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SPREADING SPEEDS OF MONOSTABLE
EQUATIONS IN LOCALLY SPATIALLY

VARIATIONAL HABITAT WITH HYBRID
DISPERSAL
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Abstract In this paper, we consider a monostable model with hybrid dis-
persal. This model characterizes the time evolution of a population which
disperses both locally and nonlocally in locally spatially inhomogeneous me-
dia. It is shown that such equation has a spreading speed in every direction.
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1. Introduction

Population dynamics models are commonly used to describe the dispersal of species.
The current paper is concerned with spreading properties of species in locally spa-
tially variational environments or habitat with multiple dispersal strategies. The
following model characterizes the species adopting both random and nonlocal dis-
persal,

∂u(t, x)

∂t
= d[τ∆u(t, x) + (1− τ)Ku(t, x)] + u(t, x)f(x, u(t, x)), x ∈ RN (1.1)

where u(t, x) denotes the density of species at location x and time t. The expression

∆ = ΣNi=1
∂2

∂x2
i

is the Laplace operator in RN accounting for random dispersal of

species.
The nonlocal operator K is defined by

(Ku)(t, x) =

∫
RN

κ(|y − x|)u(t, y)dy − u(t, x) (1.2)

where κ = κ(r) is a smooth, decreasing function with compact support such that

υN

∫ ∞
0

κ(r)rN−1dr = 1 (1.3)

where υN denotes the area of the surface of the N -dimensional unit ball. Moreover,
d is a positive constant which measures the total number of dispersal individuals
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per unit time, the constant τ , (0 < τ ≤ 1), measures the total number of dispersal
individuals adopting random dispersal.

If τ = 1, then (1.1) is the classical reaction diffusion equation, so called random
dispersal equation,

ut(t, x) = d∆u(t, x) + u(t, x)f(x, u(t, x)), x ∈ RN (1.4)

which is broadly used to model the population dynamics of many species in un-
bounded environments, where f(x, u) represents the growth rate of the popula-
tion, which satisfies that f(x, u) < 0 for u � 1 and ∂uf(x, u) < 0 for u ≥ 0
(see [1, 2, 9, 17,19,20,31,40,52,53,55,56,59], etc.).

If τ = 0, then (1.1) is so called nonlocal dispersal equation,

ut(t, x) = d[

∫
RN

κ(y − x)u(t, y)dy − u(t, x)] + u(t, x)f(x, u(t, x)), x ∈ RN , (1.5)

where f(·, ·) is of the same property as f in (1.4) (see [3, 10–12, 18, 22, 27, 35, 36],
etc.).

When using (1.4) to model the population dynamics of a species, it is assumed
that the underlying environment is continuous and the dispersal of cells or organ-
isms are based on the hypothesis that the movement of the dispersing species can be
described as a random walk in which there is no correlation between steps. However,
dispersal of large organisms often involves mechanisms that may introduce corre-
lations in movements. To model the population dynamics of such species in the
case that the underlying environment is continuous, the nonlocal dispersal equation
(1.5) is often used. This paper propose to study a mixed dispersal strategy, that
is, a hybrid of random and non-local dispersal. We assume that a fraction of indi-
viduals in the population adopt random dispersal, while the rest fraction assumes
non-local dispersal. Some research has been done on the hybrid dispersal in the
spatially periodic habitat (see [14, 29, 30, 32], and [57]). Our main goal is to study
how the hybrid dispersal affects the spreading properties of a single species and
how the hybrid dispersal strategies will evolve in spatially locally inhomogeneous
environment (see H1 and H2).

Since the seminal works by Fisher [20] and Kolmogorov, Petrowsky, Piscunov [31]
on the following special case of (1.4),

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + u(t, x)(1− u(t, x)), x ∈ R. (1.6)

A vast number of research has been carried out toward the spatial spreading dynam-
ics of (1.4) and (1.5) with f(·, ·) being independent of the space variable or periodic
in the space variable, which reflects the spatial periodicity of the media. We refer
to [1, 2, 5, 28, 38, 39, 47, 54, 55], etc. for the study of (1.4) in the case that f(x, u) is
independent of x and refer to [4,6,21,23,26,41,43,44,56], etc. for the study of (1.4)
in the case that f(x, u) is periodic in x; refer to [15, 16, 37], etc. for the study of
(1.5) in the case that f(x, u) is independent of x and refer to [25,49–51], etc. for the
study of (1.5) in the case that f(x, u) is periodic in x and refer to [7,8,33,34,45,48],
etc. for the study of (1.4) and/or (1.5) in the case that f(t, x, u) is temporally
and/or spatially heterogeneous.

For instance, consider (1.4) and assume that f(x + piei, u) = f(x, u) for i =
1, 2, · · · , N , where pi > 0 (i = 1, 2, · · · , N) and

ei = (δi1, δi2, · · · , δiN ), δij = 1 if i = j and 0 if i 6= j.
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If the principal eigenvalue of the following eigenvalue problem associated to the
linearized equation of (1.4) at u = 0,{

∆u(x) + f(x, 0)u(x) = λu(x), x ∈ RN

u(x+ piei) = u(x), x ∈ RN ,
(1.7)

is positive, then (1.4) has a unique positive stationary solution u∗(·) with u∗(· +
piei) = u∗(·).

In this paper, we consider (1.1) in the case that the growth rates depend on the
space variable, but only when it is in some bounded subset of the underlying habitat,
which reflects the localized spatial inhomogeneity of the media. More precisely, we
assume

(H1) f : RN × R→ R is a C2 function, f(x, u) < 0 for all (x, u) ∈ RN × R+ with
u ≥ β0 for some β0 > 0, and ∂uf(x, u) < 0 for all (x, u) ∈ RN × R+.

(H2) f(x, u) = f0(u) for some C2 function f0 : R → R and all (x, u) ∈ RN × R
with ‖x‖ ≥ L0 for some L0 > 0, and f0(0) > 0.

Assume (H1) and (H2). Then (1.1) has the following limit equations as ‖x‖ →
∞,

ut(t, x) = d[τ∆u(t, x) + (1− τ)Ku(t, x)] + u(t, x)f0(u(t, x)), x ∈ RN . (1.8)

Equations (1.8) will play an important role in the study of (1.1). Equations (1.8)
has a unique positive constant stationary solution u0. We introduce some standing
notations and then state the main results of the paper.

We define X by

X = {u ∈ C(RN ,R) |u is uniformly continuous and bounded} (1.9)

with norm ‖u‖X = supx∈RN |u(x)|,
Let

X+ = {u ∈ X |u(x) ≥ 0 ∀x ∈ RN} (1.10)

and

X++ = {u ∈ X+ | inf
x∈RN

u(x) > 0}. (1.11)

Without occurring confusion, we may write ‖ · ‖X as ‖ · ‖. Assume (H1). By
general semigroup theory (see [24], [46]), for any u0 ∈ X, (1.4) has a unique local
solution u(t, ·;u0) with u(0, ·;u0) = u0(·). Moreover, if u0 ∈ X+, then u(t, ·;u0)
exist and u(t, ·;u0) ∈ X+ for all t ≥ 0 (see Proposition 2.2).

Let

SN−1 = {ξ ∈ RN | ‖ξ‖ = 1}. (1.12)

For given ξ ∈ SN−1 and u ∈ X+, we define

lim inf
x·ξ→−∞

u(x) = lim inf
r→−∞

inf
x∈RN ,x·ξ≤r

u(x).

For given u : [0,∞)× RN → R and c > 0, we define

lim inf
x·ξ≤ct,t→∞

u(t, x) = lim inf
t→∞

inf
x∈RN ,x·ξ≤ct

u(t, x),
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lim sup
x·ξ≥ct,t→∞

u(t, x) = lim sup
t→∞

sup
x∈RN ,x·ξ≥ct

u(t, x).

The notions lim sup
|x·ξ|≤ct,t→∞

u(t, x), lim sup
|x·ξ|≥ct,t→∞

u(t, x), lim sup
‖x‖≤ct,t→∞

u(t, x),

and lim sup
‖x‖≥ct,t→∞

u(t, x) are defined similarly. We define X+(ξ) by

X+(ξ) = {u ∈ X+ | lim inf
x·ξ→−∞

u(x) > 0, u(x) = 0 for x · ξ � 1}. (1.13)

Definition 1.1 (Spatial spreading speed). For given ξ ∈ SN−1, a real number
c∗(ξ) is called the spatial spreading speed of (1.1) in the direction of ξ if for any
u0 ∈ X+(ξ),

lim inf
x·ξ≤ct,t→∞

u(t, x;u0) > 0 ∀c < c∗(ξ)

and
lim sup

x·ξ≥ct,t→∞
u(t, x;u0) = 0 ∀c > c∗(ξ).

Our objective is to explore the spatial spreading dynamics of (1.1) with localized
spatial inhomogeneity. The main results of this paper are stated in the following
two theorems.

Theorem 1.1 (Existence and characterization of spreading speeds). Assume (H1)
and (H2). Then for any given ξ ∈ SN−1, (1.1) has a positive spreading speed c∗(ξ)
in the direction of ξ. Moreover, for any u0 ∈ X+(ξ),

lim inf
x·ξ≤ct,t→∞

|u(t, x;u0)− u∗(x)| = 0 ∀c < c∗(ξ), (1.14)

and
c∗(ξ) = c0(ξ)

where

c0(ξ) = inf
µ>0

f0(0) + µ2

µ
= 2
√
f0(0), if τ = 1 (1.15)

c0(ξ) = inf
µ>0

∫
RN e

−µz·ξκ(z)dz − 1 + f0(0)

µ
, if τ = 0 (1.16)

and
are the spatial spreading speeds of (1.8) in the direction of ξ.

Theorem 1.2 (Spreading features of spreading speeds). Assume (H1) and (H2).
Then for any given ξ ∈ SN−1, the following hold.

(1) For each u0 ∈ X+ satisfying that u0(x) = 0 for x ∈ RN with |x · ξ| � 1,

lim sup
|x·ξ|≥ct,t→∞

u(t, x;u0) = 0 ∀c > max{c∗(ξ), c∗(−ξ)}.

(2) For each σ > 0, r > 0, and u0 ∈ X+ satisfying that u0(x) ≥ σ for x ∈ RN
with |x · ξ| ≤ r,

lim sup
|x·ξ|≤ct,t→∞

|u(t, x;u0)− u∗(x)| = 0 ∀0 < c < min{c∗(ξ), c∗(−ξ)}.
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(3) For each u0 ∈ X+ satisfying that u0(x) = 0 for x ∈ RN with ‖x‖ � 1,

lim sup
‖x‖≥ct,t→∞

u(t, x;u0) = 0 ∀c > sup
ξ∈SN−1

c∗(ξ).

(4) For each σ > 0, r > 0, and u0 ∈ X+ satisfying that u0(x) ≥ σ for ‖x‖ ≤ r,

lim sup
‖x‖≤ct,t→∞

|u(t, x;u0)− u∗(x)| = 0 ∀0 < c < inf
ξ∈SN−1

c∗(ξ).

To indicate the dependence of u∗(·) and c∗(ξ) on f , we may sometime write
u∗(·) and c∗(ξ) as u∗(·; f(·, ·)) and c∗(ξ; f(·, ·)), respectively.

The rest of the paper is organized as follows. In section 2, we present some
preliminary materials to be used in later sections. Section 3 is devoted to the study
of spreading speeds of (1.1). Theorem 1.1 and Theorem 1.2 are proved in this
section.

2. Preliminary

In this section, we present some preliminary materials to be used in later sections,
including some basic properties of solutions of (1.1); principal eigenvalue theories
for spatially periodic dispersal operators with random, and nonlocal; and spatial
spreading dynamics of KPP equations in spatially periodic media.

2.1. Classic properties of Monostable equations

In this subsection, we present some basic properties of solutions of (1.1), includ-
ing comparison principle, global existence, convergence in open compact topology,
and decreasing of the so called part metric along the solutions. Throughout this
subsection, we assume (H1).

Let X be as in (1.9). For given u0 ∈ X, let u(t, ·;u0) be the (local) solution of
(1.4) with u(0, ·;u0) = u0(·).

Let X+ and X++ be as in (1.10) and (1.11). For given u, v ∈ X, we define

u ≤ v (u ≥ v) if v − u ∈ X+ (u− v ∈ X+) (2.1)

and
u� v (u� v) if v − u ∈ X++ (u− v ∈ X++). (2.2)

For given continuous and bounded function u : [0, T ) × RN → R, it is called a
super-solution (sub-solution) of (1.1) on [0, T ) if

ut(t, x) ≥ (≤)d[τ∆u(t, x)+(1−τ)Ku(t, x)]+u(t, x)f(x, u(t, x)) ∀(t, x) ∈ (0, T )×RN .

Proposition 2.1 (Comparison principle). Assume (H1).

(1) Suppose that u1(t, x) and u2(t, x) are sub- and super-solutions of (1.1) on
[0, T ) with u1(0, ·) ≤ u2(0, ·). Then u1(t, ·) ≤ u2(t, ·) for t ∈ (0, T ). Moreover,
if u1(0, ·) 6= u2(0, ·), then u1(t, x) < u2(t, x) for x ∈ RN , and t ∈ (0, T ).

(2) If u01, u02 ∈ X and u01 ≤ u02, u01 6= u02 , then u(t, x;u01) < u(t, x;u02) for
all x ∈ RN and t > 0 at which both u(t, ·;u01) and u(t, ·;u02) exist.
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(3) If u01, u02 ∈ X and u01 � u02, then u(t, ·;u01) � u(t, ·;u02) for t > 0 at
which both u(t, ·;u01) and u(t, ·;u02) exist.

Proof. (1) The case τ = 1 follows from comparison principle for parabolic equa-
tions. The case τ = 0 follows from [49, Propositions 2.1 and 2.2].

(2) follows from (1).
(3) We provide a proof for the case τ = 0. Other cases can be proved similarly.

Take any T > 0 such that both u(t, ·;u01) and u(t, ·;u02) exist on [0, T ]. It suffices
to prove that u(t, ·;u02) � u(t, ·;u01) for t ∈ [0, T ]. To this end, let w(t, x) =
u(t, x;u02)− u(t, x;u01). Then w(t, x) satisfies the following equation,

wt(t, x) =

∫
RN

κ(y − x)w(t, y)dy − w(t, x) + a(t, x)w(t, x),

where

a(t, x) =f(x, u(t, x;u02))

+ u(t, x;u01)

∫ 1

0

∂uf(x, su(t, x;u02) + (1− s)u(t, x;u01))ds.

Let M > 0 be such that M ≥ supx∈RN ,t∈[0,T ](1− a(t, x)) and w̃(t, x) = eMtw(t, x).
Then w̃(t, x) satisfies

w̃t(t, x) =

∫
RN

κ(y − x)w̃(t, y)dy + [M − 1 + a(t, x)]w̃(t, x).

Let M : X → X be defined by

(Mu)(x) =

∫
RN

κ(y − x)u(y)dy for u ∈ X. (2.3)

Then M generates an analytic semigroup on X and

w̃(t, ·) = eKt(u02 − u01) +

∫ t

0

eK(t−τ)(M − 1 + a(τ, ·))w̃(τ, ·)dτ.

Observe that eKtu0 ≥ 0 for any u0 ∈ X+ and t ≥ 0 and eKtu0 � 0 for any
u0 ∈ X++ and t ≥ 0. Observe also that u02 − u01 ∈ X++. By (2), w̃(τ, ·) ≥ 0 and
hence (M − 1 +a(τ, ·))w̃(τ, ·) ≥ 0 for τ ∈ [0, T ]. It then follows that w̃(t, ·)� 0 and
then w(t, ·)� 0 (i.e. u(t, ·;u02)� u(t, ·;u01)) for t ∈ [0, T ].

Proposition 2.2 (Global existence). Assume (H1). For any given u(t, ·;u0) exists
for all t ≥ 0.

Proof. Let u0 ∈ X+ be given. There is M � 1 such that 0 ≤ u0(x) ≤ M and
f(x,M) < 0 for all x ∈ RN . Then by Proposition 2.1,

0 ≤ u(t, ·;u0) ≤M

for any t > 0 at which u(t, ·;u0) exists. It is then not difficult to prove that for
any T > 0 such that u(t, ·;u0) exists on (0, T ), limt→T u(t, ·;u0) exists in X. This
implies that u(t, ·;u0) exists and u(t, ·;u0) ≥ 0 for all t ≥ 0.
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For given u, v ∈ X++, define

ρ(u, v) = inf{lnα | 1

α
u ≤ v ≤ αu, α ≥ 1}.

Observe that ρ(u, v) is well defined and there is α ≥ 1 such that ρ(u, v) = lnα.
Moreover, ρ(u, v) = ρ(v, u) and ρ(u, v) = 0 iff u ≡ v. In literature, ρ(u, v) is called
the part metric between u and v.

Proposition 2.3. For given u0, v0 ∈ X++ with u0 6= v0, ρ(u(t, ·;u0), u(t, ·; v0)) is
non-increasing in t ∈ (0,∞).

Proof. It can be proved by similar argument in [33, Proposition 3.3]. For com-
pleteness, we provide a proof here.

First, note that there is α∗ > 1 such that ρ(u0, v0) = lnα∗ and 1
α∗u0 ≤ v0 ≤

α∗u0. By Proposition 2.1,

u(t, ·; v0) ≤ u(t, ·;α∗u0) for t > 0.

Let v(t, x) = α∗u(t, x;u0). Then

vt(t, x) = d[τ∆v(t, x) + (1− τ)Kv(t, x)] + v(t, x)f(x, u(t, x;u0))

= d[τ∆v(t, x) + (1− τ)Kv(t, x)]

+ v(t, x)f(x, v(t, x)) + v(t, x)f(x, u(t, x;u0))− v(t, x)f(x, v(t, x))

> d[τ∆v(t, x) + (1− τ)Kv(t, x)] + v(t, x)f(x, v(t, x)).

This together with Proposition 2.1 implies that

u(t, ·;α∗u0) ≤ α∗u(t, ·;u0) for t > 0

and then
u(t, ·; v0) ≤ α∗u(t, ·;u0) for t > 0.

Similarly, it can be proved that

1

α∗
u(t, ·;u0) ≤ u(t, ·; v0) for t > 0.

It then follows that

ρ(u(t, ·;u0), u(t, ·; v0)) ≤ ρ(u0, v0) ∀t > 0

and hence

ρ(u(t2, ·;u0), u(t2, ·; v0)) ≤ ρ(u(t1, ·;u0), u(t1, ·; v0)) ∀0 ≤ t1 < t2.

Proposition 2.4 (Convergence on compact subsets). Suppose that u0n, u0 ∈ X+

(n = 1, 2, · · · ), {‖u0n‖} is bounded, and u0n(x)→ u0(x) as n→∞ uniformly in x
on bounded sets.

(1) If zn, z
∗ ∈ RN (n = 1, 2, · · · ) are such that f(x+ zn, u)→ f(x+ z∗, u) as n→

∞ uniformly in (x, u) on bounded sets, then for each t > 0, u(t, x;u0n, f(· +
zn, ·))→ u(t, x;u0, f(·+ z∗, ·)) as n→∞ uniformly in x on bounded sets.

(2) If zn ∈ RN (n = 1, 2, · · · ) are such that f(x + zn, u) → f0(u) as n → ∞
uniformly in (x, u) on bounded sets, then for each t > 0, u(t, x;u0n, f(· +
zn, ·))→ u(t, x;u0, f

0(·)) as n→∞ uniformly in x on bounded sets.

Proof. It can be proved by similar argument in [33, Proposition 3.4].
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2.2. Principal eigenvalues of spatially periodic dispersal oper-
ators

In this subsection, we present some principal eigenvalue theories for spatially peri-
odic dispersal operators with hybrid dispersals.

Let p = (p1, p2, · · · , pN ) with p > 0 for i = 1, 2, · · · , N . We define the Banach
spaces Xp by

Xp = {u ∈ C(RN ,R) |u(·+ piei) = u(·), i = 1, ..., N} (2.4)

with norm ‖u‖Xp = maxx∈RN |u(x)|.
Let

X+
p = {u ∈ Xp |u(x) ≥ 0 ∀x ∈ RN} (2.5)

and
X++
p = {u ∈ Xp |u(x) > 0 ∀x ∈ RN}. (2.6)

We will denote I as an identity map on the Banach space under consideration.
For given ξ ∈ SN−1, µ ∈ R, a ∈ Xp, consider the following eigenvalue problems,{

Ou(x) = λu(x), x ∈ RN

u(x+ piei) = u(x), x ∈ RN ,
(2.7)

where

Ou(x) := τ∆u(x)+

(1− τ)[

∫
RN

e−µ(y−x)·ξκ(y − x)u(y)dy − u(x)]− 2τµξ · ∇u(x) + (a(x) + τµ2)u(x),

(2.8)
and O : D(O) ⊂ Xp → Xp.

Observe that if τ = 1,

(Ou)(x) = ∆u(x)− 2µξ · ∇u(x) + (a(x) + µ2)u(x) ∀u ∈ D(O) ⊂ Xp. (2.9)

If τ = 0,

(Ou)(x) =

∫
RN

e−µ(y−x)·ξκ(y − x)u(y)dy − u(x) + a(x)u(x) ∀u ∈ D(O) ⊂ Xp.

(2.10)
Let σ(O) be the spectrum of O.

Definition 2.1. Let µ ∈ R, and ξ ∈ SN−1 be given. A real number λ(µ, ξ, a) ∈ R is
called the principal eigenvalue of O if it is an isolated algebraic simple eigenvalue of
O with a positive eigenfunction and for any λ ∈ σ(O)\{λ(µ, ξ, a)}, Reλ < λ(µ, ξ, a).

For given µ ∈ R, and ξ ∈ SN−1, let

λ0(µ, ξ, a) = sup{Reµ |µ ∈ σ(O)}. (2.11)

Observe that for any µ ∈ R and ξ ∈ SN−1, O generates an analytic semigroup
{T (t)}t≥0 in Xp and moreover, T (t) is strongly positive (that is, T (t)u0 ≥ 0 for
any t ≥ 0 and u0 ∈ X+

p and T (t)u0 � 0 for any t > 0 and u0 ∈ X+
p \ {0}). Then

by [42, Proposition 4.1.1], r(T (t)) ∈ σ(T (t)) for any t > 0, where r(T (t)) is the
spectral radius of T (t). Hence by the spectral mapping theorem (see [13, Theorem
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2.7]), λ0(µ, ξ, a) ∈ σ(O). Observe also that λ0(0, ξ, a) are independent of ξ ∈ SN−1.
We may then put

λ0(a) = λ0(0, ξ, a).

It is well known that the principal eigenvalue λ(µ, ξ, a) in (2.9) exist for all µ ∈ R
and ξ ∈ SN−1 and

λ(µ, ξ, a) = λ0(µ, ξ, a).

The principal eigenvalue of O in (2.10) may not exist (see [49] for examples). If the
principal eigenvalue λ(µ, ξ, a) exists in (2.10), then

λ(µ, ξ, a) = λ0(µ, ξ, a).

Regarding the existence of principal eigenvalue of O in (2.10), the following propo-
sition is proved in [49,50].

Proposition 2.5 (Existence of principal eigenvalue). (1) If a ∈ CN (RN ,R)∩Xp

and the partial derivatives of a(x) up to order N − 1 are zero at some x0
satisfying that a(x0) = maxx∈RN a(x), then the principal eigenvalue λ(µ, ξ, a)
of O exists for all µ ∈ R and ξ ∈ SN−1.

(2) If a(x) satisfies that maxx∈RN a(x)−minx∈RN a(x) < infξ∈SN−1

∫
z·ξ≤0 k(z)dz,

then the principal eigenvalue λ(µ, ξ, a) of O exists for all µ ∈ R and ξ ∈ SN−1.

Proof. (1) It follows from [49, Theorem B].

(2) It follows from [50, Theorem B
′
].

Let â be the average of a(·), that is,

â =
1

|D|

∫
D

a(x)dx for (2.12)

where

D = [0, p1]× [0, p2]× · · · × [0, pN ] ∩ RN (2.13)

and

|D| = p1 × p2 × · · · × pN for (2.14)

By Proposition 2.5 (2), λ(µ, ξ, â) exists for all µ ∈ R and ξ ∈ SN−1. The following
proposition shows a relation between λ0(µ, ξ) and λ0(µ, ξ, â).

Proposition 2.6 (Influence of spatial variation). For given µ ∈ R, and ξ ∈ SN−1,
there holds

λ0(µ, ξ) ≥ λ0(µ, ξ, â).

Proof. It follow from [25, Theorem 2.1].

We remark that λ(µ, ξ, â)(= λ0(µ, ξ, â)) have the following explicit expressions,

λ(µ, ξ, â) = τµ2 + (1− τ)
( ∫

RN
e−µz·ξκ(z)dz − 1

)
+ â. (2.15)
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2.3. Monostable equations in spatially periodic media

In this subsection, we recall some spatial spreading dynamics of KPP equations in
spatially periodic media.

Consider

ut(t, x) = d[τ∆u(t, x) + (1− τ)Ku(t, x)] + u(t, x)g(x, u(t, x)), x ∈ RN , (2.16)

where g(·, ·) are periodic in the first variable and monostable in the second variable.
More precisely, we assume

(P1) g : RN × R → R is a C2 function, g(x+ plel, u) = g(x, u), where pl > 0 and
g(x, u) < 0 for all (x, u) ∈ RN ×R+ with u ≥ α0 for some α0 > 0 and ∂ug(x, u) < 0
for all (x, u) ∈ RN × R+.

(P2) λ0(g(·, 0)) > 0.

Assume (P1). Similarly, by general semigroup theory, for any u0 ∈ X, (2.16) has
a unique (local) solution u(t, ·;u0, g(·, ·))(∈ X) with initial data u0(·). Moreover, if
u0 ∈ Xp, then u(t, ·;u0, g(·, ·)) ∈ Xp for any t > 0 at which u(t, ·;u0, g(·, ·)) exists.
By Proposition 2.1, if u0 ∈ X+, then u(t, ·;u0, g(·, ·)) exists and u(t, ·;u0, g(·, ·)) ∈
X+ for all t > 0.

Proposition 2.7 (Spatially periodic positive stationary solution). Assume (P1)
and (P2). Then (2.16) has a unique spatially periodic stationary solution

u∗(·; g(·, ·)) ∈ X++
p which is globally asymptotically stable with respect to perturba-

tions in X+
p \ {0}.

Proof. It follows from [58, Theorem 2.3] and [50, Theorem C].

Proposition 2.8 (Spreading speeds). Assume (P1) and (P2). Then for any ξ ∈
SN−1, (2.16) has a positive spreading speed c∗(ξ; g1(·, ·)) in the direction of ξ. More-
over,

c∗(ξ; g(·, ·)) = inf
µ>0

λ0(µ, ξ, g(·, 0))

µ

and the following hold.

(1) For each u0 ∈ X+ satisfying that u0(x) = 0 for x ∈ RN with |x · ξ| � 1,

lim sup
|x·ξ|≥ct,t→∞

u(t, x;u0, g(·, ·)) = 0 ∀c > max{c∗(ξ; g(·, ·)), c∗(−ξ; g(·, ·))}.

(2) For each σ > 0, r > 0, and u0 ∈ X+ satisfying that u0(x) ≥ σ for x ∈ RN
with |x · ξ| ≤ r,

lim sup
|x·ξ|≤ct,t→∞

|u(t, x;u0, g(·, ·))− u∗(x; g(·, ·))| = 0

for all 0 < c < min{c∗(ξ; g(·, ·)), c∗(−ξ; g(·, ·))}.

(3) For each u0 ∈ X+ satisfying that u0(x) = 0 for x ∈ RN with ‖x‖ � 1,

lim sup
‖x‖≥ct,t→∞

u(t, x;u0, g(·, ·)) = 0 ∀c > sup
ξ∈SN−1

c∗(ξ; g(·, ·)).
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(4) For each σ > 0, r > 0, and u0 ∈ X+ satisfying that u0(x) ≥ σ for x ∈ RN
with ‖x‖ ≤ r,

lim sup
‖x‖≤ct,t→∞

|u(t, x;u0, g(·, ·))−u∗(x; g(·, ·))| = 0 ∀0 < c < inf
ξ∈SN−1

c∗(ξ; g(·, ·)).

Proof. It follows from [50, Theorems D and E].
Let ĝ(u) be the spatial average of g(x, u), that is,

ĝ(u) =
1

|D|

∫
D

g(x, u)dx for (2.17)

where D, |D| is as in (2.13) and (2.14).
Assume

(P3) ĝ(0) > 0.

Observe that λ(ĝ(0)) = ĝ(0). Then by Proposition 2.6, (P3) implies (P2).

Proposition 2.9 (Influence of spatial variation). Assume (P1) and (P3). Then
for any ξ ∈ SN−1,

c∗(ξ; g(·, ·)) ≥ c∗(ξ; ĝ(·)).

Proof. Let a(·) = g(·, 0). By Proposition 2.8,

c∗(ξ; g(·, ·)) = inf
µ>0

λ0(µ, ξ, a)

µ
and c∗(ξ; ĝ(·)) = inf

µ>0

λ0(µ, ξ, â)

µ
.

By Proposition 2.6,
λ0(µ, ξ, a) ≥ λ0(µ, ξ, â).

The proposition then follows.

3. Spatial Spreading Speeds and Proofs of Theo-
rems 1.1 and 1.2

In this section, we explore the spreading speeds of (1.1), and prove Theorems 1.1
and 1.2. Throughout this section, we assume (H1) and (H2).

We first prove four lemmas.

Lemma 3.1. For any ε > 0, there are p = (p1, p2, · · · , pN ) ∈ NN and h ∈ Xp ∩
CN (RN ,R) such that

f(x, 0) ≥ h(x) for x ∈ RN ,

ĥ ≥ f0(0)− ε (hence λ0(h(·)) ≥ f0(0)− ε),

and the partial derivatives of h(x) up to order N −1 are zero at some x0 ∈ RN with

h(x0) = maxx∈RN h(x), where ĥ is the average of h(·) (see (2.12) for the definition).

Proof. By (H2), there is L0 > 0 such that f(x, 0) = f0(0) for x ∈ RN with ‖x‖ ≥
L0. Let M0 = infx∈RN f(x, 0). Let h0 : R → [0, 1] be a smooth function such that
h0(s) = 1 for |s| ≤ 1 and h0(s) = 0 for |s| ≥ 2. For any p = (p1, p2, · · · , pN ) ∈ NN
with pj > 4L0, let h ∈ Xp ∩ CN (RN ,R) be such that

h(x) = f0(0)− h0
(‖x‖2
L2
0

)
(f0(0)−M0)
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for
x ∈

(
[−p1

2
,
p1
2

]× [−p2
2
,
p2
2

]× · · · × [−pN
2
,
pN
2

]
)
∩ RN .

Then
f(x, 0) ≥ h(x) ∀x ∈ RN .

It is clear that the partial derivatives of h(x) up to order N − 1 are zero at some
x0 ∈ RN with h(x0) = maxx∈RN h(x)(= f0(0)). For given ε > 0, choosing pj � 1,
we have

ĥ > f0(0)− ε.

By Proposition 2.6, λ0(h(·)) ≥ λ0(ĥ) = ĥ and hence

λ0(h(·)) ≥ f0(0)− ε.

The lemma is thus proved.

Lemma 3.2. Suppose that u∗(·) ∈ X++ and u = u∗(·) is a stationary solution of
(1). Then

u∗(x)→ u0 as ‖x‖ → ∞.

Proof. Assume that u∗(x) 6→ u0 as ‖x‖ → ∞. Then there are ε0 > 0 and xn ∈ RN
such that ‖xn‖ → ∞ and

|u∗(xn)− u0| ≥ ε0 for n = 1, 2, · · · .

By the uniform continuity of u∗(x) in x ∈ RN , without loss of generality, we may
assume that there is a continuous function ũ∗ : RN → [σ0,M0] for some σ0,M0 > 0
such that

u(x+ xn)→ ũ∗(x)

as n → ∞ uniformly in x on bounded sets. By the Lebesgue Dominated Conver-
gence Theorem, we have

τ∆ũ∗(x) + (1− τ)[

∫
RN

κ(y − x)ũ∗(y)dy − ũ∗(x)] + ũ∗(x)f0(ũ∗(x)) = 0 ∀x ∈ RN .

Since ũ∗ ∈ X++, by Proposition 2.7 again, we have ũ∗(x) ≡ u0 and then u∗(xn)→
u0 as n→∞. This is a contradiction. Therefore u∗(x)→ u0 as ‖x‖ → ∞.

Lemma 3.3. Let ξ ∈ SN−1, c > 0, and u0 ∈ X+ be given.

(1) If lim infx·ξ≤ct,t→∞ u(t, x;u0) > 0, then for any 0 < c
′
< c,

lim sup
x·ξ≤c′ t,t→∞

|u(t, x;u0)− u∗(x)| = 0.

(2) If lim inf |x·ξ|≤ct,t→∞ u(t, x;u0) > 0, then for any 0 < c
′
< c,

lim sup
|x·ξ|≤c′ t,t→∞

|u(t, x;u0)− u∗(x)| = 0.

(3) If lim inf‖x‖≤ct,t→∞ u(t, x;u0) > 0, then for any 0 < c
′
< c,

lim sup
‖x‖≤c′ t,t→∞

|u(t, x;u0)− u∗(x)| = 0.
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Proof. (1) Suppose that lim infx·ξ≤ct,t→∞ u(t, x;u0) > 0. Then there are δ and
T > 0 such that

u(t, x;u0) ≥ δ ∀(t, x) ∈ R+ × RN , x · ξ ≤ ct, t ≥ T.

Assume that the conclusion of (1) is not true. Then there are 0 < c
′
< c, ε0 > 0,

xn ∈ RN , and tn ∈ R+ with xn · ξ ≤ c
′
tn and tn →∞ such that

|u(tn, xn;u0)− u∗(xn)| ≥ ε0 ∀n ≥ 1. (3.1)

Without loss of generality, we may assume that xn → x∗ as n → ∞ in the case
that {‖xn‖} is bounded (this implies that f(x+ xn, u)→ f(x+ x∗, u) uniformly in
(x, u) in bounded sets) and f(x+ xn, u)→ f0(u) as n→∞ uniformly in (x, u) on
bounded sets in the case that {‖xn‖} is unbounded.

Let ũ0 ∈ X+,
ũ0(x) = δ ∀x ∈ RN .

There is T̃ > 0 such that

|u(T̃ , x; ũ0)− u∗(x)| < ε0 ∀x ∈ RN , (3.2)

|u(T̃ , x; ũ0, f(·+ x∗, ·))− u∗(x+ x∗)| < ε0
2
, (3.3)

and
|u(T̃ , x; ũ0, f

0)− u0| < ε0
2
. (3.4)

Without loss of generality, we may assume that tn − T̃ ≥ T for n ≥ 1. Let

ũ0n ∈ X+ be such that ũ0n(x) = δ for x · ξ ≤ c
′
+c
2 (tn − T̃ ), 0 ≤ ũ0n(x) ≤ δ for

c
′
+c
2 (tn − T̃ ) ≤ x · ξ ≤ c(tn − T̃ ), and ũ0n(x) = 0 for x · ξ ≥ c(tn − T̃ ). Then

u(tn − T̃ , ·;u0) ≥ ũ0n(·)

and hence

u(tn, xn;u0) = u(T̃ , xn;u(tn − T̃ , ·;u0))

= u(T̃ , 0;u(tn − T̃ , ·+ xn;u0), f(·+ xn, ·))
≥ u(T̃ , 0; ũ0n(·+ xn), f(·+ xn, ·)). (3.5)

Observe that ũ0n(x + xn) → ũ0 as n → ∞ uniformly in x on bounded sets. In
the case that f(x+ xn, u)→ f0(u), by Proposition 2.4,

u(T̃ , 0; ũ0n(·+ xn), f(·+ xn, ·))→ u(T̃ , 0; ũ0, f
0(·))

as n→∞. By (3.4) and (3.5),

u(tn, xn;u0) > u0 − ε0/2 for n� 1. (3.6)

By Lemma 3.2,
u0 > u∗(xn)− ε0/2 for n� 1. (3.7)

By (3.2), (3.6), and (3.7),

|u(tn, xn;u0)− u∗(xn)| < ε0 for n� 1.
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This contradicts to (3.1).
In the case that xn → x∗, by Proposition 2.4 again,

u(T̃ , 0; ũ0n(·+ xn), f(·+ xn, ·))→ u(T̃ , 0; ũ0, f(·+ x∗, ·))

as n→∞. By (3.3) and (3.5),

u(tn, xn;u0) > u∗(x∗)− ε0/2 for n� 1. (3.8)

By the continuity of u∗(·),

u∗(x∗) > u∗(xn)− ε0/2 for n� 1. (3.9)

By (3.2), (3.8), and (3.9),

|u(tn, xn;u0)− u∗(xn)| < ε0 for n� 1.

This contradicts to (3.1) again.
Hence

lim
x·ξ≤c′ t,t→∞

|u(t, x;u0)− u∗(x)| = 0

for all 0 < c
′
< c.

(2) It can be proved by the similar arguments as in (1).
(3) It can also be proved by the similar arguments as in (1).

Lemma 3.4. Let M > 0 be such that f(x, u) < 0 for x ∈ RN , u ≥ M . Then
for any ε > 0, there are p ∈ NN and g : RN × R → R such that for any u ∈ R,
g(·, u) ∈ Xp, g(·, ·) satisfies (P1) and (P3), and

f(x, u) ≥ g(x, u) ∀x ∈ RN , u ∈ [0,M ],

ĝ(0) ≥ f0(0)− ε,

where ĝ(·) is as in (2.17).

Proof. By Lemma 3.1, for any ε > 0, there are p ∈ NN and h(·) ∈ Xp∩CN (RN ,R)
such that

f(x, 0) ≥ h(x) ∀x ∈ RN and ĥ ≥ f0(0)− ε.

Choose M > 0 such that

f(x, u) ≥ h(x)−Mu for x ∈ RN , 0 ≤ u ≤M.

Let
g(x, u) = h(x)−M ∀x ∈ RN , u ∈ R.

It is not difficult to see that g(·, ·) satisfy the lemma.
In the following, c0(ξ) as in (1.15), and (1.16). Observe that λ(µ, ξ, f0(0)) exist.

and

λ(µ, ξ, f0(0)) = τµ2 + (1− τ)[

∫
RN

e−µz·ξκ(z)dz − 1] + f0(0).

If no confusion occurs, we may denote λ(µ, ξ, f0(0)) by λ(µ, ξ) . Observe also that

v(t, x) = e−µ(x·ξ−
λ(µ,ξ)
µ t) is solution of,

vt(t, x) = τ∆v(t, x) + (1− τ)Kv(t, x) + f0(0)v(t, x), x ∈ RN . (3.10)
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Proof of Theorem 1.1. Fix ξ ∈ SN−1, we first prove that for any c
′
> c0(ξ) and

u0 ∈ X+(ξ),

lim sup
x·ξ≥c′ t,t→∞

u(t, x;u0) = 0. (3.11)

To this end, take a c such that c
′
> c > c∗(ξ). Note that there is µ∗ > 0 such that

c0(ξ) =
λ(ξ, µ∗)

µ∗

and there is µ ∈ (0, µ∗) such that

c =
λ(µ, ξ)

µ
.

Take d > M > 0 such that

u0(x) ≤M and u0(x) ≤ de−µx·ξ ∀x ∈ RN ,
f(x,M) < 0 ∀x ∈ RN , (3.12)

and

f(x, u) = f0(u) for x · ξ ≥ − 1

µ
ln
M

d
(> 0). (3.13)

Observe that by (3.12) and (H1), for (t, x) ∈ (0,∞) × RN with de−µ(x·ξ−ct) ≥ M ,
i.e., x · ξ ≤ − 1

µ ln M
d + ct,

f(x, de−µ(x·ξ−ct)) < 0 < f0(0).

By (3.13), for (t, x) ∈ (0,∞)×RN with de−µ(x·ξ−ct) ≤M , i.e, x · ξ ≥ − 1
µ ln M

d + ct,

f(x, de−µ(x·ξ−ct)) = f0(de−µ(x·ξ−ct)) ≤ f0(0).

It then follows that u = de−µ(x·ξ−ct), which is a solution of (3.10), is a super-solution
of (1.1) and hence by Proposition 2.1,

u(t, x;u0) ≤ de−µ(x·ξ−ct) ∀t > 0 x ∈ RN . (3.14)

This implies that (3.11) holds.
Next, we prove that for any c

′
< c0(ξ) and any u0 ∈ X+(ξ),

lim sup
x·ξ≤c′ t,t→∞

|u(t, x;u0)− u∗(x)| = 0. (3.15)

To this end, take a c ∈ R such that c
′
< c < c0(ξ). Let M > 0 be such that

u0(x) ≤ M and f(x,M) < 0 for all x ∈ RN . Then u ≡ M is a super-solution of
(1.1) and

u(t, x;u0) ≤M ∀t ≥ 0, x ∈ RN .

For any ε > 0, let g(·, ·) be as in Lemma 3.4. By Proposition 2.9, for ε > 0 sufficiently
small,

c∗(ξ, g(·, ·)) ≥ c∗(ξ, ĝ(·)) > c.
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By Propositions 2.1 and 2.8,

lim inf
x·ξ≤ct,t→∞

u(t, x;u0) ≥ lim inf
x·ξ≤ct,t→∞

u(t, x;u0, g) > 0.

(3.15) then follows from Lemma 3.3.
By (3.11) and (3.15), c∗(ξ) exists and c∗(ξ) = c0(ξ). Moreover, (1.14) holds

Proof of Theorem 1.2. (1) Fix ξ ∈ SN−1. Let u0 ∈ X+ satisfy that u0(x) = 0
for x ∈ RN with |x · ξ| � 1. Then there are u+0 ∈ X+(ξ) and u−0 ∈ X+(−ξ) such
that

u0(x) ≤ u±0 (x) ∀x ∈ RN .

By Proposition 2.1 and Theorem 1.1,

lim sup
x·ξ≥c′ t,t→∞

u(t, x;u0) ≤ lim sup
x·ξ≥c′ t,t→∞

u(t, x;u+) = 0 ∀c
′
> c∗(ξ)

and

lim sup
x·(−ξ)≥c′ t,t→∞

u(t, x;u0) ≤ lim sup
x·(−ξ)≥c′ t,t→∞

u(t, x;u−) = 0 ∀c
′
> c∗(−ξ).

It then follows that

lim sup
|x·ξ|≥c′ t,t→∞

u(t, x;u0) = 0 ∀c
′
> max{c∗(ξ), c∗(−ξ)}.

(2) Fix ξ ∈ SN−1. For given 0 < c
′
< min{c∗(ξ), c∗(−ξ)}, take a c > 0 such

that c
′
< c < min{c∗(ξ), c∗(−ξ)}. For given u0 ∈ X+ satisfying the condition in

Theorem 2.3 (2), let M > 0 be such that u0(x) ≤ M and f(x,M) < 0 for all
x ∈ RN . Then u ≡M is a super-solution of (1.1) and

u(t, x;u0) ≤M ∀t ≥ 0, x ∈ RN .

For any ε > 0, let g(·, ·) be as in Lemma 3.4. By Proposition 2.9, for ε > 0 sufficiently
small,

c∗(ξ, g(·, ·)) ≥ c∗(ξ, ĝ(·)) > c.

By Propositions 2.1 and 2.8,

lim inf
|x·ξ|≤ct,t→∞

u(t, x;u0) ≥ lim inf
|x·ξ|≤ct,t→∞

u(t, x;u0, g) > 0.

It then follows from Lemma 3.3 that

lim sup
|x·ξ|≤c′ t,t→∞

|u(t, x;u0)− u∗(x)| = 0.

(3) It can be proved by similar arguments as in [49, Theorem E (1)]. For com-
pleteness again, we provide a proof in the following.

Fix ξ ∈ SN−1, let c > supξ∈SN−1 c∗(ξ). Let u0 ∈ X+ be such that u0(x) = 0 for

‖x‖ � 1. Note that for every given ξ ∈ SN−1, there is ũ0(·; ξ) ∈ X+(ξ) such that
u0(·) ≤ ũ0(·; ξ). By Proposition 2.1,

0 ≤ u(t, x;u0) ≤ u(t, x; ũ0(·; ξ))
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for t > 0 and x ∈ RN . It then follows from Theorem 1.1 that

0 ≤ lim sup
x·ξ≥ct,t→∞

u(t, x;u0) ≤ lim sup
x·ξ≥ct,t→∞

u(t, x; ũ0(·; ξ)) = 0.

Take any c
′
> c. Consider all x ∈ RN with ‖x‖ = c

′
. By the compactness of

∂B(0, c
′
) = {x ∈ RN | ‖x‖ = c

′}, there are ξ1, ξ2, · · · , ξL ∈ SN−1 such that for every
x ∈ ∂B(0, c

′
), there is l (1 ≤ l ≤ L) such that x · ξl ≥ c. Hence for every x ∈ RN

with ‖x‖ ≥ c′t, there is 1 ≤ l ≤ L such that x · ξl = ‖x‖
c′

(
c
′

‖x‖x
)
· ξl ≥ ‖x‖c′ c ≥ ct. By

the above arguments,

0 ≤ lim sup
x·ξl≥ct,t→∞

u(t, x;u0) ≤ lim sup
x·ξl≥ct,t→∞

u(t, x; ũ0(·; ξl)) = 0

for l = 1, 2, · · ·L. This implies that

lim sup
‖x‖≥c′ t,t→∞

u(t, x;u0) = 0.

Since c
′
> c and c > supξ∈SN−1 c∗(ξ) are arbitrary, we have that for

c > supξ∈SN−1 c∗(ξ),
lim sup

‖x‖≥ct,t→∞
u(t, x;u0) = 0.

(4) It can be proved by similar arguments as in (2).
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