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SEMICLASSICAL SOLUTIONS OF THE
CHOQUARD EQUATIONS IN R3

Ke Jin! and Zifei Shen®'

Abstract We study the nonlocal equation:
—®Au A+ Mu+ V(z)u = (|| * [u”)[ulP>u in R®,

where € > 0 is a small parameter, A > 0, 0 < p < oo are positive constants
and w is a real-valued measurable function. By Lyapunov—Schmidt reduction,
we will prove the existence of multiple semiclassical solutions.
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1. Introduction and main results
The Choquard equation
—Au+u= (I xu*)u in R" (1.1)

is also called the nonlinear Hartree or Schrodinger—-Newton equation, where I5 is the
Newton potential. (1.1) comes from several physical models. For example, it is used
to describe the quantum mechanics of a polaron at rest by Pekar [19] and model an
electron trapped in its own hole, in a certain approximation to Hartree—Fock theory
of a plasma [12]. Later, Penrose proposed (1.1) as a model for the self-gravitational
collapse of a quantum mechanical wave function [20]. Wei and Winter [24], Secchi
[22] and Chen [4] constructed multi-peak solution by perturbation method. The
more results about Hartree equations can be seen [11, 16, 28] and the references
therein.
Equation (1.1) can be considered as a special case of the generalized Choquard
equation
— Au+du+ V(z)u = (I * [ulP)|ulP~2u in R™, (1.2)

where p > 1 and I,, denotes the Riesz potential [21] defined by

r(*2)
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and I' is the Gamma function. When V(z) = 0 and A = 1, Moroz and Van
Schaftingen [17] stated two conclusions: one is the existence of a positive ground-
state solution which is radially symmetric and monotone decaying about some points
for Z_%i < % < %; the other is regularity, positivity and asymptotic properties
at infinity of the groundstates. They also showed in [18] that (1.2) has a family
of solutions concentrating to the local minimum of V' under some conditions by
variational methods and a novel nonlocal penalization technique. When A = 1
and V(x) = fﬁ"lw for p, v > 0, Cassani et al. [3] proved that there exist two
thresholds p and p, such that if u < p,, then (1.2) has no ground state solu-
tion; if p, < p < p”, then equation admits a positive ground state solution; if
> max{u”, N>(N — 2)/4(N + 1)}, a sign changing ground state solution exists

with n > 4 or non-resonant case. In the case of A = V(z) =0 and p = 2;,, where
2, = 2::2“ is the upper critical exponent on account of the Hardy-Littlewood-

Sobolev inequality, under the condition that using moving plane method, Du and
Yang [8] got the symmetry and uniqueness of positive solutions, the nondegeneracy
of the unique solutions for (1.2) are proved in [8] and [9] when 4 — n and p — 0
respectively. We refer reader to [5-7, 10, 13,26, 27] and the references therein for
more details.

Motivated by [4,24] , we are interested in the existence of multiple semiclassical
solutions for the following Choquard equation with potential V:

— 2 AuA4 M+ V(z)u = e 2(|z| 7 * |ulP)|ulf%u in R, (1.3)

where € > 0 is a small parameter, A = Zle 0Oy,z, denotes the Laplace operator,
p > 2 and the potential V satisfies:

(V1) V € C3(R3), inf,egs (A + V(x)) > 0, where
C3(R?) :={V € C*(R?)|D’V is bounded in R? for all
multi-index J such that |J| < 3}.
Our main result in this paper can be stated as follows.

Theorem 1.1. Suppose that V' satisfies (V1) and has a nondegenerate smooth com-
pact critical manifold M. Then (1.8) has at least [(M) solutions concentrating near
points of M for 2 < p <249 and € > 0 sufficiently small, where 0 < 6 < % and
I(M) denotes the cup length of M.

The main idea in proving Theorems 1.1 is by Lyapunov—Schmidt reduction,
which has been widely used to deal with the problem of interior peak solutions for
Schrodinger equations. See for example [2, 14,15, 23] and the references therein.
However, the nonlocal term in the equation (1.3) causes some technique difficulties
to us. Thus we extend the classical Lyapunov—Schmidt reduction and make careful
estimates to overcome some problems.

The paper is organized as follows. In Section 2, we state some useful lemmas
and give the proof of Theorem 1.1 in Section 3 by Lyapunov—Schmidt reduction
method.

2. Notations and preliminaries

In this section, we present some useful notations and lemmas which will be of
importance later.
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First we need to introduce some notations. Let x = ez, (1.3) becomes
— Au+ A u+ V(er)u = (o)1 * |uP)|uP~*u in R, (2.1)
which will be considered as a perturbation of
— Au+ = (2|71 * |ulP)|uP%u in R3. (2.2)

Let H'(R3) be a Hilbert space with the inner produce
(u,v) = / (Vu - Vv + Auwv)dz
R3

and the corresponding norm

”Mﬁzﬂ/ (1Vul? + Ajul?) de.
RS

The energy functional of (2.1) is defined by

‘um—léﬂwM+mmm+%/

1
=3 . V(ex)uldx — % /R:}(|aﬂ|71 * |u|P)|u|Pdx

= folu) + L V(ex)uldz
2 Jus

for any u € H'(R?®). f.(u) is well defined by the Hardy-Littlewood—Sobolev in-
equality. We shall verify that there exist solutions of (2.1) near a solution of

— Au+ M+ V(EeQu = (||~ * [ul?) [ulP~>u in R? (2.3)

with some appropriate ¢ in R3. Clearly, the solutions of (2.3) are critical points of
1 2
Freelw) = folw) + 3V(e€) [ uPde
R3
for any u € H'(R3). Then we have

1

fe(u) = Fre(u) + 5 /R3 (V(ex) — V(e€)) u’da. (2.4)

We state the following lemma to describe the properties of solutions of (2.2) for

2 <p<2+94, where § € (0,0%), 6* € (0, 3).

Lemma 2.1. (). The problem (2.2) has a unique ground state solution, denoted
by U;

(ii). U is radially symmetric and strictly decreasing: U(y) = U(ly|) and U < 0
forr>0,r=|y|;

(@ii). The asymptotic behavior of U:
Ulr)= A (1+0(1/r)r e, U (r) = —A1(14+01/r))r~te™ asr — oo,

where Ay > 0 is a constant;
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(iv). U is nondegenerate, to be more precise,

ker L = span{ ou oU ou }
0z, Oxo’ 813
where L is the linearized operator at U given by
Lo = =Ap+ Ao — (p = )(|2| 7« UP)UP ¢ — p(|2| =" * (UP o)) UP
for any ¢ € H*(R3).

Proof. See [25, Theorem 1.2] and [25, Theorem 1.3]. O
Let 8 = B(c€) = (1+ V(e€)/A)"? and a = a(e€) = (1 + V(£)/N)Y PV then
aU(Bx) is a solution of (2.3). Let

zes = a(e§)U(B(e)x) (2.5)
and Z. 1= {z. ¢(x — £)|€ € R3}. For convenience, we write z¢ = 2. ¢(x — &).

Lemma 2.2 (see [4, Lemma 5.1]). For all £ € R3, it holds that:

O [ze.6(x = &) = =0, [2e¢(z = )] + O(e). (2.6)

Lemma 2.3 (see [4, Lemma 5.2]). For all £ € R and e > 0 sufficiently small, the
following holds:
IDf:(ze)| < C (elVV ()] +€)

where C' > 0 is a constant independent on £ and €.

Lemma 2.4. For all p; € H'(R?) (j = 1,2,3,4), the following hold:

/ / o8 (@) pa (@)l 1(y)so4(y)dxdy
R3 JR3 |a:—y\

//901 5 “(y)wsly )904(y)dxdy
R3 JR3 |5U—Z/|

where C' > 0 is a constant independent on ¢;.

< CllerP HeallllesP Hieall  (2.7)

< ClenlllealPlleslliesll,  (2:8)

Proof. By the Hardy-Littlewood—Sobolev inequality and Hélder inequality, we

have
1 1
//901 (x)eh~ (y)<p4(y)dxdy
R3 JR3 \x—y|

<l 802||Lg(R3)H<P3_ <P4||Lg (&%)

p p
< Ol o 1921 gy o 199103 o I s

/RS/RS% @2;_) |() 3@ gy

[

*(R?’)”%_ (p?’%”molfw (R3)

< p pP—
< Clloal?yp g el o sl g o ol g

< CH%
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Since 2 < p < 2+ J, then the Sobolev imbedding gives that

sl 3 gy < Cllesll el sias o < Cllosll. 5 =128,

Thus we finish the proof. O

3. The proof of Theorem 1.1

In this section, we construct multiple semi-classical solutions to (1.3) and prove
Theorem 1.1.

3.1. Invertibility.
Let D?f.(z¢) be the Hessian of f. at z¢ and T..(Z.) be the tangent space of Z. at
z¢. Define L. ¢ : (T, (Z))+ — HY(R?) by

(Legu,w) = D*fo(z¢) (u,w), u € (T (Z:))",w e HY(R?).

Let P. ¢ : H'(R3) — (T,

. (Z:))* be the orthogonal projection. We define

Leg=Pegleg: (Toe(Ze))" — (To(Z:)*.

z¢
As a preparation, the following proposition gives the invertibility of L. ¢.

Proposition 3.1. For any fized § > 0, there exist C > 0 and g9 > 0 sufficiently
small such that for any € € (0,e0) and || < 8, the map L. ¢ is both injective and
surjective. Moreover,

[{Leew,w)| > Cllw]?

Jor allw € (T.,(Z:))*.

Proof. 7z is a mountain pass critical point of F; ¢, then for any fixed €1 > 0 small,
there exists a constant ¢; > 0 such that for any ¢ € (0,¢1) and [£] < 4,

D?F. ¢(2¢)(2¢, z¢) < —c1 < 0.

By (2.4) and Lemma 2.3, we have

(Legze, z¢) = D?Frg(ze) (2, z¢) + /Rs(V(Ex) — V(e€))2ida
< —c1+ e (e|VVI(e€)| +€7),
which implies that
(Legze, 2¢) < —C1 <0, (3.1)

where C; > 0 is a constant depending only on & and .
Let
K. ¢ = span{z¢, 0y, 2¢, Opy 26, Opy2¢ | -

Next we show that for any ¢ € K sjjga the following holds:

(Legd, ¢) = C2]l0]1%, (3-2)
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where Cy > 0 is a constant depending only on ¢ and &.
From the definition of L. ¢, we obtain that

(Let.6) = D*Foglie) (0.0) + [ (V(er) = V(e)oPdo
for any ¢ € Kel,g- Since z¢ is a mountain pass critical point of F; ¢, then

D?F.¢(2)(¢,¢) = Csl|9l|*, Vo € K. (3.3)

Let 71 : R® — R be a radial smooth cut-off function such that for any R > 0
sufficiently large,

2
m(z)=1 for |z|<R, n(x)=0 for |x|>2R and |V771(:C)|§E for R<|z|<2R.

Let 2 = 1 —m and ¢; = ;¢ (i = 1,2). Then

162 = a2 + la]? + 2 / (V1 - Vs + A ) da
(3.4)

= lonl o+ onll* +2 [ v (190 + A62) da + on(1) 0]
and

(Le @, ) = (Legdr, ¢1) + (Le b2, p2) + 2(Legdr, ¢2) =T +To +T3.  (3.5)
We estimate (3.5) term by term. For T%, using the definition of L. ¢ again, we have

T = (Legtr, 61) = D*Frglz¢) (91, 01) + /R (V(ew) = V() pid.

Splitting ¢1 = ¢ + v, where ¢ € K & and ¢ € K, ¢. Hence

3
b= (1, ze) |zl P2 + D (b1, O, 26) |0, 2 || 2 0n, 2

i=1

and

D?F. ¢(2¢)($1, ¢1) = D*Fre(2¢) (1, d1) + D> Fr ¢(2¢) (1, 0) + 2D F. ¢ (2¢) (61, ).

(3.3) gives that o B
D*F.g(z¢)(61,61) = Cullé > (3.6)
Since ¢ € K; 5, the following holds:

<¢17 Z£> (1 — 12 (b’ Z5> <n2¢a Z€>
:—)\/ ne(x)p(x)ze (x dac—/ V(ne¢) - Vzedz

— 2 () b(x) 2 (x)dz — / V- Vaeda
R3\BRr(0) R3\Br(0)

— / oVna - Vzedr
B2r(0)\Br(0)

e "¢l

:U\Q
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here we use the Holder inequality and Lemma 2.1. This implies that as R — oo,

(¢1,2¢) = or(1)]|9].

Similarly, it is easy to see that

(61,00,2¢) = or(1)|9]-

The two formulas in the above show that

[%]l = or(1)[o] (3.7)

By simple calculation, we deduce that

—1
2 _ 2 g (y)¥(y)
DPFe o)) =10l + V(e [ vda— ”/R/R |x_y‘ drdy
% (y)v*(y)
(-1 el dxdy.
/R/R |x_y| - (3.8)
Using (2.7) and (2.8), we have .
-1 o1
% )ze (y)v(y) )
[ W gy < o 3.9)
and )
z¢ (@ y)*(y) 9
[ B ) < o, 3.10)
Combinging (3.7)-(3.10), we get
DF. ¢(2) (¥, %) = or(1)]|6]*. (3.11)
A same estimate shows that
D*F. ¢(2¢) (61, 9)
—1
=(¢1, ) + V(&) / d1pdx —p / / ZE (blx m— W) dxdy
) y 12
1
—p- dxd
! /RS /Ra Iff — o

=or(Dd1llllell = or(1)ll4ll*.
From (3.6), (3.11) and (3.12), it holds that
D?F ¢(z¢) (61, ¢1) > Cllon]l* + or(1)]|6]*. (3.13)

Recalling that D7 V' is bounded and 7, = 0 for |z| > 2R, by Taylor expansion, we
have that for || < 4,

/ V(ew) — V(e6)|62d <Cse / & — €[ (22 () dc
BQR(O)
(3.14)
SC’GER/ n%(x)(f(x)dx < 065R||¢H2.
BQR(O)
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Choosing R = £~'/2, then (3.13) and (3.14) imply that there exists ¢o > 0 suffi-
ciently small such that for any ¢ < g,

Ty > Clloal® + or(1)l0]I*. (3.15)

Now, we estimate T. According to the definition of T5, we have

Ty = (L. e, ) = / IVl + (A + v<sx>>¢%) dz
// A7 (@) ga(x)2F <y)¢2(y)dxdy (3.16)

Ix—yl

o (@) W)o3)
1) /R3 /]RS |x—y| dxdy.

Since inf,cps (A + V(2)) > 0, one finds that for |¢| < § and & > 0 sufficiently small,

[, (90 + 0+ Viea)a3) do > Crlonl

By Lemma 2.4, Holder inequality and 7, = 0 in Bg(0), we obtain

// 27 (@) po(w)2E (y)@(y)dmd
R3 JR3 |x—y| Y

— —1
<Cill=2 ™ 020 se ey < CillZE ™ el o oy 161
<CsRe P|6]]* < or(1)6]%

The last term in (3.16) can be estimated as follows:

2
/ / zg (z (y)#3(y dmdy / / z (v (¥)9*(y )dwdy
R3 JR3 |37 - \ ¢(0) JR3 |$ - y\
2
/ / ( dxdy—i—/ / ( 9"y )dxdy
B§,(0)) Bry(0) |ﬂf*y| B2, (0) R/Q(o) \:v —y|
_ _ 2P (x)
<G ol + [ A we | [ 4o ) dy
¢.(0) B, ,,(0)NB1(y) |$ - y|

. ()
+ / 272()6%(y) / £ e ) dy
B, (0) B;,,,(0)NBs () [T~ Yl

<CoR™|¢|* + Croe™ F||¢|* = or(1)[|0]*.

Hence choosing R large enough, the following holds:

Ty > Cu|]” + or(1)[|¢]1*. (3.17)
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Similarly, we continue in the same way as for T,

3

_ 227 @)1 ()22 (y)da(y)
2p /R . /]R . dzdy

|z — y

o 22 ()22 (1)1 (y)p2(y) .
2 —1) _/Rs /Rs |z —yl ey

>Cip /R s (902 + 262) di + or(D]19]

Ty =2(L. cn, o) = 2 /R (V61 - Vo + (A + V()b - ) da

(3.18)

here (3.4) is used in the last inequality.
Combining (3.15), (3.17) and (3.18), (3.2) holds. By Lemma 2.2, we have

[{Lecw, w)| > Cllw|®

for all w € (T

% (Z-))*. This completes the proof. O

3.2. Lyapunov—Schmidt reduction.
In this subsection, we prove the following equation
P.cDfe(ze+w)=0 (3.19)

has a unique solution w = w. ¢ € (T.,(Z:))* and we¢ is C* in &
Expand D f.(z¢ +w) as follows:

D fe(ze +w) = Dfe(z¢) + D* fe(z¢) (w) + R(z¢, w),

where
R(ze,w) : H'RY) — R

® — R(z¢, w)pdx.
R3
Here R(z¢,w) is a high order nonlocal term given by

R(ze,w) = — (|~ |26 + wl?) 26 + w2 (2 + w) + (Je| ™+ 22) 22
+ (0= )27 * 2D)2f 2w+ plla] 7 (2 w)) 2
Thus (3.19) becomes
Leew+ PeeDfo(z¢) + P R(ze,w) =0, w € (T.,(Z:))" . (3.20)
Since L. ¢ is invertible, we can rewrite (3.20) as
w= —E;% (P eDfe(2ze) + PeeR(2ze,w)) := Ng g(w). (3.21)
We will show that the operator N, ¢ is a contraction on Bg, (0).
Lemma 3.1. For any wi, we € B1(0) C H(R?),
IR (ze, wa) = Rlzg, wi)l| < C (wnl*P~ + w2 |*72) [lwa — wil, (3.22)

where C > 0 is a constant independent on wi and ws.
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Proof. A simple computation shows that for any ¢ € H'(R3),

IR(z¢, w2) (@) — R(ze, w1) ()]
S/ |(Jz] 71 % |ze 4+ wa|P)|ze + walP ™2 (2¢ + wa) — (Jz] 7" |2e + w1 |”)|z¢
RS
+ w1 P72 (2¢ 4+ w1) || p|dw

+0=1) [ (ol s+ 2D s = willglda
[ ol (G = )l
< [ Dol s e wal? sl ] + a2+ )l
+ /RS(\mrl * | ze + wr|P) ||z§ + w2|p72(z§ + wa) — |z + w1|p72(z5 + w1)| lo|dx

Hp=1) [ (el 2D wa—wnllgldo-tp [ (ol ¢ (2 oa—un et el
R R
<C (JwrlP72 + [lwa[*72) lwz — wi|[lll-
Here we use the Lemma 2.4 and Mean Value Theorem. Thus we finish the proof of
(3.22). O

Lemma 3.2. There exists a small ball Bs,(0) C (T..(Z))* such that N.¢ maps
Bs, (0) into itself for 0 < e < &g and || < d. Moreover, for all wy, we € Bs,(0),

Ve ¢ (w2) = Neg(wi)ll < C (Jlwa |72 + |wa]|*P72) [lwa — wr ],

where C' > 0 is a constant independent on w1 and wa. In particular, N.¢ is a
contraction map on Bs,(0).

Proof. We have |R(z¢,w)| = O(J|w||?’~1) by Lemma 3.1. Lemma 2.3 and (3.21)
yield that:

Il < CIDLLON +0 (fulP™) < € (ETV(ED)+ (1) +O (ol
3.23
which implies that N. ¢ is a map from Bs, (0) to Bs,(0) for 0 < & < g0, [£| < § and
dg > 0 sufficiently small.
From Lemma 3.1, we have that

Nz ¢ (w2) = Nee(w)|| < 1£2¢ (R(ze,w1) — Rlze, w2)) ||
< Of|R(ze, w1) — R(ze, w2

< C (wi P72 + flwa P72 [lwa — wi.

This completes the proof. O

Proposition 3.2. For 0 < ¢ < gg and |£] < 5, there exists a unique w = Wz ¢ €
(T (Ze))* of class C* with respect to & satisfying D f-(z¢ +we¢) € T..(Z). More-
over, the functional ®.(§) := f-(ze+w.¢) has the same regularity as w and satisfies:

VCI)E(&J) =0= Dfs(zfo + w&fo) =0.
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Proof. Since N. ¢ is a contraction map on Bg, (0) for 0 < ¢ < g and |£| < J, the
existence of a fixed point w = w, ¢ follows from the contraction mapping principle
and hence w, ¢ is a solution of (3.21). Furthermore, for fixed ¢ with [e| < &g, we
apply the Implicit function theorem to

H.(§,w) :=w— Neg(w) =0, we (T..(Z))"
Setting w = we ¢, we find
Dy He (& w)[v] = v — L ¢ Peg [I (2¢ +w) — h'(2¢)] v,

where h/(z¢ + w)v is defined by

Wiee +wo= [ [p (ol o+ 0P ™) fze + wl?
RB
+(p-1) (|x\_1 * |zg + w\p) |ze + w|p_2]<pvdx

for p € H*(R?). In fact, D, H. is a Fredholm map of index zero.
Consider the equation
DwH€(§7 w)[v} =0,

which is equivalent to
v =L P [l (2 +w) — h'(2)] v, (3.24)

Since w(e) — 0 as ¢ — 0, it follows that for e sufficiently small, there exists a
unique trivial solution such that (3.24) holds. Thus the only fixed point w. ¢ of
N ¢ is smooth with respect to {. According to the argument in [1], then the critical
points of @ (&) give rise to critical points of f. O
Finally, we show that ®. is a perturbation of some functions of V.
By the definition of ®.(&), we see that

1 1
B.(6) =g e+ woel + 5 [ Vi) + we e
1

2 ]R3(|x|_l * |2¢ + we g|”)|ze + we g|Pda.

Since z¢ is the solution of (2.3), we have that

el = <Vi(ee) [ tdat [ (lal ™ x zep)lzePa

and
(sevw) = V(&) [ sewdoot [ (ol o)z i,
R3 R3

Then it is easy to get that

1
06 =3 [ (Vo) = Vi) stda+ [ (Vier) = Viet) sewecds
1 1
tgluelP+5 [ Vet [ (ol sl v eda

1 B 1 _
+§/ (|| 1*\Zs|p)\25\pd$—j/ (I 7" |2e 4+ we e|”)|ze + we ¢[Pda.
R3 P Jr3
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For convenience, let

K6 = (555 ) [ ol xlze e

r.(¢) = 5 /R3 (V(ex) =V (€)) zgdx + /R3 (V(ex) — V(€§)) zewe edx

and

1 1 _ _
V() =g lueelP+ 5 [ Voot [ (al ez v ds
1 _ 1 _
tg0 [ (el el lzelda = 5 | (al™ s e vl + e

Using (2.5), then we have

Ke©) = (5= 5) [ (ol x e

2p
(1 0(e€)PU(B(EE) & — )(a() V(B - €) |
(2 21?)/]1@3/1&3 |z =y ey
(LN e [ UP@UG)
~(5-3) [ et eeo [ FEE g

_ (; - 1p) Co (1+ V(=) /3) 77

where Co = [5s [gs %dfc@.

Before we compute ®. (), we will give the estimate of Vew.

Lemma 3.3. For 0 < e < ¢ and |¢| < 6, the following holds:
[Vew| < C(e|VV (€6)] + O(e?)),

where C > 0 is a constant depending on § and .

Proof. For any ¢ € (T..(Z.))*, (3.20) gives that

<Ls,§w7<p> + <Df€(Z§)790> + <R(Z£aw)>90> =0.

From the definition of L. ¢ and DF; ¢(z¢) = 0, we have
£ y)w
0 =(w,p) + / V(ex)wpds — (p— 1) / / el ()e(y) dvdy
R3 re Jrs

Ix -yl
—1
_p/ / x)zf " (y)e(y) dedy
R3 JR3 \x—y|

+ [ (Ven) = Viet) sepdo + [ Rl w)ode
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which implies that

0=(0q e+ [ (ex>ag wetr ) [ L & _8;|w< D,
—pp—1) /RS /RB 22 (@)D, 2 (w |:z:) : (y)w(y)w(y)dxdy
—(p-1)p- Q/W/Wzs |js_2;|() W2 4o
—p(p—1) /RS/RB 28 ()0, st)(y)zg (y)w(y)dxdy
—p(p—1) / J / % Zﬁ: _(y)agizaw(y) dody
/M / 2 6&1|x)y|5 ) iy — e 001 (0 / zeplo

N /R (V(ew) = V(e8)) g zeipda + O, < /]R Bz, “’)“de> '

Using the definition of L. ¢ again, we obtain that

(Lo cOe.w, ) _ 1) /Rs /RS 2 (2)0, Zs|x>_ y‘ (y)w(y)w(y)dxdy
p—1)(p— Q/RS/RB% )z |f&_2ys|() (y)w(y)dxdy
1) /Rs /RJ 2 (2) 0, % Ix)_;)zg 1(y)<p(y)dwdy
Fpp—1) /W /RS i Z\i _(y|)3s 2y )<p(y)dxdy

P /R Feeds = %, (/R Rz, wwdx)
- /R (V(ex) — V(€€)) ¢, zepda.

(3.25)
We estimate the right side of (3.25) term by term.
Lemma 2.4 and Holder inequality yield that
% ()0, ze (y)w(y)e(y)
[ [ drdy| < ], (3.26)
R3 JR3 |z —yl
2 ()0, 2¢(2) 20 (Y)w(y)e(y)
[ - dody| < Clulllel] (327
R3 JR3 lz -yl
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and

/ / 272 (@) O, 2 (w)w(x )Z?‘l(y)w(y)dxdy
Rr3 JR3

Ix*yl

/ / 2 (@)w(@)2f " (1) 2 (v)p(y) ddy
RS R3

lz -yl

(3.28)

< Cllwlllill-

Similarly, we obtain that

‘3& ( / R(z, w)wdw) ‘

‘/ |x\ Ly 71851.25)} 2571 +(-1 [|ac|_1 * zé’} 2572851.2'5) pdx
L (=1 [l (7 062¢) | 7w (0= 1) [l 2] 00
+(p-1p-2) {|ac|_1 * zg} z§_3w8£izg)gada?

L (el (27 0ew) | o7t pto = 1) [Jal o (o 2w ze) | o2

+pp—1) {|3v|_1 * (zg’*lw)} zgfzagiq)cpdx

+

+

] [ [lal e (e w7 B et )] e + s
R3

+

/]Rg (p =) [l 7" * 2 + wl] |z¢ + w|P 720, (2¢ + w) pdz

<C|lw|*P?[10¢, w] [l -

(3.29)
By Holder inequality, we have
€ (06, V) (£€) /RS zepdr| < Ce[VV(e6)] [l¢ll (3.30)
and
[, (V) = V(e esepds) < C WV + ) Il (331
Combining (3.26), (3.27), (3.28), (3.29), (3.30) and (3.31), we deduce that
|10, wl| < C (e|[VV (e€)] + 7).,
where C' > 0 is a constant depending on & and ey. We finish the proof. O

Now we are in the position to eatimate I'.(£) and ¥ (&).
Lemma 3.4. For 0 < e < ¢ and |¢| < 8, the following hold:

IP(©) + ()] < C (e|VV ()| +7) (3.32)
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and
VI (§)] + VP (§)] < Ce?. (3.33)

Proof. Firstly, we compute (3.32). By Lemma 2.3 and Lemma 2.4,

L) <C {6 \VV(€§)|/ |7 — €lze (2¢ + we ¢)dw + 62/ |z — €[ z¢ (2¢ + we ¢ )da
R3 R3
< C (e|VV(eg)| +€?)

and

1 -
[T (&)] < Cllweell? + Cllwe ¢l — % /]Rg (2l = [zel?) (126 + wegl” = |2¢]”) da
1

2 e
<C(e|VV(eg)|+€?).

(|27 # [ze + weel?) (2 + we el — |2¢]?) da

Thus the proof of (3.32) is complete. Next, we estimate (3.33).
By Taylor expansion of V', we have

/ (V(ex) — V(€€)) z¢dw

R3

— [ YV @ -ddo+2 [ DVt be(o - €)lo — o - edda
R3 R3

:5/ VV(£€) - yz?dy + 52/ D?V (€ + Oe(x — &)z — &, — §]z§daz
R3 R3

262 D2V(5€+95(x_f))[$_§7$—5]zgd$a
R3

where 0 € (0,1). Because V satisfies (V4), then it holds that

‘a& ( /R (V(er) - V(=€) zgdx>

<e?fog ([ DV (et +0ete - )l - 60 - g2
RS

(3.34)
< Ce2.

By Holder inequality, we easily calculate

o6, ([ (V(e0) - Vet sewca )|
<AV [ leveldo+ [ Vi) = V()] 106w eldo

+ [ V(o) = Vi) 20k weelda
R3
1/2
2
<CEATV (el + ( [ 1V(en) = VO 6e) el

1/2
# ([ ) - Vi P lsPas)  10guel.
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It follows that by Lemma 2.3 and Lemma 3.3

‘V (/ [V(ex) — V()] Zg’wdx)‘ < Ot (e + |VV () (Jweel| + [|[Vwee]) < Ce2.
R3

(3.35)
(3.34) and (3.35) imply that

[VL-(§)| < Ce. (3.36)
To finish the proof of this lemma, we are going to estimate |V, (£)|. Compute
e, (Ve (8)) =(we ¢, Og we ) + /R3 V(ex)we ¢ O, we ed
0 [ el (el 0] el e
F0=1) [ (ol lol?) e 06 v gda
+ [l e 10, o+ e)da

= [ (7 ¢ g+ e+ 00, e )
=1 + I, + I5.

For Iy, we have

‘<w57‘578§iw575> + /3 V(ex)we ¢0¢, we edx
-

< / V(c2) 0, we ¢ |we |z + |(w, O, we c)]
RS
<Cl|we ¢ ]| 0, we ¢]-

For Iy and I3, Lemma 2.4 gives that

[I2] < ’p/Rg [l 7" * (2P~ ¢, 2¢)] |2¢ [P~  we ed

+ ‘(p —1) /R3 (|2l 7" # [2¢P) |2¢ [P 20, zewe e da

< COllwe ¢

and

|13 S/Rg [l 7 % (Jze + we el — |2¢[P)] |2 + we e

P10, (2¢ + we ¢ )da

- /]R3 (2] 7" J2¢lP) (126 + weelP ™" — [2[P7") Og, (26 + we,e)da
SOlJwe ¢l + Cllwe ¢ |10, we ¢ -
Putting these estimates together, we conclude that
[V (€)] < Cllwe el + Cllwe |0, we el < C*. (3.37)
Combining (3.36) and (3.37), we finish the proof. O
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3.3. The proof of Theorem 1.1.

Let M C R? and Mj be a non-empty set and its §-neighbourhood, respectively. We
denote by

I(M) :=1+4sup{k € N|FA;,Ag,- -+ , Ay € H*(M)\1,A; UAy U---UA, # 0}

the cup length of M, where H*(M) is the Alexander cohomology of M with real
coeflicients. B
Proof of Theorem 1.1. Choose R > 0 sufficiently large such that M C Bg(0),

where M is a non-degenerate critical manifold of (% — i) Co(L+V(e€)/N) =yl

Let

1 1 5—p
16 = (5 - 35) o1+ VEONT and g(6) = Bele/e)
Choose a d-neighbourhood Ms of M such that Ms C Bz(0), so the set of critical
points of V in M is M. Since

8.6 = (5 - 5 ) Co 1+ VEONTD + 1.0 + .06

and Lemma 3.4, then the function ®_(-/¢) is converges to f(-) in C1(Ms) as e — 0.
Thus there exist at least [(M) critical points of g for e sufficiently small.

Assume &, € M; satisfying that £ /e is a critical point of ®.. Then Proposition
3.2 yields that

&
Ue g, (@) 1= 2, (x - ) T

is a critical point of f.. Hence

wee. (2) =2 (o~ %)

is a solution of (1.3). When & — 0, & converges to some point &, € Mj. In conclu-
sion, we have that & is a critical point of V' by Lemma 3.4. Note that 4 is arbitrary,
so & € M. Therefore, uc ¢, (f) concentrates to a point of M. This completes the

proof. O
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