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SEMICLASSICAL SOLUTIONS OF THE
CHOQUARD EQUATIONS IN R3

Ke Jin1 and Zifei Shen1,†

Abstract We study the nonlocal equation:

−ε2∆u+ λu+ V (x)u = ε−2(|x|−1 ∗ |u|p)|u|p−2u in R3,

where ε > 0 is a small parameter, λ > 0, 0 < p < ∞ are positive constants
and u is a real-valued measurable function. By Lyapunov–Schmidt reduction,
we will prove the existence of multiple semiclassical solutions.
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duction.
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1. Introduction and main results
The Choquard equation

−∆u+ u = (I2 ∗ u2)u in Rn (1.1)

is also called the nonlinear Hartree or Schrödinger–Newton equation, where I2 is the
Newton potential. (1.1) comes from several physical models. For example, it is used
to describe the quantum mechanics of a polaron at rest by Pekar [19] and model an
electron trapped in its own hole, in a certain approximation to Hartree–Fock theory
of a plasma [12]. Later, Penrose proposed (1.1) as a model for the self-gravitational
collapse of a quantum mechanical wave function [20]. Wei and Winter [24], Secchi
[22] and Chen [4] constructed multi-peak solution by perturbation method. The
more results about Hartree equations can be seen [11, 16, 28] and the references
therein.

Equation (1.1) can be considered as a special case of the generalized Choquard
equation

−∆u+ λu+ V (x)u = (Iα ∗ |u|p)|u|p−2u in Rn, (1.2)

where p > 1 and Iα denotes the Riesz potential [21] defined by

Iα(x) =
Γ
(
n−α
2

)
Γ
(
α
2

)
πn/22α|x|n−α
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and Γ is the Gamma function. When V (x) = 0 and λ = 1, Moroz and Van
Schaftingen [17] stated two conclusions: one is the existence of a positive ground-
state solution which is radially symmetric and monotone decaying about some points
for n−2

n+α < 1
p < n

n+α ; the other is regularity, positivity and asymptotic properties
at infinity of the groundstates. They also showed in [18] that (1.2) has a family
of solutions concentrating to the local minimum of V under some conditions by
variational methods and a novel nonlocal penalization technique. When λ = 1
and V (x) = − µ

ν2+|x|2 for µ, ν > 0, Cassani et al. [3] proved that there exist two
thresholds µν and µν such that if µ < µν , then (1.2) has no ground state solu-
tion; if µν < µ < µν , then equation admits a positive ground state solution; if
µ > max{µν , N2(N − 2)/4(N + 1)}, a sign changing ground state solution exists
with n ≥ 4 or non-resonant case. In the case of λ = V (x) = 0 and p = 2∗µ, where
2∗µ = 2n−µ

n−2 is the upper critical exponent on account of the Hardy-Littlewood-
Sobolev inequality, under the condition that using moving plane method, Du and
Yang [8] got the symmetry and uniqueness of positive solutions, the nondegeneracy
of the unique solutions for (1.2) are proved in [8] and [9] when µ → n and µ → 0
respectively. We refer reader to [5–7, 10, 13, 26, 27] and the references therein for
more details.

Motivated by [4,24] , we are interested in the existence of multiple semiclassical
solutions for the following Choquard equation with potential V :

− ε2∆u+ λu+ V (x)u = ε−2(|x|−1 ∗ |u|p)|u|p−2u in R3, (1.3)

where ε > 0 is a small parameter, ∆ =
∑3

i=1 ∂xixi denotes the Laplace operator,
p > 2 and the potential V satisfies:
(V1) V ∈ C3

b (R3), infx∈R3(λ+ V (x)) > 0, where

C3
b (R3) :={V ∈ C3(R3)|DJV is bounded in R3 for all

multi-index J such that |J | ≤ 3}.

Our main result in this paper can be stated as follows.

Theorem 1.1. Suppose that V satisfies (V1) and has a nondegenerate smooth com-
pact critical manifold M . Then (1.3) has at least l(M) solutions concentrating near
points of M for 2 < p < 2 + δ and ε > 0 sufficiently small, where 0 < δ ≤ 1

3 and
l(M) denotes the cup length of M .

The main idea in proving Theorems 1.1 is by Lyapunov–Schmidt reduction,
which has been widely used to deal with the problem of interior peak solutions for
Schrödinger equations. See for example [2, 14, 15, 23] and the references therein.
However, the nonlocal term in the equation (1.3) causes some technique difficulties
to us. Thus we extend the classical Lyapunov–Schmidt reduction and make careful
estimates to overcome some problems.

The paper is organized as follows. In Section 2, we state some useful lemmas
and give the proof of Theorem 1.1 in Section 3 by Lyapunov–Schmidt reduction
method.

2. Notations and preliminaries
In this section, we present some useful notations and lemmas which will be of
importance later.
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First we need to introduce some notations. Let x = εx, (1.3) becomes

−∆u+ λu+ V (εx)u = (|x|−1 ∗ |u|p)|u|p−2u in R3, (2.1)

which will be considered as a perturbation of

−∆u+ λu = (|x|−1 ∗ |u|p)|u|p−2u in R3. (2.2)

Let H1(R3) be a Hilbert space with the inner produce

⟨u, v⟩ =
∫
R3

(∇u · ∇v + λuv)dx

and the corresponding norm

∥u∥2 =

∫
R3

(
|∇u|2 + λ|u|2

)
dx.

The energy functional of (2.1) is defined by

fε(u) =
1

2

∫
R3

(|∇u|2 + λu2)dx+
1

2

∫
R3

V (εx)u2dx− 1

2p

∫
R3

(|x|−1 ∗ |u|p)|u|pdx

:= f0(u) +
1

2

∫
R3

V (εx)u2dx

for any u ∈ H1(R3). fε(u) is well defined by the Hardy–Littlewood–Sobolev in-
equality. We shall verify that there exist solutions of (2.1) near a solution of

−∆u+ λu+ V (εξ)u = (|x|−1 ∗ |u|p)|u|p−2u in R3 (2.3)

with some appropriate ξ in R3. Clearly, the solutions of (2.3) are critical points of

Fε,ξ(u) = f0(u) +
1

2
V (εξ)

∫
R3

u2dx

for any u ∈ H1(R3). Then we have

fε(u) = Fε,ξ(u) +
1

2

∫
R3

(V (εx)− V (εξ))u2dx. (2.4)

We state the following lemma to describe the properties of solutions of (2.2) for
2 < p < 2 + δ, where δ ∈ (0, δ∗), δ∗ ∈ (0, 13 ).

Lemma 2.1. (i). The problem (2.2) has a unique ground state solution, denoted
by U ;

(ii). U is radially symmetric and strictly decreasing: U(y) = U(|y|) and U
′
< 0

for r > 0, r = |y|;
(iii). The asymptotic behavior of U :

U(r) = A1(1 +O(1/r))r−1e−r, U
′
(r) = −A1(1 +O(1/r))r−1e−r as r → ∞,

where A1 > 0 is a constant;
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(iv). U is nondegenerate, to be more precise,

ker L = span
{
∂U

∂x1
,
∂U

∂x2
,
∂U

∂x3

}
,

where L is the linearized operator at U given by

Lφ := −∆φ+ λφ− (p− 1)(|x|−1 ∗ Up)Up−2φ− p(|x|−1 ∗ (Up−1φ))Up−1

for any φ ∈ H2(R3).

Proof. See [25, Theorem 1.2] and [25, Theorem 1.3].
Let β = β(εξ) = (1 + V (εξ)/λ)

1/2 and α = α(εξ) = (1 + V (εξ)/λ)
1/(p−1), then

αU(βx) is a solution of (2.3). Let

zε,ξ := α(εξ)U(β(εξ)x) (2.5)

and Zε := {zε,ξ(x− ξ)|ξ ∈ R3}. For convenience, we write zξ = zε,ξ(x− ξ).

Lemma 2.2 (see [4, Lemma 5.1]). For all ξ ∈ R3, it holds that:

∂ξi [zε,ξ(x− ξ)] = −∂xi
[zε,ξ(x− ξ)] +O(ε). (2.6)

Lemma 2.3 (see [4, Lemma 5.2]). For all ξ ∈ R3 and ε > 0 sufficiently small, the
following holds:

∥Dfε(zξ)∥ ≤ C
(
ε|∇V (εξ)|+ ε2

)
,

where C > 0 is a constant independent on ξ and ε.

Lemma 2.4. For all φj ∈ H1(R3) (j = 1, 2, 3, 4), the following hold:∣∣∣∣∣
∫
R3

∫
R3

φp−1
1 (x)φ2(x)φ

p−1
3 (y)φ4(y)

|x− y|
dxdy

∣∣∣∣∣ ≤ C∥φ1∥p−1∥φ2∥∥φ3∥p−1∥φ4∥ (2.7)

and ∣∣∣∣∣
∫
R3

∫
R3

φp
1(x)φ

p−2
2 (y)φ3(y)φ4(y)

|x− y|
dxdy

∣∣∣∣∣ ≤ C∥φ1∥p∥φ2∥p−2∥φ3∥∥φ4∥, (2.8)

where C > 0 is a constant independent on φj.

Proof. By the Hardy–Littlewood–Sobolev inequality and Hölder inequality, we
have ∣∣∣∣∣

∫
R3

∫
R3

φp−1
1 (x)φ2(x)φ

p−1
3 (y)φ4(y)

|x− y|
dxdy

∣∣∣∣∣
≤ C∥φp−1

1 φ2∥
L

6
5 (R3)

∥φp−1
3 φ4∥

L
6
5 (R3)

≤ C∥φ1∥p−1

L
12
5 (R3)

∥φ2∥
L

12
5(3−p) (R3)

∥φ3∥p−1

L
12
5 (R3)

∥φ4∥
L

12
5(3−p) (R3)

,∣∣∣∣∣
∫
R3

∫
R3

φp
1(x)φ

p−2
2 (y)φ3(y)φ4(y)

|x− y|
dxdy

∣∣∣∣∣
≤ C∥φ1∥p

L
12
5 (R3)

∥φp−2
2 φ3φ4∥

L
12

20−5p (R3)

≤ C∥φ1∥p
L

12
5 (R3)

∥φ2∥p−2

L
12
5 (R3)

∥φ3∥
L

12
5(3−p) (R3)

∥φ4∥
L

12
5(3−p) (R3)

.
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Since 2 < p < 2 + δ, then the Sobolev imbedding gives that

∥φj∥
L

12
5 (R3)

≤ C∥φj∥, ∥φj∥
L

12
5(3−p) (R3)

≤ C∥φj∥, j = 1, 2, 3, 4.

Thus we finish the proof.

3. The proof of Theorem 1.1
In this section, we construct multiple semi-classical solutions to (1.3) and prove

Theorem 1.1.

3.1. Invertibility.
Let D2fε(zξ) be the Hessian of fε at zξ and Tzξ(Zε) be the tangent space of Zε at
zξ. Define Lε,ξ : (Tzξ(Zε))

⊥ → H1(R3) by

⟨Lε,ξu,w⟩ = D2fε(zξ)(u,w), u ∈ (Tzξ(Zε))
⊥, w ∈ H1(R3).

Let Pε,ξ : H1(R3) → (Tzξ(Zε))
⊥ be the orthogonal projection. We define

Lε,ξ = Pε,ξLε,ξ : (Tzξ(Zε))
⊥ → (Tzξ(Zε))

⊥.

As a preparation, the following proposition gives the invertibility of Lε,ξ.

Proposition 3.1. For any fixed δ̄ > 0, there exist C > 0 and ε0 > 0 sufficiently
small such that for any ε ∈ (0, ε0) and |ξ| ≤ δ̄, the map Lε,ξ is both injective and
surjective. Moreover,

|⟨Lε,ξw,w⟩| ≥ C∥w∥2

for all w ∈ (Tzξ(Zε))
⊥.

Proof. zξ is a mountain pass critical point of Fε,ξ, then for any fixed ε1 > 0 small,
there exists a constant c1 > 0 such that for any ε ∈ (0, ε1) and |ξ| ≤ δ̄,

D2Fε,ξ(zξ)(zξ, zξ) < −c1 < 0.

By (2.4) and Lemma 2.3, we have

⟨Lε,ξzξ, zξ⟩ = D2Fε,ξ(zξ)(zξ, zξ) +

∫
R3

(V (εx)− V (εξ))z2ξdx

≤ −c1 + c2
(
ε|∇V (εξ)|+ ε2

)
,

which implies that
⟨Lε,ξzξ, zξ⟩ ≤ −C1 < 0, (3.1)

where C1 > 0 is a constant depending only on δ̄ and ε0.
Let

Kε,ξ = span {zξ, ∂x1
zξ, ∂x2

zξ, ∂x3
zξ} .

Next we show that for any ϕ ∈ K⊥
ε,ξ, the following holds:

⟨Lε,ξϕ, ϕ⟩ ≥ C2∥ϕ∥2, (3.2)
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where C2 > 0 is a constant depending only on δ̄ and ε0.
From the definition of Lε,ξ, we obtain that

⟨Lε,ξϕ, ϕ⟩ = D2Fε,ξ(zξ)(ϕ, ϕ) +

∫
R3

(V (εx)− V (εξ))ϕ2dx

for any ϕ ∈ K⊥
ε,ξ. Since zξ is a mountain pass critical point of Fε,ξ, then

D2Fε,ξ(zξ)(ϕ, ϕ) ≥ C3∥ϕ∥2, ∀ϕ ∈ K⊥
ε,ξ. (3.3)

Let η1 : R3 → R be a radial smooth cut-off function such that for any R > 0
sufficiently large,

η1(x)=1 for |x|≤R, η1(x)=0 for |x|≥2R and |∇η1(x)|≤
2

R
for R≤|x|≤2R.

Let η2 = 1− η1 and ϕi = ηiϕ (i = 1, 2). Then

∥ϕ∥2 = ∥ϕ1∥2 + ∥ϕ2∥2 + 2

∫
R3

(∇ϕ1 · ∇ϕ2 + λϕ1ϕ2) dx

= ∥ϕ1∥2 + ∥ϕ2∥2 + 2

∫
R3

η1η2
(
|∇ϕ|2 + λϕ2

)
dx+ oR(1)∥ϕ∥2

(3.4)

and

⟨Lε,ξϕ, ϕ⟩ = ⟨Lε,ξϕ1, ϕ1⟩+ ⟨Lε,ξϕ2, ϕ2⟩+ 2⟨Lε,ξϕ1, ϕ2⟩ := T1 + T2 + T3. (3.5)

We estimate (3.5) term by term. For T1, using the definition of Lε,ξ again, we have

T1 = ⟨Lε,ξϕ1, ϕ1⟩ = D2Fε,ξ(zξ)(ϕ1, ϕ1) +

∫
R3

(V (εx)− V (εξ))ϕ21dx.

Splitting ϕ1 = ϕ̄1 + ψ, where ϕ̄1 ∈ K⊥
ε,ξ and ψ ∈ Kε,ξ. Hence

ψ = ⟨ϕ1, zξ⟩∥zξ∥−2zξ +

3∑
i=1

⟨ϕ1, ∂xizξ⟩∥∂xizξ∥−2∂xizξ

and

D2Fε,ξ(zξ)(ϕ1, ϕ1) = D2Fε,ξ(zξ)(ϕ̄1, ϕ̄1) +D2Fε,ξ(zξ)(ψ,ψ) + 2D2Fε,ξ(zξ)(ϕ̄1, ψ).

(3.3) gives that
D2Fε,ξ(zξ)(ϕ̄1, ϕ̄1) ≥ C4∥ϕ̄1∥2. (3.6)

Since ϕ ∈ K⊥
ε,ξ, the following holds:

⟨ϕ1, zξ⟩ = ⟨(1− η2)ϕ, zξ⟩ = −⟨η2ϕ, zξ⟩

= −λ
∫
R3

η2(x)ϕ(x)zξ(x)dx−
∫
R3

∇(η2ϕ) · ∇zξdx

= −λ
∫
R3\BR(0)

η2(x)ϕ(x)zξ(x)dx−
∫
R3\BR(0)

η2∇ϕ · ∇zξdx

−
∫
B2R(0)\BR(0)

ϕ∇η2 · ∇zξdx

≤ C

R
e−R∥ϕ∥,
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here we use the Hölder inequality and Lemma 2.1. This implies that as R→ ∞,

⟨ϕ1, zξ⟩ = oR(1)∥ϕ∥.

Similarly, it is easy to see that

⟨ϕ1, ∂xizξ⟩ = oR(1)∥ϕ∥.

The two formulas in the above show that

∥ψ∥ = oR(1)∥ϕ∥. (3.7)

By simple calculation, we deduce that

D2Fε,ξ(zξ)(ψ,ψ)=∥ψ∥2 + V (εξ)

∫
R3

ψ2dx−p
∫
R3

∫
R3

zp−1
ξ (x)ψ(x)zp−1

ξ (y)ψ(y)

|x− y|
dxdy

− (p− 1)

∫
R3

∫
R3

zpξ (x)z
p−2
ξ (y)ψ2(y)

|x− y|
dxdy.

(3.8)
Using (2.7) and (2.8), we have∣∣∣∣∣

∫
R3

∫
R3

zp−1
ξ (x)ψ(x)zp−1

ξ (y)ψ(y)

|x− y|
dxdy

∣∣∣∣∣ ≤ C∥ψ∥2 (3.9)

and ∣∣∣∣∣
∫
R3

∫
R3

zpξ (x)z
p−2
ξ (y)ψ2(y)

|x− y|
dxdy

∣∣∣∣∣ ≤ C∥ψ∥2. (3.10)

Combinging (3.7)-(3.10), we get

D2Fε,ξ(zξ)(ψ,ψ) = oR(1)∥ϕ∥2. (3.11)

A same estimate shows that

D2Fε,ξ(zξ)(ϕ̄1, ψ)

=⟨ϕ̄1, ψ⟩+ V (εξ)

∫
R3

ϕ̄1ψdx− p

∫
R3

∫
R3

zp−1
ξ (x)ϕ̄1(x)z

p−1
ξ (y)ψ(y)

|x− y|
dxdy

− (p− 1)

∫
R3

∫
R3

zpξ (x)z
p−2
ξ (y)ψ(y)ϕ̄1(y)

|x− y|
dxdy

=oR(1)∥ϕ̄1∥∥ϕ∥ = oR(1)∥ϕ∥2.

(3.12)

From (3.6), (3.11) and (3.12), it holds that

D2Fε,ξ(zξ)(ϕ1, ϕ1) ≥ C∥ϕ1∥2 + oR(1)∥ϕ∥2. (3.13)

Recalling that DJV is bounded and η1 = 0 for |x| ≥ 2R, by Taylor expansion, we
have that for |ξ| ≤ δ̄,∫

R3

|V (εx)− V (εξ)|ϕ21dx ≤C5ε

∫
B2R(0)

|x− ξ|η21(x)ϕ2(x)dx

≤C6εR

∫
B2R(0)

η21(x)ϕ
2(x)dx ≤ C6εR∥ϕ∥2.

(3.14)
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Choosing R = ε−1/2, then (3.13) and (3.14) imply that there exists ε0 > 0 suffi-
ciently small such that for any ε ≤ ε0,

T1 ≥ C∥ϕ1∥2 + oR(1)∥ϕ∥2. (3.15)

Now, we estimate T2. According to the definition of T2, we have

T2 = ⟨Lε,ξϕ2, ϕ2⟩ =
∫
R3

(
|∇ϕ2|2 + (λ+ V (εx))ϕ22

)
dx

− p

∫
R3

∫
R3

zp−1
ξ (x)ϕ2(x)z

p−1
ξ (y)ϕ2(y)

|x− y|
dxdy

− (p− 1)

∫
R3

∫
R3

zpξ (x)z
p−2
ξ (y)ϕ22(y)

|x− y|
dxdy.

(3.16)

Since infx∈R3(λ+ V (x)) > 0, one finds that for |ξ| ≤ δ̄ and ε > 0 sufficiently small,∫
R3

(
|∇ϕ2|2 + (λ+ V (εx))ϕ22

)
dx ≥ C7∥ϕ2∥2.

By Lemma 2.4, Hölder inequality and η2 = 0 in BR(0), we obtain∣∣∣∣∣
∫
R3

∫
R3

zp−1
ξ (x)ϕ2(x)z

p−1
ξ (y)ϕ2(y)

|x− y|
dxdy

∣∣∣∣∣
≤C8∥zp−1

ξ ϕ2∥2L6/5(R3) ≤ C8∥zp−1
ξ η2∥2L3(R3\BR(0))∥ϕ∥

2

≤C8R
−1e−R∥ϕ∥2 ≤ oR(1)∥ϕ∥2.

The last term in (3.16) can be estimated as follows:∣∣∣∣∣
∫
R3

∫
R3

zpξ (x)z
p−2
ξ (y)ϕ22(y)

|x− y|
dxdy

∣∣∣∣∣ ≤
∫
Bc

R(0)

∫
R3

zpξ (x)z
p−2
ξ (y)ϕ2(y)

|x− y|
dxdy

=

∫
Bc

R(0)

∫
BR/2(0)

zpξ (x)z
p−2
ξ (y)ϕ2(y)

|x− y|
dxdy+

∫
Bc

R(0)

∫
Bc

R/2
(0)

zpξ (x)z
p−2
ξ (y)ϕ2(y)

|x− y|
dxdy

≤C9R
−1∥ϕ∥2 +

∫
Bc

R(0)

zp−2
ξ (y)ϕ2(y)

(∫
Bc

R/2
(0)∩B1(y)

zpξ (x)

|x− y|
dx

)
dy

+

∫
Bc

R(0)

zp−2
ξ (y)ϕ2(y)

(∫
Bc

R/2
(0)∩Bc

1(y)

zpξ (x)

|x− y|
dx

)
dy

≤C9R
−1∥ϕ∥2 + C10e

−R∥ϕ∥2 = oR(1)∥ϕ∥2.

Hence choosing R large enough, the following holds:

T2 ≥ C11∥ϕ∥2 + oR(1)∥ϕ∥2. (3.17)
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Similarly, we continue in the same way as for T3,

T3 =2⟨Lε,ξϕ1, ϕ2⟩ = 2

∫
R3

(∇ϕ1 · ∇ϕ2 + (λ+ V (εx))ϕ1 · ϕ2) dx

− 2p

∫
R3

∫
R3

zp−1
ξ (x)ϕ1(x)z

p−1
ξ (y)ϕ2(y)

|x− y|
dxdy

− 2(p− 1)

∫
R3

∫
R3

zpξ (x)z
p−2
ξ (y)ϕ1(y)ϕ2(y)

|x− y|
dxdy

≥C12

∫
R3

η1η2
(
|∇ϕ|2 + λϕ2

)
dx+ oR(1)∥ϕ∥2,

(3.18)

here (3.4) is used in the last inequality.
Combining (3.15), (3.17) and (3.18), (3.2) holds. By Lemma 2.2, we have

|⟨Lε,ξw,w⟩| ≥ C∥w∥2

for all w ∈ (Tzξ(Zε))
⊥. This completes the proof.

3.2. Lyapunov–Schmidt reduction.
In this subsection, we prove the following equation

Pε,ξDfε(zξ + w) = 0 (3.19)

has a unique solution w = wε,ξ ∈ (Tzξ(Zε))
⊥ and wε,ξ is C1 in ξ.

Expand Dfε(zξ + w) as follows:

Dfε(zξ + w) = Dfε(zξ) +D2fε(zξ)(w) +R(zξ, w),

where
R(zξ, w) : H1(R3) → R

φ →
∫
R3

R(zξ, w)φdx.

Here R(zξ, w) is a high order nonlocal term given by

R(zξ, w) =− (|x|−1 ∗ |zξ + w|p)|zξ + w|p−2(zξ + w) + (|x|−1 ∗ zpξ )z
p−1
ξ

+ (p− 1)(|x|−1 ∗ zpξ )z
p−2
ξ w + p(|x|−1 ∗ (zp−1

ξ w))zp−1
ξ .

Thus (3.19) becomes

Lε,ξw + Pε,ξDfε(zξ) + Pε,ξR(zξ, w) = 0, w ∈ (Tzξ(Zε))
⊥. (3.20)

Since Lε,ξ is invertible, we can rewrite (3.20) as

w = −L−1
ε,ξ (Pε,ξDfε(zξ) + Pε,ξR(zξ, w)) := Nε,ξ(w). (3.21)

We will show that the operator Nε,ξ is a contraction on Bδ0(0).

Lemma 3.1. For any w1, w2 ∈ B1(0) ⊂ H1(R3),

∥R(zξ, w2)−R(zξ, w1)∥ ≤ C
(
∥w1∥2p−2 + ∥w2∥2p−2

)
∥w2 − w1∥, (3.22)

where C > 0 is a constant independent on w1 and w2.
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Proof. A simple computation shows that for any φ ∈ H1(R3),

|R(zξ, w2)(φ)−R(zξ, w1)(φ)|

≤
∫
R3

∣∣(|x|−1 ∗ |zξ + w2|p)|zξ + w2|p−2(zξ + w2)− (|x|−1 ∗ |zξ + w1|p)|zξ

+ w1|p−2(zξ + w1)
∣∣|φ|dx

+ (p− 1)

∫
R3

(|x|−1 ∗ zpξ )z
p−2
ξ |w2 − w1||φ|dx

+ p

∫
R3

(|x|−1 ∗ (zp−1
ξ |w2 − w1|))|zp−1

ξ φ|dx

≤
∫
R3

[
|x|−1 ∗

∣∣|zξ + w2|p − |zξ + w1|p
∣∣] |zξ + w2|p−2(zξ + w2)|φ|dx

+

∫
R3

(|x|−1 ∗ |zξ + w1|p)
∣∣|zξ + w2|p−2(zξ + w2)− |zξ + w1|p−2(zξ + w1)

∣∣ |φ|dx
+(p−1)

∫
R3

(|x|−1 ∗ zpξ )z
p−2
ξ |w2−w1||φ|dx+p

∫
R3

(|x|−1 ∗ (zp−1
ξ |w2−w1|))|zp−1

ξ φ|dx

≤C
(
∥w1∥2p−2 + ∥w2∥2p−2

)
∥w2 − w1∥∥φ∥.

Here we use the Lemma 2.4 and Mean Value Theorem. Thus we finish the proof of
(3.22).

Lemma 3.2. There exists a small ball Bδ0(0) ⊂ (Tzξ(Zε))
⊥ such that Nε,ξ maps

Bδ0(0) into itself for 0 < ε ≤ ε0 and |ξ| ≤ δ̄. Moreover, for all w1, w2 ∈ Bδ0(0),

∥Nε,ξ(w2)−Nε,ξ(w1)∥ ≤ C
(
∥w1∥2p−2 + ∥w2∥2p−2

)
∥w2 − w1∥,

where C > 0 is a constant independent on w1 and w2. In particular, Nε,ξ is a
contraction map on Bδ0(0).

Proof. We have ∥R(zξ, w)∥ = O(∥w∥2p−1) by Lemma 3.1. Lemma 2.3 and (3.21)
yield that:

∥Nε,ξ(w)∥ ≤ C∥Dfε(zξ)∥+O
(
∥w∥2p−1

)
≤ C

(
ε|∇V (εξ)|+O(ε2)

)
+O

(
∥w∥2p−1

)
,

(3.23)
which implies that Nε,ξ is a map from Bδ0(0) to Bδ0(0) for 0 < ε ≤ ε0, |ξ| ≤ δ̄ and
δ0 > 0 sufficiently small.

From Lemma 3.1, we have that

∥Nε,ξ(w2)−Nε,ξ(w1)∥ ≤ ∥L−1
ε,ξ (R(zξ, w1)−R(zξ, w2)) ∥

≤ C∥R(zξ, w1)−R(zξ, w2)∥
≤ C

(
∥w1∥2p−2 + ∥w2∥2p−2

)
∥w2 − w1∥.

This completes the proof.

Proposition 3.2. For 0 < ε ≤ ε0 and |ξ| ≤ δ̄, there exists a unique w = wε,ξ ∈
(Tzξ(Zε))

⊥ of class C1 with respect to ξ satisfying Dfε(zξ +wε,ξ) ∈ Tzξ(Zε). More-
over, the functional Φε(ξ) := fε(zξ+wε,ξ) has the same regularity as w and satisfies:

∇Φε(ξ0) = 0 ⇒ Dfε(zξ0 + wε,ξ0) = 0.
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Proof. Since Nε,ξ is a contraction map on Bδ0(0) for 0 < ε ≤ ε0 and |ξ| ≤ δ̄, the
existence of a fixed point w = wε,ξ follows from the contraction mapping principle
and hence wε,ξ is a solution of (3.21). Furthermore, for fixed ε with |ε| ≤ ε0, we
apply the Implicit function theorem to

Hε(ξ, w) := w −Nε,ξ(w) = 0, w ∈ (Tzξ(Zε))
⊥.

Setting w = wε,ξ, we find

DwHε(ξ, w)[v] = v − L−1
ε,ξPε,ξ [h

′(zξ + w)− h′(zξ)] v,

where h′(zξ + w)v is defined by

h′(zξ + w)v =

∫
R3

[
p
(
|x|−1 ∗ |zξ + w|p−1

)
|zξ + w|p−1

+ (p− 1)
(
|x|−1 ∗ |zξ + w|p

)
|zξ + w|p−2

]
φvdx

for φ ∈ H1(R3). In fact, DwHε is a Fredholm map of index zero.
Consider the equation

DwHε(ξ, w)[v] = 0,

which is equivalent to

v = L−1
ε,ξPε,ξ [h

′(zξ + w)− h′(zξ)] v. (3.24)

Since w(ε) → 0 as ε → 0, it follows that for ε sufficiently small, there exists a
unique trivial solution such that (3.24) holds. Thus the only fixed point wε,ξ of
Nε,ξ is smooth with respect to ξ. According to the argument in [1], then the critical
points of Φε(ξ) give rise to critical points of fε

Finally, we show that Φε is a perturbation of some functions of V .
By the definition of Φε(ξ), we see that

Φε(ξ) =
1

2
∥zξ + wε,ξ∥2 +

1

2

∫
R3

V (εx)(zξ + wε,ξ)
2dx

− 1

2p

∫
R3

(|x|−1 ∗ |zξ + wε,ξ|p)|zξ + wε,ξ|pdx.

Since zξ is the solution of (2.3), we have that

∥zξ∥2 = −V (εξ)

∫
R3

z2ξdx+

∫
R3

(|x|−1 ∗ |zξ|p)|zξ|pdx

and
⟨zξ, w⟩ = −V (εξ)

∫
R3

zξwdx+

∫
R3

(|x|−1 ∗ |zξ|p)|zξ|p−1wdx.

Then it is easy to get that

Φε(ξ) =
1

2

∫
R3

(V (εx)− V (εξ)) z2ξdx+

∫
R3

(V (εx)− V (εξ)) zξwε,ξdx

+
1

2
∥wε,ξ∥2 +

1

2

∫
R3

V (εx)w2
ε,ξdx+

∫
R3

(|x|−1 ∗ |zξ|p)|zξ|p−1wε,ξdx

+
1

2

∫
R3

(|x|−1 ∗ |zξ|p)|zξ|pdx− 1

2p

∫
R3

(|x|−1 ∗ |zξ + wε,ξ|p)|zξ + wε,ξ|pdx.
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For convenience, let

Kε(ξ) =

(
1

2
− 1

2p

)∫
R3

(|x|−1 ∗ |zξ|p)|zξ|pdx,

Γε(ξ) =
1

2

∫
R3

(V (εx)− V (εξ)) z2ξdx+

∫
R3

(V (εx)− V (εξ)) zξwε,ξdx

and

Ψε(ξ) =
1

2
∥wε,ξ∥2 +

1

2

∫
R3

V (εx)w2
ε,ξdx+

∫
R3

(|x|−1 ∗ |zξ|p)|zξ|p−1wε,ξdx

+
1

2p

∫
R3

(|x|−1 ∗ |zξ|p)|zξ|pdx− 1

2p

∫
R3

(|x|−1 ∗ |zξ + wε,ξ|p)|zξ + wε,ξ|pdx.

Using (2.5), then we have

Kε(ξ) =

(
1

2
− 1

2p

)∫
R3

(|x|−1 ∗ |zξ|p)|zξ|pdx

=

(
1

2
− 1

2p

)∫
R3

∫
R3

(α(εξ))pUp(β(εξ)(x− ξ))(α(εξ))pUp(β(εξ)(y − ξ))

|x− y|
dxdy

=

(
1

2
− 1

2p

)∫
R3

(α(εξ))2p(β(εξ))−5

∫
R3

Up(x̄)Up(ȳ)

|x̄− ȳ|
dx̄dȳ

=

(
1

2
− 1

2p

)
C0 (1 + V (εξ)/λ)

5−p
2(p−1) ,

where C0 =
∫
R3

∫
R3

Up(x̄)Up(ȳ)
|x̄−ȳ| dx̄dȳ.

Before we compute Φε(ξ), we will give the estimate of ∇ξw.

Lemma 3.3. For 0 < ε ≤ ε0 and |ξ| ≤ δ̄, the following holds:

|∇ξw| ≤ C(ε|∇V (εξ)|+O(ε2)),

where C > 0 is a constant depending on δ̄ and ε0.

Proof. For any φ ∈ (Tzξ(Zε))
⊥, (3.20) gives that

⟨Lε,ξw,φ⟩+ ⟨Dfε(zξ), φ⟩+ ⟨R(zξ, w), φ⟩ = 0.

From the definition of Lε,ξ and DFε,ξ(zξ) = 0, we have

0 =⟨w,φ⟩+
∫
R3

V (εx)wφdx− (p− 1)

∫
R3

∫
R3

zpξ (x)z
p−2
ξ (y)w(y)φ(y)

|x− y|
dxdy

− p

∫
R3

∫
R3

zp−1
ξ (x)w(x)zp−1

ξ (y)φ(y)

|x− y|
dxdy

+

∫
R3

(V (εx)− V (εξ)) zξφdx+

∫
R3

R(zξ, w)φdx,
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which implies that

0 =⟨∂ξiw,φ⟩+
∫
R3

V (εx)∂ξiwφdx− (p− 1)

∫
R3

∫
R3

zpξ (x)z
p−2
ξ (y)∂ξiw(y)φ(y)

|x− y|
dxdy

− p(p− 1)

∫
R3

∫
R3

zp−1
ξ (x)∂ξizξ(x)z

p−2
ξ (y)w(y)φ(y)

|x− y|
dxdy

− (p− 1)(p− 2)

∫
R3

∫
R3

zpξ (x)z
p−3
ξ (y)∂ξizξ(y)w(y)φ(y)

|x− y|
dxdy

− p(p− 1)

∫
R3

∫
R3

zp−2
ξ (x)∂ξizξ(x)w(x)z

p−1
ξ (y)φ(y)

|x− y|
dxdy

− p(p− 1)

∫
R3

∫
R3

zp−1
ξ (x)w(x)zp−2

ξ (y)∂ξizξ(y)φ(y)

|x− y|
dxdy

− p

∫
R3

∫
R3

zp−1
ξ (x)∂ξiw(x)z

p−1
ξ (y)φ(y)

|x− y|
dxdy − ε (∂ξiV ) (εξ)

∫
R3

zξφdx

+

∫
R3

(V (εx)− V (εξ)) ∂ξizξφdx+ ∂ξi

(∫
R3

R(zξ, w)φdx

)
.

Using the definition of Lε,ξ again, we obtain that

⟨Lε,ξ∂ξiw,φ⟩ =p(p− 1)

∫
R3

∫
R3

zp−1
ξ (x)∂ξizξ(x)z

p−2
ξ (y)w(y)φ(y)

|x− y|
dxdy

+ (p− 1)(p− 2)

∫
R3

∫
R3

zpξ (x)z
p−3
ξ (y)∂ξizξ(y)w(y)φ(y)

|x− y|
dxdy

+ p(p− 1)

∫
R3

∫
R3

zp−2
ξ (x)∂ξizξ(x)w(x)z

p−1
ξ (y)φ(y)

|x− y|
dxdy

+ p(p− 1)

∫
R3

∫
R3

zp−1
ξ (x)w(x)zp−2

ξ (y)∂ξizξ(y)φ(y)

|x− y|
dxdy

+ ε (∂ξiV ) (εξ)

∫
R3

zξφdx− ∂ξi

(∫
R3

R(zξ, w)φdx

)
−
∫
R3

(V (εx)− V (εξ)) ∂ξizξφdx.

(3.25)
We estimate the right side of (3.25) term by term.

Lemma 2.4 and Hölder inequality yield that

∣∣∣∣∣
∫
R3

∫
R3

zpξ (x)z
p−3
ξ (y)∂ξizξ(y)w(y)φ(y)

|x− y|
dxdy

∣∣∣∣∣ ≤ C∥w∥∥φ∥, (3.26)∣∣∣∣∣
∫
R3

∫
R3

zp−1
ξ (x)∂ξizξ(x)z

p−2
ξ (y)w(y)φ(y)

|x− y|
dxdy

∣∣∣∣∣ ≤ C∥w∥∥φ∥ (3.27)
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and ∣∣∣∣∣
∫
R3

∫
R3

zp−2
ξ (x)∂ξizξ(x)w(x)z

p−1
ξ (y)φ(y)

|x− y|
dxdy

∣∣∣∣∣
+

∣∣∣∣∣
∫
R3

∫
R3

zp−1
ξ (x)w(x)zp−2

ξ (y)∂ξizξ(y)φ(y)

|x− y|
dxdy

∣∣∣∣∣ ≤ C∥w∥∥φ∥.

(3.28)

Similarly, we obtain that∣∣∣∣∂ξi (∫
R3

R(zξ, w)φdx

)∣∣∣∣
≤
∣∣∣∣∫

R3

(
p
[
|x|−1 ∗

(
zp−1
ξ ∂ξizξ

)]
zp−1
ξ + (p− 1)

[
|x|−1 ∗ zpξ

]
zp−2
ξ ∂ξizξ

)
φdx

∣∣∣∣
+

∣∣∣∣∣
∫
R3

(
p(p− 1)

[
|x|−1 ∗

(
zp−1
ξ ∂ξizξ

)]
zp−2
ξ w + (p− 1)

[
|x|−1 ∗ zpξ

]
zp−2
ξ ∂ξiw

+ (p− 1)(p− 2)
[
|x|−1 ∗ zpξ

]
zp−3
ξ w∂ξizξ

)
φdx

∣∣∣∣∣
+

∣∣∣∣∣
∫
R3

(
p
[
|x|−1 ∗

(
zp−1
ξ ∂ξiw

)]
zp−1
ξ + p(p− 1)

[
|x|−1 ∗

(
zp−2
ξ w∂ξizξ

)]
zp−1
ξ

+ p(p− 1)
[
|x|−1 ∗

(
zp−1
ξ w

)]
zp−2
ξ ∂ξizξ

)
φdx

∣∣∣∣∣
+

∣∣∣∣∣
∫
R3

p
[
|x|−1 ∗

(
|zξ + w|p−1

∂ξi (zξ + w)
)]

|zξ + w|p−1φdx

∣∣∣∣∣
+

∣∣∣∣∣
∫
R3

(p− 1)
[
|x|−1 ∗ |zξ + w|p

]
|zξ + w|p−2∂ξi (zξ + w)φdx

∣∣∣∣∣
≤C∥w∥2p−2∥∂ξiw∥∥φ∥.

(3.29)
By Hölder inequality, we have∣∣∣∣ε (∂ξiV ) (εξ)

∫
R3

zξφdx

∣∣∣∣ ≤ Cε |∇V (εξ)| ∥φ∥ (3.30)

and ∣∣∣∣∫
R3

(V (εx)− V (εξ)) ∂ξizξφdx

∣∣∣∣ ≤ C
(
ε |∇V (εξ)|+ ε2

)
∥φ∥. (3.31)

Combining (3.26), (3.27), (3.28), (3.29), (3.30) and (3.31), we deduce that

∥∂ξiw∥ ≤ C
(
ε |∇V (εξ)|+ ε2

)
,

where C > 0 is a constant depending on δ̄ and ε0. We finish the proof.
Now we are in the position to eatimate Γε(ξ) and Ψε(ξ).

Lemma 3.4. For 0 < ε ≤ ε0 and |ξ| ≤ δ̄, the following hold:

|Γε(ξ)|+ |Ψε(ξ)| ≤ C
(
ε |∇V (εξ)|+ ε2

)
(3.32)
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and
|∇Γε(ξ)|+ |∇Ψε(ξ)| ≤ Cε2. (3.33)

Proof. Firstly, we compute (3.32). By Lemma 2.3 and Lemma 2.4,

|Γε(ξ)| ≤ C

[
ε |∇V (εξ)|

∫
R3

|x− ξ|zξ(zξ + wε,ξ)dx+ ε2
∫
R3

|x− ξ|2zξ(zξ + wε,ξ)dx

]
≤ C

(
ε |∇V (εξ)|+ ε2

)
and

|Ψε(ξ)| ≤ C∥wε,ξ∥2 + C∥wε,ξ∥ −
1

2p

∫
R3

(
|x|−1 ∗ |zξ|p

)
(|zξ + wε,ξ|p − |zξ|p) dx

− 1

2p

∫
R3

(
|x|−1 ∗ |zξ + wε,ξ|p

)
(|zξ + wε,ξ|p − |zξ|p) dx

≤ C
(
ε |∇V (εξ)|+ ε2

)
.

Thus the proof of (3.32) is complete. Next, we estimate (3.33).
By Taylor expansion of V , we have∫

R3

(V (εx)− V (εξ)) z2ξdx

=ε

∫
R3

∇V (εξ) · (x− ξ)z2ξdx+ ε2
∫
R3

D2V (εξ + θε(x− ξ))[x− ξ, x− ξ]z2ξdx

=ε

∫
R3

∇V (εξ) · yz2ξdy + ε2
∫
R3

D2V (εξ + θε(x− ξ))[x− ξ, x− ξ]z2ξdx

=ε2
∫
R3

D2V (εξ + θε(x− ξ))[x− ξ, x− ξ]z2ξdx,

where θ ∈ (0, 1). Because V satisfies (V1), then it holds that∣∣∣∣∂ξi (∫
R3

(V (εx)− V (εξ)) z2ξdx

)∣∣∣∣
≤ε2

∣∣∣∣∂ξi (∫
R3

D2V (εξ + θε(x− ξ))[x− ξ, x− ξ]z2ξdx

)∣∣∣∣ ≤ Cε2.

(3.34)

By Hölder inequality, we easily calculate∣∣∣∣∂ξi (∫
R3

(V (εx)− V (εξ)) zξwε,ξdx

)∣∣∣∣
≤ε|∇V (εξ)|

∫
R3

|zξwε,ξ|dx+

∫
R3

|V (εx)− V (εξ)| |∂ξizξwε,ξ|dx

+

∫
R3

|V (εx)− V (εξ)| |zξ∂ξiwε,ξ|dx

≤Cε|∇V (εξ)∥wε,ξ∥+
(∫

R3

|V (εx)− V (εξ)|2 |∂ξizξ|2
)1/2

∥wε,ξ∥

+

(∫
R3

|V (εx)− V (εξ)|2 |zξ|2dx
)1/2

∥∂ξiwε,ξ∥.
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It follows that by Lemma 2.3 and Lemma 3.3∣∣∣∣∇(∫
R3

[V (εx)− V (εξ)] zξwdx

)∣∣∣∣ ≤ Cε (ε+ |∇V (εξ)|) (∥wε,ξ∥+ ∥∇wε,ξ∥) ≤ Cε2.

(3.35)
(3.34) and (3.35) imply that

|∇Γε(ξ)| ≤ Cε2. (3.36)
To finish the proof of this lemma, we are going to estimate |∇Ψε(ξ)|. Compute

∂ξi(Ψε(ξ)) =⟨wε,ξ, ∂ξiwε,ξ⟩+
∫
R3

V (εx)wε,ξ∂ξiwε,ξdx

+ p

∫
R3

[
|x|−1 ∗ (|zξ|p−1∂ξizξ)

]
|zξ|p−1wε,ξdx

+ (p− 1)

∫
R3

(
|x|−1 ∗ |zξ|p

)
|zξ|p−2∂ξizξwε,ξdx

+

∫
R3

(|x|−1 ∗ |zξ|p)|zξ|p−1∂ξi(zξ + wε,ξ)dx

−
∫
R3

(|x|−1 ∗ |zξ + wε,ξ|p)|zξ + wε,ξ|p−1∂ξi(zξ + wε,ξ)dx

:=I1 + I2 + I3.

For I1, we have ∣∣∣∣⟨wε,ξ, ∂ξiwε,ξ⟩+
∫
R3

V (εx)wε,ξ∂ξiwε,ξdx

∣∣∣∣
≤
∫
R3

V (εx)|∂ξiwε,ξ||wε,ξ|dx+ |⟨w, ∂ξiwε,ξ⟩|

≤C∥wε,ξ∥∥∂ξiwε,ξ∥.

For I2 and I3, Lemma 2.4 gives that

|I2| ≤
∣∣∣∣p ∫

R3

[
|x|−1 ∗ (|zξ|p−1∂ξizξ)

]
|zξ|p−1wε,ξdx

∣∣∣∣
+

∣∣∣∣(p− 1)

∫
R3

(
|x|−1 ∗ |zξ|p

)
|zξ|p−2∂ξizξwε,ξdx

∣∣∣∣
≤ C∥wε,ξ∥

and

|I3| ≤
∫
R3

[
|x|−1 ∗ (|zξ + wε,ξ|p − |zξ|p)

]
|zξ + wε,ξ|p−1∂ξi(zξ + wε,ξ)dx

+

∫
R3

(
|x|−1 ∗ |zξ|p

) (
|zξ + wε,ξ|p−1 − |zξ|p−1

)
∂ξi(zξ + wε,ξ)dx

≤C∥wε,ξ∥+ C∥wε,ξ∥∥∂ξiwε,ξ∥.

Putting these estimates together, we conclude that

|∇Ψε(ξ)| ≤ C∥wε,ξ∥+ C∥wε,ξ∥∥∂ξiwε,ξ∥ ≤ Cε2. (3.37)

Combining (3.36) and (3.37), we finish the proof.
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3.3. The proof of Theorem 1.1.
Let M ⊂ R3 and Mδ be a non-empty set and its δ–neighbourhood, respectively. We
denote by

l(M) := 1 + sup{k ∈ N|∃Λ1,Λ2, · · · ,Λk ∈ H̆∗(M)\1,Λ1 ∪ Λ2 ∪ · · · ∪ Λk ̸= 0}

the cup length of M , where H̆∗(M) is the Alexander cohomology of M with real
coefficients.

Proof of Theorem 1.1. Choose R̄ > 0 sufficiently large such that M ⊂ BR̄(0),
where M is a non-degenerate critical manifold of

(
1
2 − 1

2p

)
C0 (1 + V (εξ)/λ)

5−p
2(p−1) .

Let
f(ξ) =

(
1

2
− 1

2p

)
C0 (1 + V (εξ)/λ)

5−p
2(p−1) and g(ξ) = Φε(ξ/ε).

Choose a δ-neighbourhood Mδ of M such that Mδ ⊂ BR̄(0), so the set of critical
points of V in Mδ is M . Since

Φε(ξ) =

(
1

2
− 1

2p

)
C0 (1 + V (εξ)/λ)

5−p
2(p−1) + Γε(ξ) + Ψε(ξ)

and Lemma 3.4, then the function Φε(·/ε) is converges to f(·) in C1(Mδ) as ε→ 0.
Thus there exist at least l(M) critical points of g for ε sufficiently small.

Assume ξk ∈Mδ satisfying that ξk/ε is a critical point of Φε. Then Proposition
3.2 yields that

uε,ξε(x) := zξk

(
x− ξk

ε

)
+ wε,ξk

is a critical point of fε. Hence

uε,ξε

(x
ε

)
≃ zξk

(
x− ξk

ε

)
is a solution of (1.3). When ε→ 0, ξk converges to some point ξ̄k ∈Mδ. In conclu-
sion, we have that ξ̄k is a critical point of V by Lemma 3.4. Note that δ is arbitrary,
so ξ̄k ∈ M . Therefore, uε,ξε

(
x
ε

)
concentrates to a point of M . This completes the

proof. □
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