y|n+{2s}r dxdydt

) 1
r

,

where Dz is the derivative of z with respect to x, 2s = [2s] + {2s} with [2s] integer
and 0 < {2s} = 2s− 1 < 1.

For the case of s = 1
2 , it can be shown that B1/2

r = W 1,r(R × RN ,R2M ) with
the norm

∥z∥
B

1/2
r

= (|z|rr + |∂tz|rr + |Dz|rr) = ∥z∥W 1,r(R×RN ,R2M ).

Bs
r is the completion space of C∞

0 (R×RN ,R2M )) with the norm ∥·∥Bs
r
. In particular,

Bs
2 is a Hilbert space.

Let |A| be the absolute of A and |A| 12 be the square root of |A|. Denote E =
D(|A|1/2), it is easy to verify that E is a Hilbert space equipped with the inner
product ⟨z, w⟩E = ⟨|A|1/2z, |A|1/2w⟩L2 and the norm ∥z∥E = ⟨z, z⟩1/2E . It is well-
known that E = D(|A|1/2) ∼= (D(A), L2)[1/2] ∼= (Bs

2, L
2)[1/2], where (·, ·)[ 12 ] is the

complex interpolation space of exponent 1/2. The following lemmas comes from [12].
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Lemma 2.1. If 0 < s < 1 and (V) is satisfied, then for any z ∈ Bs
2 we have

c1∥z∥2Bs
2
≤ |Az|22 ≤ c2∥z∥2Bs

2
.

Lemma 2.2. E is continuously embedded in Lq(R × RN ,R2M ) and compactly
embedded in Lq′

loc(R× RN ,R2M ), where 2 ≤ q ≤ N∗, 2 ≤ q′ < N∗, N∗ is defined in
(1.2).

Lemma 2.3. Let (V) be satisfied, then

(1) σ(A) = σe(A), i.e., A has only essential spectrum;

(2) σ(A) ⊂ R \ (−a, a), σ(A) is symmetric with respect to 0, that is,
σ(A)

∩
(−∞, 0)=−σ(A)

∩
(0,∞).

Lemma 2.3 yields that L2 possesses the orthogonal decomposition L2 = L− ⊕
L+, z = z− + z+, z∓ ∈ L∓ such that A is negative definite in L− (resp. L+).

Based on the above agrument, we have E = E+ ⊕ E−, where E± = E ∩ L±.
We define the following energy functional of (1.1) on E

I(z) = 1

2
(∥z+∥2 − ∥z−∥2)−F(z), (2.1)

where F(z) =
∫
R×RN F (t, x, z). Clearly, I is strongly indefinite, our hypotheses

imply that I ∈ C1(E,R). Moreover,

⟨I ′(z), z⟩ = (∥z+∥2 − ∥z−∥2)− ⟨F ′(z), z⟩, z = z− + z+ ∈ E = E− ⊕ E+, (2.2)

standard argument shows that critical points of I are solutions of (1.1).
If z0 = (u0, v0) ∈ E is a nontrivial solution of problem (1.1), then z0 ∈ N−,

where
N− := {z ∈ E \ E− : ⟨I ′(z), z⟩ = ⟨I ′(z), w⟩ = 0, ∀ w ∈ E−}, (2.3)

the set N− of (2.3) was first introduced by Pankov [17], which is a natural constraint
and contains nontrivial critical points of I, The purpose of the present paper is to
seek a solution z0 for (1.1) that satisfies I(z0) = infN− I(z) under some suitable
assumptions.

Our main result are the following:
Theorem 2.1. Assume that V (x) and F (t, x, z) satisfy the basic assumptions (V)
and (F1)-(F4) respectively, then system (1.1) has at least a solution z0 ∈ E such
that I(z0) = infN− I > 0.

Remark 2.2. It is easy to verify that the following functions

F (t, x, u, v) = (|u|2 + u · v + |v|2) ln(1 + |u|2 + u · v + |v|2)
F (t, x, u, v) = |u+ 2v|σ1 + |3u+ 2v|σ2 , σ1, σ2 ∈ (2, N∗)

satisfy (F1)-(F4).
Remark 2.3. Theorem 2.1 can be thought as an extension of the results in [12],
we remark that in our assumptions neither any monotonicity condition nor any
Ambrosetti-Rabinowitz growth condition is required, and we need a new method
different from those used in [20] to overcome the difficulty in studying the least
energy solution.
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3. Proof of the main result
Let W be a real Hilbert space with W = W− ⊕ W+ and W− ⊥ W+. For a
functional ψ ∈ C1(W,R), ψ is said to be weakly sequentially lower semi-continuous
if for any un ⇀ u in W one has ψ(u) ≤ lim infn→∞ ψ(un), and ψ′ is said to be
weakly sequentially continuous if limn→∞⟨ψ′(un), v⟩ = ⟨ψ′(un), v⟩ for each v ∈W .

Lemma 3.1( [15]). Let W be a a real Hilbert space, W =W−⊕W+ and W− ⊥W+,
and ψ ∈ C1(X,R) of the form

ψ(u) =
1

2
(∥u+∥2 − ∥u−∥2)− ψ(u), u = u− + u+ ∈W− ⊕W+.

Suppose that the following assumptions hold:
(A1) ψ ∈ C1(W,R) is bounded from below and weakly sequentially lower semi-

continuous;
(A2) ψ′ is weakly sequentially continuous;
(A3) there exist r > ρ > 0, e ∈W+ with ∥e∥ = 1 such that

κ := inf ψ(S+
ρ ) > supφ(∂Q),

where

S+
ρ = {u ∈ X+ : ∥u∥ = ρ}, Q = {v + se : v ∈ X−, s ≥ 0, ∥v + se∥ ≤ r}.

Then for some c ∈ [κ, supφ(Q)], there exists a sequence {un} ⊂W satisfying

ψ(un) → c, ∥ψ′(un)∥(1 + ∥un∥) → 0.

Employing a standard argument, one can easily derive the following lemma.

Lemma 3.2. Assume that (V), (F1)-(F4) are satisfied. Then F is nonnegative,
weakly sequentially lower semicontinuous, and F ′ is weakly sequentially continuous.

Lemma 3.3. Assume that (V), (F1)-(F4) are satisfied. Then for all κ ≥ 0, z ∈
E, ζ ∈ E−,

I(z) ≥ I(κz + ζ) +
1

2
∥ζ∥2 + 1− κ2

2
⟨I ′(z), z⟩ − κ⟨I ′(z), ζ⟩. (3.1)

Proof. From (2.1), (2.2) and (F4) we have

I(z)− I(κz + ζ) =
1

2
∥ζ∥2 + 1− κ2

2
(∥z+∥2 − ∥z−∥2) + κ(z, ζ)

−
∫
R×RN

[F (t, x, z)− F (t, x, κz + ζ)]

=
1

2
∥ζ∥2 + 1− κ2

2
⟨I ′(z), z⟩ − κ⟨I ′(z), ζ⟩

+

∫
R×RN

1− κ2

2
Fz(t, x, z) · z − κFz(t, x, z) · ζ

+

∫
R×RN

F (t, x, κz + ζ)− F (t, x, z)
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≥ 1

2
∥ζ∥2+1−κ2

2
⟨I ′(z), z⟩−κ⟨I ′(z), ζ⟩, ∀κ ≥ 0, z ∈ E, ζ ∈ E−.

Using Lemma 3.3, some important corollaries are given as follows, the proof will
be omitted.
Corollary 3.4. Assume that (V), (F1)-(F4) are satisfied. Then for z ∈ N−, we
have

I(z) ≥ I(κz + ζ), ∀ κ ≥ 0, ζ ∈ E−.

Corollary 3.5. Assume that (V), (F1)-(F4) are satisfied. Then for all z ∈ E, θ ≥ 0,

I(z) ≥ κ2

2
∥z∥2 + 1− κ2

2
⟨I ′(z), z⟩+ κ2⟨I ′(z), z−⟩ −

∫
R×RN

F (t, x, κz+). (3.2)

Lemma 3.6. Assume that (V), (F1)-(F4) are satisfied. Then

(i) there exists ρ > 0 such that

m := inf
N−

I ≥ Λ := inf{I(z) : z ∈ E+, ∥z∥ = ρ} > 0;

(ii) ∥z+∥ ≥ max{∥z−∥,
√
2m} for all z ∈ N−.

Proof. It follows from (F1) and (F2) that there exists a constant Cε such that

|F (t, x, z)| ≤ ε|z|2 + Cε|z|p, p ∈ (2, N∗), ∀ (t, x, z) ∈ R× RN × R2M ,

From Corollary 3.4, we have for z ∈ N−

I(z) ≥ I(κz+)

≥ κ2

2
∥z+∥2 −

∫
R×RN

F (t, x, κz+)

≥ κ2

2
∥z+∥2 − κ2ε∥z+∥2 − κpCε∥z+∥pp

≥ κ2

2
(1− 2ε)∥z+∥2 − κpγppCε∥z+∥p > 0, for small κ > 0.

This shows that there exists a ρ > 0 such that (i) holds.
By (A1), F(z) > 0 for all (t, x, z) ∈ Z× RN × R2M , so we have for z ∈ N−

m ≤ 1

2
∥z+∥2 − 1

2
∥z−∥2 −F(z) ≤ 1

2
∥z+∥2 − 1

2
∥z−∥2 ≤ 1

2
∥z+∥2,

which implies that ∥z+∥ ≥ max{∥z−∥,
√
2m}.

With the help of the preceding two corollaries, an argument similar to the one
used in [21] shows that we can now prove the following lemma in the same way
as [21].
Lemma 3.7. Assume that (V), (F1)-(F4) are satisfied. Then for every e ∈
E+, sup I(E− ⊕ R+e) <∞ and there exists Re > 0 such that

I(z) ≤ 0, ∀ z ∈ E− ⊕ R+e, ∥z∥ ≥ Re.
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Corollary 3.8. Assume that (V), (F1)-(F4) are satisfied. Let e ∈ E+ with ∥e∥ = 1.
Then there exists r0 > ρ such that sup I(∂Q) ≤ 0 as r ≥ r0, where

Q = {ζ + se : ζ ∈ E−, s ≥ 0, ∥ζ + se∥ ≤ r}. (3.3)

Lemma 3.9. Assume that (V), (F1)-(F4) are satisfied. Then there exists a constant
c ∈ [Λ, sup I(Q)] and a sequence {zn} ⊂ E satisfying

I(zn) → c, ∥I ′(zn)∥(1 + ∥zn∥) → 0,

where Q is defined in (3.3).

Proof. Combining with Lemma 3.1, Lemma 3.2, Lemma 3.6 and Corollary 3.8, it
is easy to verify Lemma 3.9. The proof will be omitted.
Lemma 3.10. Assume that (V), (F1)-(F4) are satisfied. Then there exists a
constant c∗ ∈ [κ,m] and a sequence {zn} = {(un, vn)} ⊂ E satisfying

I(zn) → c∗, ∥I ′(zn)∥(1 + ∥zn∥) → 0. (3.4)

Proof. This is a standard result which can be found in [21,22], for the convenience
of readers, we give the detailed proof process here. Choose ξk ∈ N− such that

m ≤ I(ξk) < m+
1

k
, k ∈ N. (3.5)

Using Lemma 3.6, we can derive ∥ξ+k ∥ ≥
√
2m > 0. Let ek = ξk/∥ξk∥, then ek ∈ E+

with ∥ek∥ = 1. Applying Lemma 3.8, there exists a constant rk > max{ρ, ∥ξk∥}
satisfying sup I(∂Qk) ≤ 0, where

Qk = {ζ + sek : ζ ∈ E−, s ≥ 0, ∥ζ + sek∥ ≤ rk}, k ∈ N. (3.6)

Then, by lemma 3.9, there exist a constant ck ∈ [κ, sup I(Qk)] and a sequence
{zk,n}n∈N ⊂ E

I(zk,n) → ck, ∥I ′(zk,n)∥(1 + ∥zk,n∥) → 0, k ∈ N. (3.7)

In virtue of Corollary 3.4, we get

I(ξk) ≥ I(ηξk + ζ), ∀ η ≥ 0, ζ ∈ E−. (3.8)

Since ξk ∈ Qk, then by (3.6) and (3.8) we have I(ξk) = sup I(Qk). Further-
more, by (3.5) and (3.7), we have

I(zk,n) → ck < m+
1

k
, ∥I ′(zk,n)∥(1 + ∥zk,n∥) → 0, k ∈ N.

We can choose {nk} ⊂ N such that

I(zk,nk
) < m+

1

k
, ∥I ′(zk,nk

)∥(1 + ∥zk,nk
∥) < 1

k
, k ∈ N.

Set zk = zk,nk
, k ∈ N, then we have

I(zn) → c∗ ∈ [κ,m], ∥I ′(zn)∥(1 + ∥zn∥) → 0.
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Lemma 3.11. Assume that (V), (F1)-(F4) are satisfied. Then for any z ∈ E \E−

N−∩(E−⊕R+z) ̸= ∅, there exist η(z) > 0, ζ(z) ∈ E− such that η(z)z+ζ(z) ∈ N−.

Proof. Note that E− ⊕ R+z = E− ⊕ R+z+, then we may assume that z ∈ E+.
It follows from Lemma 3.7 that there exists a constant R > 0 such that I(z) ≤ 0
for any z ∈ (E− ⊕ R+z) \ BR(0). For sufficiently small s ≥ 0, we have I(sz) > 0.
Thus, 0 < sup I(E− ⊕ R+z) < ∞. It is easy to show that I is weakly continue on
E−⊕R+z, then for some z0 ∈ E−⊕R+z we have I(z0) = sup I(E−⊕R+z). So z0
is a critical point of I|E−⊕Rz. Moreover, ⟨I ′(z0, z0)⟩ = ⟨I ′(z0, ζ)⟩, ∀ ζ ∈ E− ⊕Rz.
From the above discussion, we can derive that z0 ∈ N− ∩ (E− ⊕ R+z).
Lemma 3.12. Assume that (V), (F1)-(F4) are satisfied. Then for any {zn} ⊂ E
such that

I(zn) → c ≥ 0, ⟨I ′(zn), zn⟩ → 0, ⟨I ′(zn), z
−
n ⟩ → 0 (3.9)

is bounded in E.

Proof. We prove the boundedness of {zn} by negation, if the assertion would
not hold, then ∥zn∥ → ∞. Denote ωn = zn/∥zn∥, we have ∥ωn∥ = 1. Taking
into account Sobolev embedding theorem, there exists a constant C1 > 0 such that
∥ωn∥2 ≤ C1. If

δ := lim sup
n→∞

sup
y∈RN+1

∫
B1(y)

|ω+
n |2dx = 0,

it is easy to verify that ω+
n → 0 in Lp(p ∈ (2, N∗)) by using Lions’ concentration

compactness principle. Fix R > [2(1+c)]1/2, combining (F1) with (F2), we see that
there exists a constant Cε > 0 such that

F (t, x, z) ≤ ε|z|2 + Cε|z|p

for ε = 1/4(RC1)
2 > 0, where (t, x, z) ∈ R× RN × R2M . Hence, we have

lim sup
n→∞

∫
R×RN

F (t, x,Rz+n /∥zn∥)

= lim sup
n→∞

∫
R×RN

F (t, x,Rω+
n )

≤ lim sup
n→∞

R2ε

∫
R×RN

|ω+
n |2 + lim sup

n→∞
RpCε

∫
R×RN

|ω+
n |2

≤ ε(RC1)
2 =

1

4
. (3.10)

Set
ηn = R/∥zn∥,

combining Lemma 3.4 with Lemma 3.11, we have, in light of (3.10)

c+ o(1) = I(zn)

≥ η2n
2
∥zn∥2 −

∫
R×RN

F (t, x, ηnz
+
n ) +

1− η2n
2

⟨I ′(zn), zn⟩+ η2n⟨I ′(zn), z
−
n ⟩

=
R2

2
−
∫
R×RN

F (t, x,Rz+n /∥zn∥) +
(
1

2
− R2

2∥zn∥2

)
⟨I ′(zn), zn⟩
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+
R2

∥zn∥2
⟨I ′(zn), z

−
n ⟩

=
R2

2
−
∫
R×RN

F (t, x,Rz+n /∥zn∥) + o(1)

≥ R2

2
− 1

4
+ o(1) >

3

4
+ c+ o(1).

This leads to a contradiction, so δ > 0. Without loss of generality we suppose the
existence of kn ∈ ZN+1 such that

∫
B1+

√
N+1(0)

|ω+
n |2 > δ

2 . Denote ζn(x) = ωn(x+kn),
then ∫

B1+
√

N+1(0)

|ζ+n |2 > δ

2
. (3.11)

Put z̃n(x) = zn(x + kn), z̃n/∥zn∥ = ζn, then ∥ζn∥ = 1. Passing to a subsequence,
we may assume that ζn ⇀ ζ on E, and ζn → ζ, ζn → ζ on L2

loc. a.e. on R×RN . It
is evident that (3.11) implies that ζ ̸= 0. Thus, by virtue of (3.1), (F3) and Fatou
lemma, we see that

0 = lim
n→∞

c+ o(1)

∥zn∥2

= lim
n→∞

I(zn)
∥zn∥2

= lim
n→∞

[
1

2
(∥ω+

n ∥2 − ∥ω−
n ∥2)−

∫
R×RN

F (t, x, zn)

∥zn∥2

]
= lim

n→∞

[
1

2
(∥ω+

n ∥2 − ∥ω−
n ∥2)−

∫
R×RN

F (t, x, zn)

|z̃n|2
|ζn|2

]
≤ 1

2
− lim inf

n→∞

∫
R×RN

F (t, x, zn)

|z̃n|2
|ζn|2

= −∞,

which is a contradiction. Hence the statement of Lemma 3.11 are proved.

Proof of Theorem 2.1. In light of Lemma 3.12, there exists a bounded sequence
{zn} ⊂ E satisfying Lemma 3.9. Hence, there exists a constant C2 > 0 such
that ∥zn∥2 ≤ C2. If δ := limn→∞ sup supy∈RN+1

∫
B1(y)

|zn|2 = 0, then zn → 0

in Lp, where p ∈ (2, N∗). On the other hand, by virtue of (F1) and (F2), for
ε = c∗/4C

2
2 > 0, there exists a a constant Cε > 0 such that

F (t, x, z) ≤ ε|z|2 + Cε|z|p, ∀ (t, x, z) ∈ R× RN × R2M .

Based on the above discussion, we have

lim
n→∞

sup

∫
R×RN

[
1

2
Fz(t, x, zn) · zn − F (t, x, zn)

]
≤ 3ε

2
C2

2 +
3ε

2
Cε lim

n→∞
|zn|p

=
3c∗
8
.
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Thus,

c∗ = I(zn)−
1

2
⟨I ′(zn), zn⟩+ o(1)

=

∫
R×RN

[
1

2
Fz(t, x, zn) · zn − F (t, x, zn)

]
+ o(1)

≤ 3c∗
8

+ o(1),

which is a contraction. Then δ > 0.
Passing to the subsequence, we may assume that there exists kn ∈ ZN+1 such

that
∫
B1+

√
N+1(0)

|z+n |2 > δ
2 . Set ζn(x) = zn(x+ kn), then∫

B1+
√

N+1(0)

|ζ+n |2 > δ

2
. (3.12)

Due to the periodic assumption of V (x) and F (t, x, z), it follows that ∥ζn∥ = ∥zn∥
and

I(ζn) → c∗, ∥I ′(ζn)∥(1 + ∥ζn∥) → 0. (3.13)

Thus, Passing to the subsequence, suppose that ζn ⇀ ζ in E, ζn → ζ in L2
loc,

ζn(t, x) → ζ(t, x) a.e on RN+1. In light of (3.8), we see that ζ ̸= 0. For every
ϕ = (ϕ1, ϕ2) ∈ C∞

0 (RN+1) × C∞
0 (RN+1), by (2.2) and (3.9), we have ⟨I ′(ζ), ϕ⟩ =

limn→∞⟨I ′(ζn), ϕ⟩ = 0. Hence, I ′(ζ) = 0, which implies that ζ ∈ N−. Then,
I(ζ) ≥ m. On the other way, it follows from (F2), (F3), (F4), Lemma 3.6, Lemma
3.10 and Fatou Lemma that

m ≥ c∗ = lim
n→∞

[
I(zn)−

1

2
⟨I ′(zn), zn⟩

]
= lim

n→∞

∫
R×RN

[
1

2
Fz(t, x, zn) · zn − F (t, x, zn)

]
≥

∫
R×RN

lim
n→∞

[
1

2
Fz(t, x, zn) · zn − F (t, x, zn)

]
=

∫
R×RN

[
1

2
Fζ(t, x, ζ) · ζ − F (t, x, ζ)

]
= I(ζ)− 1

2
⟨I ′(ζ), ζ⟩ = I(ζ),

which implies I(ζ) ≤ m. So I(ζ) = m = infN− I > 0. The proof is completed.
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