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Abstract In this paper, we consider the existence and exponential stability
in mean square of mild solutions to second-order neutral stochastic functional
differential equations with random impulses in Hilbert space. Firstly, the
existence of mild solutions to the equations is proved by using the noncompact
measurement strategy and the Mönch fixed point theorem. Then, the mean
square exponential stability for the mild solution of the considered equations
is obtained by establishing an integral inequality. Finally, an example is given
to illustrate our results.
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1. Introduction

Impulsive differential equations give a model to describe the system with occurrence
of an abrupt change in the state at some time points. Many authors have studied
the various kinds of differential equations with fixed time impulses [5, 9, 19, 20, 31].
But in the real world, impulses often exist at random time points. To better reflect
this phenomena in reality, Wu and Meng [30] brought forward the general differ-
ential equations with random impulses, where the impulsive moments are random
variables and any solution of the equations is a stochastic process. The properties
of mild solutions to some integer-order differential equations with random impulses
have been obtained, for example [1, 6, 13, 14, 16, 24, 25, 27, 28]. The random impul-
sive differential equations involving fractional derivative also have been discussed
in [26,32] and so on.
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As we known, impulsive stochastic differential equations played an important
role in modeling many practical processes. However, in some actual cases, ran-
dom effects not only arising from Gaussian white noise but also from other factors.
Therefore, it is significant to integrate random impulsive effects into systems. As far
as we known, the earliest research on stochastic differential equation with random
impulses can been seen in [29]. The existence and uniqueness of solutions to the fol-
lowing stochastic differential equation with random impulses have been investigated
by Zhou and Wu [33],

dx(t) = µ(t, x(t))dt+ σ(t, x(t))dwt a.e., t > t0, t 6= ξk,

x(ξk) = bk(τk)x(ξ−k ) a.e., k = 1, 2, · · · ,

xt0 = z,

where τk denotes the waiting time and ξk denotes the impulsive moment. Both are
random variables and satisfy ξ0 = t0, ξk = ξk−1 + τk for k = 1, 2, · · · ; wt is an m-
dimensional Wiener process; z is a random variable. Li et al. [11] have discussed a
class of random impulsive neutral stochastic functional evolution inclusions with the
same type impulsive condition as in [33]. Authors have proved the existence of mild
solutions for their considered equations by using multi-valued mapping fixed point
theorem of kakutani type and theory of evolution systems under the assumption
that the semigroup is compact. Recently, the existence and Hyers-Ulam stability
of mild solutions for random impulsive stochastic functional ordinary differential
equations have considered in [10] by using Krasnoselskii’s fixed point theorem.

As one of the differential equations with important applications, second-order
differential equations have also drawn attentions of more and more scholars. The
study of the second-order stochastic differential equations have been considered by
many researchers, such as [2, 3, 7, 18,23] and the references therein.

Motivated by the above discussion, in this paper, we consider the following
second-order neutral stochastic functional differential equations with random im-
pulses:

d[x′(t)− g(t, xt)] = [Ax(t) + f(t, xt)]dt+ σ(t, xt)dW (t), t > t0, t 6= ξk,

x(ξk) = bk(τk)x(ξ−k ), x′(ξk) = bk(τk)x′(ξ−k ), k = 1, 2, . . . ,

xt0 = φ, x′(t0) = ψ,

(1.1)

where A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous
cosine family {C(t), t ≥ 0}. W (t) is a given Q-Winer process with a finite trace
nuclear covariance operator Q > 0. τk is a random variable defined from Ω to
Dk ≡ (0, dk) for k = 1, 2, · · · . Suppose that τi and τj are independent of each other
as i 6= j, (i, j = 1, 2, · · · ). The impulsive moments ξk are random variables and
satisfy ξk = ξk−1 +τk, k = 1, 2, · · · , Obviously, {ξk} is a processes with independent
increments. 0 < t0 = ξ0 < ξ1 < ξ2 < · · · < ξk < · · · < lim

k→∞
ξk = ∞, and

x(ξ−k ) = lim
t→ξk−0

x(t). bk : Dk → H, for each k = 1, 2, · · · . The time history

xt(θ) = {x(t+ θ) : −τ ≤ θ ≤0} with some given τ > 0. Moreover, g, f, σ,and φ, ψ
will be specified later.

The main purpose of this paper is to study the existence and exponential stability
of system (1.1). Firstly, basing on the properties of sine and cosine operators and
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taking the random impulsive efference into account, we give the definition of mild
solutions of (1.1). Without the need to assume that the system (1.1) generates a
compact semigroup, we deal with the existence problems of mild solution to this
system by using Mönch fixed point via measure of noncompactness. In particular,
to overcome the difficulty caused by the presence of random term, we apply a new
noncompact measure criterion for Itô integrals. Then, we discuss the exponential
stability of mild solution for considered system by establishing an integral inequality
that applied to second-order functional differential equations with random impulse.
Our work may generalize some existing results of second-order impulsive stochastic
differential equations to more general random impulses cases.

The rest of our paper contains the following five sections. Section 2 provides
some basic definitions, notations and lemmas. Section 3 is devoted to the existence
of mild solutions of (1.1) under weakly compactness conditions combining with the
strategies of noncompact measurement and Mönch fixed point theorem. In Section
4, the mean square exponential stability for the mild solution of (1.1) is studied in
Hilbert spaces. In Section 5, an example is given to show our exponential stability
result. At last, we conclude the paper and give the future research direction in
Section 6.

2. Preliminaries

Let H and K be two real Hilbert spaces. For convenience, we denote their norm by
‖ · ‖ and denote their inner product by < ·, · >. L(K,H) represent the space of all
bounded linear operators from K into H. Let (Ω,F , P ) be a complete probability
space equipped with a normal filtration {Ft}t≥t0 . Ft0 containing all P -null sets.

We suppose {ξk, k ≥ 0} generate a counting process {N(t), t ≥ t0} and F
(1)
t denote

the minimal σ-algebra generated by {N(r), r ≤ t}. We suppose {W (t), t ≥ t0} is a

K-valued Winer process and denote the F
(2)
t = σ{W (r), r ≤ t}. Referring to [29],

we assume that F
(1)
∞ , F

(2)
∞ , and Ft0 -adapt random variables φ, ϕ are mutually

independent, and Ft = F
(1)
t ∨F

(2)
t .

We assume that there exists a complete orthonormal system {en}∞n=1 in K, a
bounded sequence of non-negative real numbers λn such that Qen = λnen, n =
1, 2, . . .. Let {βn(t)}(n = 1, 2, . . .) be a sequence of real valued one-dimensional
standard Brownian motions mutually independent over (Ω,F , P ). A Q-Wiener
process can be defined by W (t) = Σ∞n=1

√
λnβn(t)en, (t ≥ 0). Set ψ ∈ L(K,H), we

define

‖ψ‖2Q = Tr(ψQψ∗) =

∞∑
n=1

‖
√
λnψen‖2.

If ‖ψ‖2Q <∞ then ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) denote
the space of all Q-Hilbert-Schmidt operator ψ : K → H. The completion LQ(K,H)
of L(K,H) with respect to the topology induced by the norm ‖·‖Q, where ‖ψ‖2Q =<
ψ,ψ > is a Hilbert space.

Let T ∈ (t0,+∞), J := [t0, T ], Jk = [ξk, ξk+1), k = 0, 1, . . . , J̃ = {t : t ∈ J, t 6=
ξk, k = 1, 2 . . .}. We denote L2(Ω, H) the collection of all square integrable, Ft-

measurable, H-valued random variables, with the norm ‖x‖L2
= (E‖x‖2)

1
2 , where

the expectation E is defined by E‖x‖2 =
∫

Ω
‖x‖2dP . L0

2(Ω, H) denotes the family
of all square integrable Ft0-measurable, H-valued random variable in L2(Ω, H). Let
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piecewise continuous space PC(J, L2(Ω, H)) = {x : J → L2(Ω, H) : x is continuous
on every Jk, and the left limits x(ξ−k ), x′(ξ−k ) exist, k = 1, 2, . . .}

In this paper, we denote the space C = C([−τ, 0], H) consisting of all piecewise
continuous functions mapping from [−τ, 0] toH with the norm ‖x‖t = sup

t−τ≤s≤t
‖x(s)‖

for each t ≥ t0. We denote by B the Banach space B([t0−τ, T ], L2(Ω, H)), consisting
of piecewise continuous, Ft-measurable, C-valued processes. The norm defined by

‖x‖B = (sup
t∈J

E‖x‖2t )
1
2 .

Next we introduce some definitions and properties of sine and cosine operators.
More details can refer to [22].

A bounded linear operators family {C(t), t ∈ R} is called a strongly continuous
cosine family if and only if

(i) C(0) = I (I is the identity operator in H);
(ii) C(t)x is continuous in t, for all x ∈ H;
(iii) C(t+ s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R.
The corresponding strongly continuous sine family {S(t), t ∈ R} is defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ H, t ∈ R. (2.1)

Then the following property holds:

A

∫ t

t0

S(s)xds = [C(t)− C(t0)]x. (2.2)

Lemma 2.1 ( [22]). Let {C(t), t ∈ R} be a strongly continuous cosine family in H,
then for all s, t ∈ R the following results are true:

(i) C(t)=C(-t);
(ii) S(s+t)+S(s-t)=2S(s)C(t);
(iii) S(s+t)=S(s)C(t)+S(t)C(s);
(iv) S(t)=-S(-t);
(v) C(t+s)+C(s-t)=2C(s)C(t);
(vi) C(t+s)-C(t-s)=2AS(t)S(s).

Before investigating the mild solution of (1.1), we consider the second-order
neutral functional differential equation, which is given byd[u′(t)− g(t, ut)] = Au(t)dt+ f(t, ut)dt, t ≥ 0,

u0 = φ ∈ C, u′(0) = ϕ ∈ H, t ∈ (−τ, 0],
(2.3)

whereA is the infinitesimal generator of a strongly continuous cosine family {C(t), t∈
R+} and the functions g, f ∈ L1(0, T ;H).

Lemma 2.2. A continuously differentiable function u(t) : [0, T ] → H is called the
mild solution for Cauchy problem (2.3), if it satisfies

u(t)=C(t)φ(0)+S(t)[ϕ−g(0, φ)]+

∫ t

0

C(t−s)g(s, us)ds+

∫ t

0

S(t−s)f(s, us)ds t ≥ 0,
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where

S(t) =
1

2πi

∫
Γ

eλtR(λ2;A)dλ;

C(t) =
1

2πi

∫
Γ

eλtλR(λ2;A)dλ,

and Γ is a suitable path.

Proof. Using the Laplace transform,

L(d[u′(t)− g(t, ut)])(λ) = λL
(
u′(t)− g(t, ut)

)
(λ)− [u′(0)− g(0, u0)]

= λ2L(u(t))(λ)− λφ(0)− λL(g(t, ut))(λ)− [ϕ− g(0, φ)].

It follows from (2.3) that

λ2L(u(t))(λ)−λφ(0)−λL(g(t, ut))(λ)− [ϕ−g(0, φ)] = AL(u(t))(λ)+L(f(t, ut))(λ).

Thus, we have

L(u(t))(λ) = (λ2I −A)−1
[
λφ(0) + ϕ− g(0, φ) + λL(g(t, ut))(λ) + L(f(t, ut))(λ)

]
= L(C(t))(λ)φ(0) + L(S(t)[ϕ− g(0, φ)])(λ) + L(C(t) ∗ (g(t, ut))(λ)

+ L(S(t) ∗ (f(t, ut))(λ).

Then taking the inverse Laplace transform, we get

u(t) = C(t)φ(0) + S(t)[ϕ− g(0, φ)] +

∫ t

0

C(t− s)g(s, us)ds+

∫ t

0

S(t− s)f(s, us)ds.

The proof is completed.

Take any value tk of the random variables ξk, then the differential equation with
random impulses can be regarded as that with general impulses. Consider the linear
second-order differential equation with impulses conditions as shown below:

u′′(t) = Au(t) + f(t), t ≥ 0, t 6= tk,

u(0) = u0, u
′(0) = v0,

u(tk) = bku(t−k ), u′(tk) = bku
′(t−k ), k = 1, 2, . . . ,

(2.4)

where 0 = t0 < t1 < t2 < · · · < tk < · · · , {tk, k ≥ 1} is a sequence of fixed impulsive
points, f(t) : [0, T )→ H is an integrable function.

Lemma 2.3. The piecewise continuous differentiable function u(t) : [0, T ]→ H is
a mild solution of (2.4), if and only if x(t) satisfies the integral equation

u(t) =

k∏
i=1

biC(t)u0 +

k∏
i=1

biS(t)v0 +

k∑
i=1

k∏
j=i

bj

∫ ti

ti−1

S(t− s)f(s)ds

+

∫ t

tk

S(t− s)f(s)ds, t ∈ [tk, tk+1), k = 0, 1, · · · . (2.5)
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Proof. (i) For t ∈ [0, t1), the mild solution has been studied in [21],

u(t) = C(t)u0 + S(t)v0 +

∫ t

0

S(t− s)f(s)ds, t ∈ [0, t1).

(ii) For t ∈ [t1, t2), we set

u(t) = C(t− t1)u(t1) + S(t− t1)u′(t1) +

∫ t

t1

S(t− s)f(s)ds, t ∈ [t1, t2). (2.6)

Since
u(t1) = b1u(t−1 ), u′(t1) = b1u

′(t−1 ),

and from (i) we know

u(t−1 ) = C(t1)u0 + S(t1)v0 +

∫ t1

0

S(t1 − s)f(s)ds; (2.7)

u′(t−1 ) = AS(t1)u0 + C(t1)v0 +

∫ t1

0

C(t1 − s)f(s)ds. (2.8)

Thus,

u(t) =b1C(t− t1)C(t1)u0 + b1S(t− t1)AS(t1)u0

+ b1C(t− t1)S(t1)v0 + b1S(t− t1)C(t1)v0

+ b1C(t− t1)

∫ t1

0

S(t1 − s)f(s)ds+ b1S(t− t1)

∫ t1

0

S(t1 − s)f(s)ds

+

∫ t

t1

S(t− s)f(s)ds, t ∈ [t1, t2).

Applying Lemma 2.1, we get

u(t) =b1C(t)u0 + b1S(t)v0 + b1

∫ t1

0

S(t1 − s)f(s)ds

+

∫ t

t1

S(t− s)f(s)ds, t ∈ [t1, t2).

(iii) For t ∈ [t2, t3),

u(t) = C(t− t2)u(t2) + S(t− t2)u′(t2) +

∫ t

t2

S(t− s)f(s)ds

= C(t− t2)b2u(t−2 ) + S(t− t2)b2u
′(t−2 ) +

∫ t

t2

S(t− s)f(s)ds. (2.9)

From the conclusions of (ii), we know

u(t−2 ) = b1C(t2)u0 + b1S(t2)v0 + b1

∫ t2

0

S(t2 − s)f(s)ds+

∫ t

t2

S(t2 − s)f(s)ds;

(2.10)

u′(t−2 ) = b1AS(t2)u0 + b1C(t2)v0 + b1

∫ t1

0

C(t2 − s)f(s)ds+

∫ t2

t1

C(t2 − s)f(s)ds.

(2.11)
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Taking these into (2.9) and using Lemma 2.1, we have

u(t) =b2b1C(t)u0 + b2b1S(t)v0 + b2b1

∫ t1

0

S(t− s)f(s)ds+ b2

∫ t2

t1

S(t− S)f(s)ds

+

∫ t

t2

S(t− S)f(s)ds, t ∈ [t2, t3).

Similarly, for all t ∈ [tk, tk+1),

x(t) =

k∏
i=1

biC(t)u0 +

k∏
i

biS(t)v0

+

k∑
i=1

k∏
j=i

bj

∫ ti

ti−1

S(t− s)f(s)ds+

∫ t

tk

S(t− s)f(s)ds, t ∈ [tk, tk+1).

If the impulses exist in random, that is to say, we do not know when or how
many impulses occur in a period of time. Hence, according to Lemmas 2.2, 2.3, we
define the mild solution of system (1.1), applying index function, for t ∈ J .

Definition 2.1. For a given T ∈ (t0,+∞), a Ft-adapted process function {x ∈
B, t0 − τ ≤ t ≤ T} is called a mild solution of system (1.1), if

(i) xt0(s) = φ(s) ∈ L0
2(Ω,B) for −τ ≤ s ≤ 0;

(ii) x′(t0) = ϕ(t) ∈ L0
2(Ω, H) for t ∈ J ;

(iii) the functions g(s, xt), f(s, xt), σ(s, xt) are integrable, and for a.e. t ∈ J , the
following integral equation is satisfied:

x(t) =

+∞∑
k=0

[ k∏
i=1

bi(τi)C(t− t0)φ(0) +

k∏
i

bi(τi)S(t− t0)[ϕ− g(0, φ)]

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

C(t− s)g(s, xs)ds+

∫ t

ξk

C(t− s)g(s, xs)ds

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

S(t− s)f(s, xs)ds+

∫ t

ξk

S(t− s)f(s, xs)ds

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

S(t− s)σ(s, xs)dW (s)

+

∫ t

ξk

S(t− s)σ(s, xs)dW (s)
]
I[ξk,ξk+1)(t), t ∈ [t0, T ], (2.12)

where
k∏
j=i

bj(τj) = bk(τk)bk−1(τk−1) · · · bi(τi),

and IA(·) is the index function, i.e.,

IA(t) =

1, if t∈ A,

0, if t/∈ A.
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Next, we recall the following relevant knowledges of non-compactness measure
theory.

The definition of the Hausdorff non-compactness measure for a bounded set B
in any Hilbert space H can be described as follows:

α(B) = inf{ε > 0; B has a finite ε− net in H}.

Lemma 2.4 (see [4]). Let H is a real Hilbert space, B,D ⊂ H are bounded sets.
Then, the following properties hold:

(1) B is called a precompact set if and only if α(B) = 0;
(2) α(B) = α(B̄) = α(c̄o(B)), where B̄ and c̄o B are the closure and the convex

hull of B, respectively;
(3) If bounded subsets B,D in H, B ⊆ D, then α(B) ≤ α(D);
(4) α({x} ∪B) = α(B), for all x ∈ H, and all nonempty subset B ⊂ H;
(5) α(B +D) ≤ α(B) + α(D), where B +D = {x+ y;x ∈ B, y ∈ D};
(6) α(B ∪D) ≤ max{α(B), α(D)};
(7) α(λB) ≤ |λ|α(B) for any λ ∈ R;
(8) If D ⊂ C(J ;H) is bounded, then

α(D(t)) ≤ α(D), (2.13)

where
D(t) = {u(t) : for all u ∈ D, t ∈ J} .

Furthermore if D is equicontinuous on J , then D(t) is continuous for t ∈ J , and

α(D) = sup
t∈J

α(D(t)). (2.14)

(9) If D ⊂ C(J ;H) is bounded and equicontinous, then α(D(t)) is continuous
on J , and

α

(∫ t

0

D(s)ds

)
≤
∫ t

0

α(D(s))ds, for all t ∈ J, (2.15)

where ∫ t

0

D(s)ds =

{∫ t

0

u(s)ds : for all u ∈ D, t ∈ J
}

;

(10) Let {un}∞n=1 be a sequence of Bochner integrable functions from J to H,
then D = {un}∞n=1 is a bounded and countable set, and α(D(t)) is the Lebesgue
integral on H, satisfying

α

({∫ t

0

un(s)ds : n ≥ 1

})
≤ 2

∫ t

0

α(D(s))ds. (2.16)

(11) If D is bounded, then for any ε > 0, have sequence {un}∞n=1 ⊂ D, such that

α(D) ≤ 2α({un}∞n=1) + ε. (2.17)

Lemma 2.5. For the case that D ⊂ PC(J,H), it has been discussed in [8]. The
following results can be obtained.

(i) If D ⊂ PC(J,H) is bounded, then α(D(t)) ≤ α(D) for all t ∈ J , where
D(t) = {u(t) : for all u ∈ D, t ∈ J} ;
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(ii) Furthermore, if D is equicontinuous on each [tk, tk+1), k = 0, 1, · · · , and
equicontinuous at {t−k , k = 1, 2, · · · }, then α(D) = supt∈J α(D(t));

(iii) If D ⊂ PC(J,H) satisfies both conditions in (i) and (ii), then

α
(∫ t

0
D(s)ds

)
≤
∫ t

0
α(D(s))ds.

In order to deal with the measure of stochastic integral term, we need the fol-
lowing conclusions:

Lemma 2.6 (see [15]). For any p ≥ 1, and for an LQ(K,H)-valued predictable
process u(·) such that

sup
s∈[0,t]

E
∥∥∫ s

0

u(η)dW (η)
∥∥2p ≤ (p(2p− 1))p(

∫ t

0

(E
∥∥u(s)

∥∥2p

Q
)1/pds)p, t ∈ J.

Lemma 2.7. If the set D ⊂ Lp(J ;LQ(K,H)), W (t) is a Q-Wiener process,then
for any p ≥ 2, t ∈ [t0, T ], Hausdorff non-compactness measure α satisfies

α
( ∫ t

t0

D(s)dW (s)
)
≤
√

(T − t0)
p

2
(p− 1)α(D(t)),

where ∫ t

t0

D(s)dW (s) = {
∫ t

t0

u(s)dW (s) : for all u ∈ D, t ∈ [t0, T ]}.

Details of the proof can refer to [17].

Combining with the Hausdorff’s measure of noncompactness, we use Mönch
fixed point thorem to prove the existence of mild solutions of systems (1.1).

Lemma 2.8 (Mönch’s Fixed Point Theorem). Let D is a bounded convex subsets
of H, and 0 ∈ D. If a map F : D → H is continuous, and satisfies Mönch’s
conditions, i.e., there exist a countable set M ⊆ D, M ⊆ co({0}∪F (M)), such that
M is a compact set. Then F has a fixed point in D.

Definition 2.2. The solution of equation (1.1) is said to be exponentially stable
in mean square, if there exists positive constants C > 0 and λ > 0 such that

E‖x(t)‖2 ≤ Ce−λt, t ≥ t0.

3. Existence of Mild Solution

In this section, we prove the existence of the mild solutions of random impulsive
stochastic differential equation (1.1). we need the following assumptions.

(H1) S(t), C(t) (t ∈ J) are equicontinuous and there exist positive constants
N, Ñ such that

sup
t∈J
‖C(t)‖ ≤ N, sup

t∈J
‖S(t)‖ ≤ Ñ . (3.1)

(H2) The function f : J × C → H satisfies the following conditions:
(i) For each t ∈ J , the function f(t, ·) : C → H is continuous; and for each v ∈ C,

the function f(·, v) : J → H is measurable.
(ii) There exist a continuous function m(t) ∈ L1(J,R+), and a continuous posi-

tive nondecreasing function Θf : R+ → R+, such that

E‖f(t, v)‖2 ≤ m(t)Θf (E‖v‖2t ),
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for arbitrary (t, v) ∈ J × C, and the function Θf satisfying

lim
r→∞

inf
Θf (r)

r
= 0.

(iii) There exists a positive function Kf (t) ∈ L1(J,R+), for arbitrary bounded
subset Q ⊂ C, the Hausdorff non-compact measure β satisfies

β(f(t, Q)) ≤ Kf (t) sup
−τ≤θ≤0

β(Q(θ)).

(H3) The function g : J × C → H satisfies that:
(i) For each t ∈ J , the function g(t, ·) : C → H is continuous; and for each v ∈ C,

the function g(·, v) : J → H is measurable.
(ii) There exist a continuous function n(t) ∈ L1(J,R+), and a continuous positive

nondecreasing function Θg : R+ → R+, such that

E‖g(t, v)‖2 ≤ n(t)Θg(E‖v‖2t ),

for arbitrary (t, v) ∈ J × C, and the function Θg satisfying

lim
r→∞

inf
Θg(r)

r
= 0.

(iii) There exists a positive function Kg(t) ∈ L1(J,R+), for arbitrary bounded
subset Q ⊂ C, the Hausdorff non-compact measure β satisfies

β(g(t, Q)) ≤ Kg(t) sup
−τ≤θ≤0

β(Q(θ)).

(H4) The function σ : J × C → LQ(K,H) satisfies the following:
(i) For each t ∈ J , the function σ(t, ·) : C → LQ(K,H) is continuous, and for

each v ∈ C, the function σ(·, v) : J → LQ(K,H) is measurable.
(ii) There exist a continuous function µ(t) ∈ L1(J,R+), and a continuous positive

nondecreasing function Θσ : R+ → R+, such that

E‖σ(t, v)‖2 ≤ µ(t)Θσ(E‖v‖2t ),

for arbitrary (t, v) ∈ J × C, and the function Θσ satisfying

lim
r→∞

inf
Θσ(r)

r
= 0.

(iii) There exists a positive function Kσ(t) ∈ C(J,R+), for arbitrary bounded
subset Q ⊂ C, the Hausdorff non-compact measure β satisfies

β(σ(t, Q)) ≤ Kσ(t) sup
−τ≤θ≤0

β(Q(θ)), K∗σ = sup
t∈J

Kσ(t).

(H5) E
{

max
i,k
{
∏k
j=i ‖bj(τj)‖}

}
< ∞, i.e., there exist constants M , for all τj ∈

Dj (j = 1, 2, . . .), such that

E
{

max
i,k
{
k∏
j=i

‖bj(τj)‖}
}
≤M.
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(H6) Let

H :=2N max{1,M}‖Kg‖L1(J,R+) + 2Ñ max{1, M̃}‖Kf‖L1(J,R+)

+ 2Ñ max{1,M}K∗σ
√

(T − t0)Tr(Q) < 1.

Theorem 3.1. If assumptions (H1)-(H6) are satisfied, then there exists at least
one mild solution of the system (1.1).

Proof. We define the operator Φ : B → B by Φx such that

(Φx)(t) = φ(t), t ∈ [t0 − τ, t0],

(Φx)(t) =

+∞∑
k=0

[ k∏
i=1

bi(τi)C(t− t0)φ(0) +

k∏
i

bi(τi)S(t− t0)[ϕ− g(0, φ)]

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

C(t− s)g(s, xs)ds+

∫ t

ξk

C(t− s)g(s, xs)ds

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

S(t− s)f(s, xs)ds+

∫ t

ξk

S(t− s)f(s, xs)ds

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

S(t− s)σ(s, xs)dW (s)

+

∫ t

ξk

S(t− s)σ(s, xs)dW (s)
]
I[ξk,ξk+1)(t), t ∈ [t0, T ].

Then the problem of finding mild solutions for problem (1.1) is reduced to finding
the fixed point of Φ. Let Br = {x ∈ B : ‖x‖2B ≤ r} stands for the closed ball with
center at x and radius r > 0 in B. We divide the proof into several steps:

Step I. We prove that there exits r such that Φ maps Br into Br.
For t ∈ J we have

E‖(Φx)(t)‖2 ≤5E
[ ∞∑
i=1

k∏
i=1

‖bi(τi)‖‖C(t− t0)‖‖φ(0)‖I[ξk,ξk+1)(t)
]2

+ 5E
[ ∞∑
i=1

k∏
i=1

‖bi(τj)‖‖ϕ− g(0, φ)‖I[ξk,ξk+1)(t)
]2

+ 5E
[ ∞∑
i=1

[ k∑
i=1

k∏
j=i

‖bj(τj)‖
∫ ξi

ξi−1

‖C(t− s)‖‖g(s, xs)‖ds

+

∫ t

ξk

‖C(t− s)‖‖g(s, xs)‖ds
]
I[ξk,ξk+1)(t)

]2
+ 5E

[ ∞∑
i=1

[ k∑
i=1

k∏
j=i

‖bj(τj)‖
∫ ξi

ξi−1

‖S(t− s)‖‖f(s, xs)‖ds

+

∫ t

ξk

‖S(t− s)‖‖f(s, xs)‖ds
]]
I[ξk,ξk+1)(t)

]2
+ 5E

[ ∞∑
i=1

[ k∑
i=1

k∏
j=i

‖bj(τj)‖
∫ ξi

ξi−1

‖S(t− s)‖‖σ(s, xs)‖dW (s)
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+

∫ t

ξk

‖S(t− s)‖‖σ(s, xs)‖dW (s)
]
I[ξk,ξk+1)(t)

]2
:= 5

5∑
i=1

Ri,

where

R1 ≤ N2E
{

max
k
{
k∏
i=1

‖bi(τi)‖}
}2
E‖φ(0)‖2 ≤ N2M2E‖φ(0)‖2,

R2 ≤ Ñ2E
{

max
k
{
k∏
i=1

‖bi(τi)‖}
}2

E‖ϕ− g(0, φ)‖2

≤M2Ñ2E‖ϕ− g(0, φ)‖2,

R3 ≤ N2E
{

max
i,k
{1,

k∏
j=i

‖bj(τj)‖}
}2

(T − t0)

∫ t

t0

E‖g(s, xs)‖2ds

≤ N2 max{1,M2}(T − t0)

∫ t

t0

n(t)Θg(E‖x‖2s)ds,

R4 ≤ Ñ2E
{

max
i,k
{1,

k∏
j=i

‖bj(τj)‖}
}2[ ∫ t

t0

E‖f(s, xs)‖ds
]2

≤ Ñ2 max{1,M2}(T − t0)

∫ t

t0

m(t)Θf (E‖x‖2s)ds,

R5 ≤ Ñ2E
{

max
i,k
{1,

k∏
j=i

‖bj(τj)‖}
}2

E
∥∥∫ t

t0

σ(s, xs)dW (s)
∥∥2

≤ Ñ2 max{1,M2}Tr(Q)

∫ t

t0

E‖σ(s, xs)‖2ds

≤ Ñ2 max{1,M2}Tr(Q)

∫ t

t0

µ(s)Θσ(E‖x‖2s)ds.

If we assume that Φ(Br) * Br, then for every positive constant r > 0, there
exists a xr ∈ Br, such that E‖(Φxr)‖2B > r. Therefore

r < sup
t0≤t≤T

E‖(Φxr)‖2t ≤5
[
N2M2E‖φ(0)‖2 +M2Ñ2E‖ϕ− g(0, φ)‖2

+N2 max{1,M2}(T − t0)‖n‖L1(J,R)Θg(r)

+ Ñ2 max{1,M2}(T − t0)‖m‖L1(J,R)Θf (r)

+ Ñ2 max{1,M2}Tr(Q)‖µ‖L1(J,R)Θσ(r)
]
. (3.2)

Divide both side of the above inequality by r, and taking r →∞.
Since

lim
r→∞

inf
Θg(r)

r
= 0, lim

r→∞
inf

Θf (r)

r
= 0, lim

r→∞
inf

Θσ(r)

r
= 0,

taking these into (3.2), it implies that 1 ≤ 0, which is a contradiction. Thus there
exists a r > 0, Φ(Br) ⊆ Br.
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Step II. We prove that Φ is continuous in Br. Let {xn} → x in Br (as n→∞),
then

E‖(Φxn)(t)− (Φx)(t)‖2

≤3E
∥∥ +∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

C(t− s)[g(s, xns )− g(s, xs)]ds

+

∫ t

ξk

C(t− s)[g(s, xns )− g(s, xs)]ds
]
I[ξk,ξk+1)(t)

∥∥2

+ 3E
∥∥ +∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

S(t− s)[f(s, xns )− f(s, xs)]ds

+

∫ t

ξk

S(t− s)[f(s, xns )− f(s, xs)]ds
]
I[ξk,ξk+1)(t)

∥∥2

+ 3E
∥∥ +∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

S(t− s)[σ(s, xns )− σ(s, xs)]dW (s)

+

∫ t

ξk

S(t− s)[σ(s, xns )− σ(s, xs)]dW (s)
]
I[ξk,ξk+1)(t)

∥∥2
.

By the continuity of functions g, f, σ in the assumptions of (H2)-(H4), and by
Lebesgue dominated theorem, for t ∈ J we have

E‖(Φxn)(t)−(Φx)(t)‖2≤N2 max{1,M2}(T − t0)2 sup
t0≤t≤T

E‖g(s, xnt )− g(s, xt)‖2

+ Ñ2 max{1,M2}(T − t0)2 sup
t0≤t≤T

E‖f(s, xns )− f(s, xs)‖2

+ Ñ2 max{1,M2}(T − t0) sup
t0≤t≤T

E‖σ(s, xns )− σ(s, xs)‖2

→ 0, (as n→∞).

Therefore, ‖(Φxn)−(Φx)‖2B → 0 (as n→∞), which implies that Φ is continuous
in Br.

Step III. We show that the operator Φ(Br) is equicontinuous on every Jk. Let
ξk ≤ t1 < t2 < ξk+1, k = 0, 1, 2, . . . , and x ∈ Br, then for any fixed x ∈ Br, we have

E‖(Φx)(t2)− (Φx)(t1)‖2

≤5E
∥∥ k∏
i=1

bi(τi)[C(t2 − t0)− C(t1 − t0)]φ(0)
∥∥2

+ 5E
∥∥ k∏
i=1

bi(τi)[S(t2 − t0)− S(t1 − t0)][ϕ− g(0, φ)]
∥∥2

+ 5E
∥∥ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

[C(t2 − s)− C(t1 − s)]g(s, xs)ds

+

∫ t1

ξk

[C(t2 − s)− C(t1 − s)]g(s, xs)ds+

∫ t2

t1

C(t2 − s)g(s, xs)ds
∥∥2
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+ 5E
∥∥ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

[S(t2 − s)− S(t1 − s)]f(s, xs)ds

+

∫ t1

ξk

[S(t2 − s)− S(t1 − s)]f(s, xs)ds+

∫ t2

t1

S(t2 − s)f(s, xs)ds
∥∥2

+ 5E
∥∥ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

[S(t2 − s)− S(t1 − s)]σ(s, xs)dW (s)

+

∫ t

ξk

[S(t2 − s)− S(t1 − s)]σ(s, xs)dW (s) +

∫ t2

t1

S(t2 − s)σ(s, xs)dW (s)
∥∥2
.

By the equicontinuity of C(t), S(t) of the assumption (H1), the assumptions of
(H2)-(H5), and Lebesgue dominated theorem, as t2 → t1, on every Jk we have

E‖(Φx)(t2)− (Φx)(t1)‖2 → 0.

This proves that (Φ(Br)) is equicontinuous on J .
Step IV. We show that the Mönch′s condition holds.
Let B = c̄o({0} ∪ Φ(Br)). For any D ⊂ B, without loss of generality, we

assume that D = {xn}∞n=1. Then it is easy to verify that Φ maps D into itself and
D ⊂ c̄o({0} ∪Φ(Br)) is equicontinuous on Jk. Now, we show that β(D) = 0, where
β is the Hausdorff Measure of noncompactness.

Here, for convenience, we denote Φ = Φ1 + Φ2 + Φ3 where

(Φ1x)(t) =

+∞∑
k=0

[ k∏
i=1

bi(τi)C(t− t0)φ(0) +

k∏
i=1

bi(τi)S(t− t0)[ϕ− g(0, φ)]

+

k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

C(t−s)g(s, xs)ds+

∫ t

ξk

C(t−s)g(s, xs)ds
]
I[ξk,ξk+1)(t),

(Φ2x)(t) =

+∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

S(t− s)f(s, xs)ds

+

∫ t

ξk

S(t− s)f(s, xs)ds
]
I[ξk,ξk+1)(t),

(Φ3x)(t) =

+∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

S(t− s)σ(s, xs)dW (s)

+

∫ t

ξk

S(t− s)σ(s, xs)dW (s)
]
I[ξk,ξk+1)(t).

By Lemma 2.4, Lemma 2.7 and the assumptions of (H1)-(H5), we have

β({(Φ1x
n)(t)}∞n=1) ≤ 2 max{1,M}N

∫ t

t0

β({g(s, xns )}∞n=1)ds

≤ 2 max{1,M}N
∫ t

t0

Kg(s) sup
−τ≤θ≤0

β({xns (θ)}∞n=1)ds

≤ 2N max{1,M}‖Kg‖L1(J,R+) sup
t∈J

β({xn(t)}∞n=1),
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β({(Φ2x
n)(t)}∞n=1) ≤ 2 max{1,M}Ñ

∫ t

t0

β({f(s, xns )}∞n=1)ds

≤ 2Ñ max{1,M}‖Kf‖L1(J,R+) sup
t∈J

β({xn(t)}∞n=1),

β({(Φ3x
n)(t)}∞n=1) ≤ max{1,M}Ñβ({

∫ t

t0

σ(s, xns )dW (s)}∞n=1)

≤ 2 max{1,M}Ñ
√

(T − t0)Tr(Q)Kσ(t) sup
−τ≤θ≤0

β({xnt (θ)}∞n=1)

≤ 2Ñ max{1,M}
√

(T − t0)Tr(Q)K∗σ sup
t∈J

β({xn(t)}∞n=1).

Thus,

β({(Φxn)(t)}∞n=1) ≤β({(Φ1x
n)(t)}∞n=1) + β({(Φ2x

n)(t)}∞n=1) + β({(Φ3x
n)(t)}∞n=1)

≤
[
2N max{1,M}‖Kg‖L1(J,R+) + 2Ñ max{1, M̃}‖Kf‖L1(J,R+)

+ 2Ñ max{1,M}K∗σ
√

(T − t0)Tr(Q)
]

sup
t∈J

β({xn(t)}∞n=1)

≤H sup
t∈J

β(D(t)).

By Lemma 2.4 and assumption (H6), we know

β(D) ≤ β(c̄o({0} ∪ Φ(D))) = β(Φ(D)) ≤ H sup
t∈J

β(D(t)) = Hβ(D) < β(D),

which implies β(D) = 0, the set D is a relatively compact set. By Lemma 2.8, Φ
has at least one fixed point x in Br. That is to say, the system (1.1) has at least a
mild solution. This completes the proof.

4. Exponential Stability

In this section, we study the exponential stability of system (1.1). In order to obtain
our exponential stability result, firstly, we establish the following delay integral
inequality.

Lemma 4.1. Assume that a function y : [t0 − τ,+∞) → [0,+∞) and there exist
some positive constants α, β and ηi(i = 1, 2, 3, 4) > 0 such that

y(t) ≤


η1e
−α(t−t0) + η2e

−β(t−t0) + η3

∫ t
t0
e−α(t−s) sup

θ∈[−τ,0]

y(s+ θ)ds

+η4

∫ t
t0
e−β(t−s) sup

θ∈[−τ,0]

y(s+ θ)ds, t ≥ t0,

η1e
−α(t−t0) + η2e

−β(t−t0), t ∈ [t0 − τ, t0],

(4.1)

holds. If η3
α + η4

β < 1, then

y(t) ≤ Ce−λ(t−t0), t ∈ [t0,+∞), (4.2)

where λ ∈ (0, α ∧ β) is a positive root of the algebra equation:

η3

α− λ
eλτ +

η4

β − λ
eλτ = 1, (4.3)

and C = max{η1 + η2,
η1(α−λ)

η3eλτet0(α−λ) ,
η2(β−λ)

η4eλτet0(β−λ) }.
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Proof. Let F (µ) = η3
α−λe

λτ + η4
β−λe

λτ − 1, and then from (4.3) and existence

theorem of the root, there exist a positive constant λ ∈ (0, α∧β), such that F (λ) = 0.
For any ε > 0, let

Cε = max{η1 + η2 + ε,
(η1 + ε)(α− λ)

η3eλτet0(α−λ)
,

(η1 + ε)(β − λ)

η4eλτet0(β−λ)
}. (4.4)

In order to prove this lemma, we claim that (4.2) implies:

y(t) ≤ Cεe−λ(t−t0), t ∈ [t0 − τ,+∞). (4.5)

Obviously, for any t ∈ (−τ + t0, t0], (4.5) holds. By contradiction, we assume that
there exists a t1 > t0 such that

y(t) < Cεe
−λ(t−t0), t ∈ [t0 − τ, t1) and y(t1) = Cεe

−λ(t1−t0), (4.6)

then

y(t1) ≤η1e
−α(t1−t0) + η2e

−β(t1−t0)

+ η3Cε

∫ t1

t0

e−α(t1−s) sup
θ∈[−τ,0]

e−λ(s+θ−t0)ds

+ η4Cε

∫ t1

t0

e−β(t1−s) sup
θ∈[−τ,0]

e−λ(s+θ−t0)ds

≤η1e
−α(t1−t0) + η2e

−β(t1−t0) + η3Cε

∫ t1

t0

e−α(t1−s)e−λ(−τ+s−t0)ds

+ η4Cε

∫ t1

t0

e−β(t1−s)e−λ(−τ+s−t0)ds

≤[η1 −
η3Cεe

λτet0(α−λ)

α− λ
]e−α(t1−t0) + [η2 −

η4Cεe
λτet0(β−λ)

β − λ
]e−β(t1−t0)

+ Cε[
η3

α− λ
eλτ +

η4

β − λ
eλτ ]e−λ(t1−t0). (4.7)

From the definition of λ and Cε, we have

η1 −
η3e

λτet0(α−λ)

α− λ
× Cε ≤ η1 −

η3e
λτ

α− λ
× (η1 + ε)(α− λ)

η3eλτet0(α−λ)

≤ −ε < 0,

η2 −
η4e

λτet0(β−λ)

β − λ
× Cε ≤ η2 −

η4e
λτ

β − λ
× (η2 + ε)(β − λ)

η4eλτet0(β−λ)

≤ −ε < 0,

and
η3

α− λ
eλτ +

η4

β − λ
eλτ = 1.

Thus, by (4.7), we see that y(t1) < Cεe
−λ(t−t0), which is contrary to (4.6).

Therefore (4.5) holds. Since ε is arbitrary small, (4.2) holds.
For system (1.1), we need the following assumptions:
(A1) There exist positive constants K > 0 and µ1, µ2 > 0 such that ‖C(t)‖ ≤

Ke−µ1t, ‖S(t)‖ ≤ Ke−µ2t, t ≥ 0.



Existence and exponential stability of mild . . . 75

(A2) There exist constants Lg, Lf , Lσ > 0, such that for any v1, v2 ∈ C, t ≥ t0,

E‖g(t, v1)− g(t, v2)‖2 ≤ LgE‖v1 − v2‖2t , E‖g(t, 0)‖ = 0;

E‖f(t, v1)− f(t, v2)‖2 ≤ LfE‖v1 − v2‖2t , E‖f(t, 0)‖ = 0;

E‖σ(t, v1)− σ(t, v2)‖2 ≤ LσE‖v1 − v2‖2t , E‖σ(t, 0)‖ = 0.

(A3) There exist constants M > 0, for all τj ∈ Dj (j = 1, 2, . . .), such that

E
{

max
i,k
{
k∏
j=i

‖bj(τj)‖}
}
≤M.

Theorem 4.1. Assume that (A1)-(A3) hold, then the mild solution of (1.1) is
exponentially stable in mean square provided that

5[max{1,M2}K2µ−2
1 Lg + max{1,M2}K2µ−1

2 (µ−1
2 Lf + LσTr(Q))] ≤ 1. (4.8)

Proof. From the definition of the mild solutions of system (1.1), we have

E‖x(t)‖2 ≤5E
[ +∞∑
k=0

[

k∏
i=1

‖bi(τi)‖‖C(t− t0)‖‖φ(0)‖I(ξk,ξk+1](t)
]2

+ 5E
[ +∞∑
k=0

[

k∏
i=1

‖bi(τi)‖S(t− t0)‖‖ϕ− g(0, φ)‖]I(ξk,ξk+1](t)
]2

+ 5E
[ +∞∑
k=0

[

k∑
i=1

k∏
j=i

‖bj(τj)‖
∫ ξi

ξi−1

‖C(t− s)‖‖g(s, xs)‖ds

+

∫ t

ξk

‖C(t− s)‖‖g(s, xs)‖ds]I(ξk,ξk+1](t)
]2

+ 5E
[ +∞∑
k=0

[

k∑
i=1

k∏
j=i

‖bj(τj)‖
∫ ξi

ξi−1

‖S(t− s)‖‖f(s, xs)‖ds

+

∫ t

ξk

‖S(t− s)‖‖f(s, xs)‖ds]I(ξk,ξk+1](t)
]2

+ 5E
[ +∞∑
k=0

[

k∑
i=1

k∏
j=i

‖bj(τj)‖
∫ ξi

ξi−1

‖S(t− s)‖‖σ(s, xs)‖dW (s)

+

∫ t

ξk

‖S(t− s)‖‖σ(s, xs)‖dW (s)]I(ξk,ξk+1](t)
]2

:= 5

5∑
i=1

Ui, (t ≥ t0),

(4.9)

where

U1 ≤M2K2E‖φ(0)‖2e−µ1(t−t0), (4.10)

U2 ≤ 2M2K2(E‖ϕ‖2 + LgE‖φ‖2t )e−µ2(t−t0), (4.11)

U3 ≤ max{1,M2}(
∫ t

t0

Ke−µ1(t−s)E‖g(s, xs)‖ds)2

≤ max{1,M2}K2µ−1
1 Lg

∫ t

t0

e−µ1(t−s)E‖x‖2sds,
(4.12)



76 L. Shu, X. Shu, Q. Zhu & F. Xu

U4 ≤ max{1,M2}(
∫ t

t0

Ke−µ2(t−s)E‖f(s, xs)‖ds)2

≤ max{1,M2}K2µ−1
2 Lf

∫ t

t0

e−µ2(t−s)E‖x‖2sds,
(4.13)

U5 ≤ max{1,M2}(
∫ t

t0

K2e−2µ2(t−s)E‖σ(s, xs)‖2Qds)

≤ max{1,M2}K2LσTr(Q)

∫ t

t0

e−µ2(t−s)E‖x‖2sds.
(4.14)

Then putting (4.10)-(4.14) into (4.9), we obtained that for t ∈ J ,

E‖x(t)‖2 ≤ 5M2K2E‖φ(0)‖2e−µ1(t−t0) + 10M2K2(E‖ϕ‖2 + LgE‖φ‖2t )e−µ2(t−t0)

+ 5 max{1,M2}K2µ−1
1 Lg

∫ t

t0

e−µ1(t−s) sup
θ∈[−τ,0]

E‖x(s+ θ)‖2ds

+ 5 max{1,M2}K2(µ−1
2 Lf + LσTr(Q))

∫ t

t0

e−µ2(t−s) sup
θ∈[−τ,0]

E‖x(s+ θ)‖2ds.

By Lemma 4.1 and (4.8), we obtain

E‖x‖2 ≤ Ce−λ(t−t0), t ∈ [t0,+∞),

where λ ∈ (0, µ1 ∧ µ2), and

C=max{5M2K2E‖φ(0)‖2 + 10M2K2(E‖ϕ‖2 + LgE‖φ‖2t ),
5M2K2E‖φ(0)‖2(µ1 − λ)[5eλτet0(µ1−λ) max{1,M2}K2µ−1

1 Lg]
−1,

10M2K2(E‖ϕ‖2+LgE‖φ‖2t )(µ2−λ)[5eλτet0(µ2−λ)

max{1,M2}K2(µ−1
2 Lf+LσTr(Q))]−1}.

This implies that the mild solution of system (1.1) is exponentially stable in
mean square moment. This completes the proof. �

5. An Application

In this section, we apply our results to a stochastic partial differential equations with
random impulses. We take the space H = L2([0, π]), Define A : D(A) ⊂ H → H

by A = ∂2

∂x2 , with domain

D(A) = {z ∈ H|z and
∂z

∂x
are absolutely continuous,

∂2z

∂x2
∈ H, z(0) = z(π) = 0}.

For z ∈ D(A), Az = −
∞∑
n=1

n2 < z, zn > zn, where {zn : n ∈ Z} is an orthonor-

mal basis of H, zn(x) := 1√
2π
einx n ∈ Z+, x ∈ [0, π]. We know that A gener-

ate strong continuous operators C(t) and S(t) in a Hilbert space H, such that
C(t)z =

∑∞
n=1 cos(nt) < z, zn > zn, and S(t)z =

∑∞
n=1 sin(nt)/n < z, zn > zn, for

t ∈ R. And we assume that S(t) is not a compact semigroup and β(S(t)D) ≤ β(D),
where D ∈ H denotes a bounded set, β is the Hausdorff measure of noncompactness.
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Consider the second-order neutral stochastic functional differential equation of
the form:

∂

∂t

[ ∂
∂t
z(t, x)− u1

5

∫ 0

−r
µ1(s)z(t+s, x)ds

]
=
[ ∂2

∂x2
z(t, x)+

u2

5

∫ 0

−r
µ2(s)z(t+s)ds)

]
dt+

u3

5

∫ 0

−r
µ3(s)z(t+ s)dW (t),

t ≥ t0, t 6= ξk, x ∈ [0, π],

z(ξk, x) = ρ(k)τkz(ξ
−
k , x), k = 1, 2, . . . ,

∂

∂t
z(ξk, x) = ρ(k)τk

∂

∂t
z(ξ−k , x),

z(t0, x) = φ(θ, x), θ ∈ [−r, 0], x ∈ [0, π], r > 0,

∂

∂t
z(t0, x) = ϕ(x), x ∈ [0, π],

z(t, 0) = z(t, π) = 0.

(5.1)

Let τk be a random variable defined on Dk ≡ (0, dk) where 0 < dk < +∞, for k =
1, 2, · · · . Suppose τi and τj are independent of each other as i 6= j for i, j = 1, 2, · · · .
ξ0 = t0 > 0 and ξk = ξk−1 +τk for k = 1, 2, · · · . W (t) denotes a standard cylindrical
Wiener process in H. Further more, let ρ be a function of k. µi : [−r, 0] → R are
positive functions and ui > 0 for i = 1, 2, 3. ‖C(t)‖, ‖S(t)‖ are bounded on R.

‖C(t)‖ ≤ e−π2t and ‖S(t)‖ ≤ e−π2t (t ≥ 0).

We assume that

(i) The function µ(θ) ≥ 0 is continuous on [−r, 0],
∫ 0

−r µ
2
i (θ)dθ <∞ (i = 1, 2, 3).

(ii) max
i,k

{∏k
j=iE[‖ρ(j)τj‖2]

}
< M .

Under the above assumptions, and by choosing some suitable functions µ1, µ2, µ3,ρ,

we can show that Lg = ru1

25

∫ 0

−r µ
2
1(θ)dθ, Lf = ru2

25

∫ 0

−r µ
2
2(θ)dθ, Lσ = ru3

25

∫ 0

−r µ
2
3(θ)dθ.

Hence the hypothesis of Theorem 4.1 holds. From Theorem 4.1, we know the ex-
ponential stability in mean square for mild solution of system (5.1) are obtained,
provided that

max{1,M2}ru1

π4

∫ 0

−r
µ2

1(θ)dθ+max{1,M2}[ru2

π4

∫ 0

−r
µ2

2(θ)dθ+
ru3

π2

∫ 0

−r
µ2

3(θ)dθ] < 5.

6. Conclusion

In this work, the existence and exponential stability results to second-order neutral
stochastic functional systems with random impulses has been presented. Using the
noncompact measurement and the Mönch fixed point theorem, the existence of mild
solutions has been proved. Here we applied a new noncompact measure criterion
for Itô integrals to solve the calculation of Itô integrals. The exponential stability
for the considered equations has been obtained by establishing integral inequality.
The control and optimization theory based on random impulses is our next research
topic. Further, we can also consider the case of random persistent impulses. For
some results on persistent impulsive effect on stability of functional systems we refer
to [12].
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