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WITH FUČIK-TYPE RESONANCE AT
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Abstract In this paper, we obtain the existence of nontrivial solutions for the
Kirchhoff type equation with Fučik-type resonance at infinity by variational
methods.
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1. Introduction
In this paper, we consider the following Kirchhoff type equation

−
(
a+ b

∫
Ω
|∇u|2dx

)
△u = α(u+)3 + β(u−)3 + f(x, u) in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω is an open ball in RN (N = 1, 2, 3) or Ω ⊂ R2 is symmetric in x and y,
and convex in the x and y directions, a > 0, b > 0 are real constants and α, β ∈ R,
f ∈ C(Ω̄×R,R). u+ = max{u, 0}, u− = min{u, 0}, and u = u+ + u−.

Let H1
0 (Ω) be the usual Hilbert space with inner product and the norm

(u, v) =

∫
Ω

∇u · ∇vdx and ∥u∥ =

(∫
Ω

|∇u|2dx
) 1

2

for all u, v ∈ H1
0 (Ω), and let Lp(Ω) (p ∈ [1,∞)) be the usual Lebesgue space with the

norm |u|p = (
∫
Ω
|u|pdx)

1
p for any u ∈ Lp(Ω). Since the embedding H1

0 (Ω) ↪→ Lp(Ω)
is continuous and compact for any p ∈ [1, 2∗), where 2∗ = ∞ if N = 1, 2, and 2∗ = 6
if N = 3, for every p ∈ [1, 2∗), there is Sp > 0 such that

|u|p ≤ Sp∥u∥ for any u ∈ H1
0 (Ω). (1.2)
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Let µ1 be the principal eigenvalue of −∆ in H1
0 (Ω), and for the following eigen-

value problem 
−b

(∫
Ω
|∇u|2dx

)
△u = λu3 in Ω,

u = 0 on ∂Ω,

(1.3)

Liang, Li and Shi in [6] showed that the principal eigenvalue is

λ1 = inf{b∥u∥4 : u ∈ H1
0 (Ω), |u|44 = 1} > 0, (1.4)

and the corresponding eigenfunction ϕ1 > 0 in Ω with|ϕ1|44 = 1. Meanwhile,
problem (1.3) has a sequence of eigenvalues with the variational characterization
(see [12])

λm = inf
h∈Σm

sup
u∈h(Sm−1)

b∥u∥4, (1.5)

where Σm = {h ∈ C(Sm−1, S) : h is old}(m ∈ N), and S := {u ∈ H1
0 (Ω) : |u|44 = 1}

and Sm−1 is the unit sphere in Rm.
The set Σ of the points (α, β) ∈ R2 for which the equation

−b
(∫

Ω
|∇u|2dx

)
△u = α(u+)3 + β(u−)3 in Ω,

u = 0 on ∂Ω,

(1.6)

has a non-trivial solution is called Fučik spectrum for the Kirchhoff-type problem.
In [7], Li, Rong and Liang have obtained two trivial curves {λ1}×R and R×{λ1},
and a nontrivial curve ` of Σ. The construction of the curve ` is carried out as
follows in [7]: for any s ≥ 0, we define

Js(u) = b∥u∥4 − s|u+|44, c(s) = inf
γ∈Σ0

max
t∈[0,1]

Js(γ(t)),

where Σ0 = {γ ∈ C([0, 1], S) : γ(0) = ϕ1, γ(1) = −ϕ1}, and it was proved that
c(s) > λ1 for every s ≥ 0. Similarly, for every s ≥ 0, we define

J̃s(u) = b∥u∥4 − s|u−|44, c̃(s) = inf
γ∈Σ0

max
t∈[0,1]

J̃s(γ(t)),

and it was also proved that c̃(s) > λ1 for every s ≥ 0. Then, ` is defined by:

` := {(c(s) + s, c(s)) : s ≥ 0} ∪ {(c̃(s), c̃(s) + s) : s ≥ 0}.

Problem (1.1) is analogous to the stationary case of equations that arise in the
study of string or membrane vibrations, namely,

utt −
(
a+ b

∫
Ω

|∇u|2dx
)
∆u = f(x, u), (1.7)

where the parameters have practical physical meaning: u denotes the displacement,
f is the external force, b represents the initial tension, and a is related to the
intrinsic properties of the string. Problem (1.7) was first proposed by Kirchhoff
(see [4]) in 1883 and it is an extension of the classical D’Alembert’s wave equation
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by considering the effects of the changes in the length of the string during the
vibrations. Some early works related to problem (1.7) are seen in [9, 10].

For the following semilinear elliptic equation:
−∆u = αu+ + βu− + f(x, u) in Ω,

u = 0 on ∂Ω,

(1.8)

and under different assumptions on f , many people have studied the existence and
multiple of weak solutions for problem (1.8) with Fučik-type resonance(see [2, 5]
and the references therein). Moreover, there are also many results on the existence
of non-trivial solution for p-Laplacian problem with the Fučik resonance(see [15,
16, 19] and the references therein). In recent years, many people have studied the
existence and multiplicity of weak solutions of Kirchhoff type problems (α = β = 0
in problem (1.1)) by variational methods (see [1, 7, 8, 11–13, 18] and the references
therein). Especially, if the nonlinearity f satisfies the certain Landesman-Lazer-
type conditions, Sun and Tang in [12] obtained the existence of weak solutions for
Kirchhoff type problems with resonance at higher eigenvalues, that is, α = β in
problem (1.1) is the higher eigenvalue of problem (1.3). In 2019, Li, Rong and
Liang in [7] considered the existence of at least two positive solutions for problem
(1.1), where a = b = 1, α = β = 0 and f(x, t) = f∞t3 + g(x, t) and g(x, t) = o(t3)
as t → +∞ and f∞ > λ1 by using Mountain Pass Theorem. Rong, Li and Liang
in [11] studied the existence of nontrivial solutions for problem (1.1) with jumping
nonlinearities at infinity and a = 0 and b = 1.

Inspired by [7, 11, 12], we will investigate the existence of non-trivial solutions
for problem (1.1) with Fučik spectrum type resonance at infinity. Let F (x, t) =∫ t

0
f(x, s)ds for all (x, t) ∈ Ω×R, assume that the nonlinearity f (or F ) satisfies:
(f1) f(x, t) = o(|t|3) as |t| → ∞ uniformly for x ∈ Ω;
(f2) f(x, t)t > 0 for any t ̸= 0 and there exist δ > 0, θ > 2 and C0 > 0 such that

F (x, t) ≥ C0|t|θ for any |t| ≤ δ and x ∈ Ω;

˜(f2) F (x, t) > 0 and there exist δ > 0, C1 > 0 and r ∈ (1, 2) such that

F (x, t) ≥ C1|t|r for any |t| ≤ δ and x ∈ Ω;

(f3) lim
|t|→∞

(f(x, t)t− 4F (x, t) + aµ1t
2) = +∞ uniformly for x ∈ Ω;

(f4) lim
|t|→∞

F (x,t)
t2 = +∞ uniformly for x ∈ Ω.

Now we are ready to state our first theorem:

Theorem 1.1. Assume that f satisfies (f1)−(f4) and let (α, β) ∈ {λ1}×[λ1,+∞)∪
[λ1,+∞)× {λ1}, then problem (1.1) has at least one non-trivial solution.

Let Qm = {(α, β) ∈ R2 : α, β ∈ (λm, λm+1]}(m ∈ N), the second main result is
the following theorem:

Theorem 1.2. Suppose that f satisfies (f1), ˜(f2), (f4), then problem (1.1) has a
non-trivial solution if one of the following conditions holds:

(i) (α, β) ∈ intQm ∩ (R2 \ Σ),
(ii) (α, β) ∈ intQm and (f3) holds.
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2. Proof of the main results
The energy functional corresponding to problem (1.1) is defined by

I(u) =
a

2
∥u∥2 + b

4
∥u∥4 − α

4
|u+|44 −

β

4
|u−|44 −

∫
Ω

F (x, u)dx (2.1)

for any u ∈ H1
0 (Ω). From (f1), we can obtain I ∈ C1(H1

0 (Ω), R), and it is well
known that a critical point of the functional I corresponds to a weak solution of
problem (1.1). We will prove Theorem 1.1 by using Mountain Pass Theorem with
the (Ce) condition (see [17]), and Theorem 1.2 by Γ-linking Theorem (see [14]). Let
W be a real Banach space, the functional I satisfies the (Ce)c condition at the level
c ∈ R, if any sequence {un} ⊂ W such that I(un) → c, (1+∥un∥)∥I ′(un)∥W∗ → 0 as
n → ∞, has a convergent subsequence. The functional I satisfies the (Ce) condition
if I satisfies the (Ce)c condition at any c ∈ R. We note that the (Ce) condition is
weaker than the usual (PS) condition. If I satisfies (PS) or (Ce) condition, then I
satisfies the deformation lemma.

Lemma 2.1 (Lemma 11, [16]). Let I be a C1 functional on a Banach space E and
suppose that I satisfies the (Ce) condition at any level c ∈ [a, b] and I has no critical
value in (a, b). Assume that Ka := {u ∈ E : I ′(u) = 0, I(u) = a} consists only of
isolated points (Ka = ∅). Moreover, the set {u ∈ E : I(u) ≤ c} is denoted by Ic

for every c ∈ R. Then, there exists a η ∈ C([0, 1] × E,E) satisfying the following
conditions:

(i) η(·, ·) is non-increasing in t for every u ∈ E;
(ii) η(t, u) = u for any u ∈ Ia, t ∈ [0, 1];
(iii) η(0, u) = u and η(1, u) ∈ Ia for any Ib\Kb; that is, Ia is a strong defor-

mation retract of Ib\Kb.

Lemma 2.2. Let f satisfy (f1). Then the following assertions hold:
(i) if (α, β) /∈ Σ, then I satisfies the (PS) condition.
(ii) if (α, β) ∈ Σ and (f3), then I satisfies the (Ce) condition.

Proof. (i) Let (α, β) /∈ Σ and {un} ⊂ H1
0 (Ω) be a (PS) sequence of the functional

I, namely
I(un) → c and I ′(un) → 0 as n → ∞. (2.2)

We first claim that {un} is bounded. If not, without loss of generality, we assume
∥un∥ → ∞ as n → ∞. Define vn = un

∥un∥ , then {vn} is bounded and ∥vn∥ = 1.
Therefore there is a subsequence of {vn}, still denoted by {vn}, and v ∈ H1

0 (Ω) such
that

vn ⇀ v in H1
0 (Ω), and vn → v in Lp(Ω) for any p ∈ [1, 2∗), (2.3)

as n → ∞. Estimating the following equality

⟨I ′(un), vn − v⟩
∥un∥3

=
a

∥un∥2

∫
Ω

∇vn · ∇(vn − v)dx+ b

∫
Ω

∇vn · ∇(vn − v)dx

−
∫
Ω

(
α(v+n )

3 + β(v−n )
3 +

f(x, un)

∥un∥3

)
(vn − v)dx. (2.4)

From (f1), for any ε > 0, there exists a C2 > 0 such that

|f(x, t)| ≤ ε|t|3 + C2 for any (x, t) ∈ Ω×R. (2.5)
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From the boundedness of Ω and (1.2), there exists a constant C3 > 0 such that

|f(x, un)| 4
3
≤ 2

(∫
Ω

(ε
4
3 |un|4 + C

4
3
2 )dx

) 3
4

≤ ε∥un∥3 + C3.

Combining this inequality with ∥un∥ → ∞ as n → ∞, we have

lim
n→∞

|f(x, un)| 4
3
/∥un∥3 = 0. (2.6)

Hence, from (2.2), (2.4), (2.6) and the Hölder’s inequality, we have
∫
Ω
∇vn ·∇(vn−

v)dx → 0. Moreover, from (2.3), it follows that
∫
Ω
∇v ·∇(vn−v)dx → 0. Therefore,

we have vn → v in H1
0 (Ω) and ∥v∥ = 1. By a similar way and from ⟨I′(un),w⟩

∥un∥3 → 0

as n → ∞ for any w ∈ H1
0 (Ω), we have

b

∫
Ω

∇v · ∇wdx− α

∫
Ω

(v+)3wdx− β

∫
Ω

(v−)3wdx = 0 for any w ∈ H1
0 (Ω).

From ∥v∥ = 1, the above equality implies that v is an eigenfunction of problem (1.6)
related with (α, β), which is a contradiction to (α, β) /∈ Σ. Hence, {un} is bounded.
And then, there is a u ∈ H1

0 (Ω) such that

un ⇀ u in H1
0 (Ω), un → u in Lp(Ω) for any p ∈ [1, 2∗). (2.7)

From (2.3), (2.5) and the Hölder’s inequality, there exists a C4 > 0 such that∣∣∣∣∫
Ω

(
α(u+

n )
3 + β(u−

n )
3 + f(x, un)

)
(un − u)dx

∣∣∣∣
≤ C4(|u+

n |34 + |u−
n |34 + |f(x, un)| 4

3
)|un − u|4 → 0 as n → ∞.

So, we have

(a+ b∥un∥2)
∫
Ω

∇un · ∇(un − u)dx

=⟨I ′(un), un − u⟩+
∫
Ω

(α(u+
n )

3 + β(u−
n )

3 + f(x, un))(un − u)dx

→0 as n → ∞.

From the boundedness of {un}, we have
∫
Ω
∇un · ∇(un − u)dx → 0 as n → ∞.

In addition, we have
∫
Ω
∇u · ∇(un − u)dx → 0 as n → ∞ by (2.7), which implies

∥un − u∥2 → 0 as n → ∞. Hence, un → u in H1
0 (Ω).

(ii) Let (α, β) ∈ Σ and {un} ⊂ H1
0 (Ω) be a (Ce) sequence of the functional I,

namely
I(un) → c and (1 + ∥un∥)∥I ′(un)∥H∗ → 0 as n → ∞.

We first show that {un} is bounded in H1
0 (Ω). For this we suppose by contra-

diction that ∥un∥ → ∞ as n → ∞. Letting vn = un

∥un∥ , there is a v ∈ H1
0 (Ω) such

that
vn ⇀ v in H1

0 (Ω), vn → v in Lp(Ω) for any p ∈ [1, 2∗),

as n → ∞. By the same argument as case (i), we have vn → v in H1
0 (Ω) and

∥v∥ = 1. Hence, let Ω0 = {x ∈ Ω : |v(x)| > 0}, we have the Lebesgue measure of
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Ω0 is not zero. Then |un(x)| → ∞ for a.e x ∈ Ω0. By (f3) and Fatou’s Lemma, we
see

lim inf
n→∞

∫
Ω0

(f(x, un)un − 4F (x, un) + aµ1|un|2)dx = +∞,

and it follows that

4c+ o(1) =4I(un)− ⟨I ′(un), un⟩

=a∥un∥2 − aµ1|un|22 +
∫
Ω

(f(x, un)un − 4F (x, un) + aµ1|un|2)dx

≥
∫
Ω0

(f(x, un)un − 4F (x, un) + aµ1|un|2)dx → +∞ as n → ∞,

which is a contradiction. Hence {un} is bounded. Similar with the proof of case
(i), we have un → u in H1

0 (Ω).
We define two C1 functionals on H1

0 (Ω) as follows:

I−β (u) =
a

2
∥u∥2 + b

4
∥u∥4 − β

4
|u−|44 −

∫
Ω

F−(x, u)dx,

I+α (u) =
a

2
∥u∥2 + b

4
∥u∥4 − α

4
|u+|44 −

∫
Ω

F+(x, u)dx,

where f±(x, t) := 0 if ±t ≤ 0 and f±(x, t) = f(x, t) if ±t > 0, and F±(x, t) :=∫ t

0
f±(x, s)ds.

Lemma 2.3. Let f satisfy (f1), the following assertions hold:
(i) if α ̸= λ1, I+α satisfies the (PS) condition.
(ii) if β ̸= λ1, I−β satisfies the (PS) condition.
(iii) if (f3) holds, I+α or I−β satisfies the (Ce) condition.

Proof. (i) Because (α, 0) /∈ Σ and f+ also satisfies(f1), I+α satisfies the (PS)
condition by Lemma 2.3.

(ii) We note that (β, 0) /∈ Σ and f− also satisfies (f1). Hence, I−β satisfies the
(PS) condition by Lemma 2.2.

(iii) We just prove the case I+α , the other case can be proved similarly. If
α ̸= λ1, then (α, 0) /∈ Σ, and from (i), the conclusion holds. Therefore, we assume
that α = λ1, and by the same argument as case (ii) of Lemma 2.2, the conclusion
also holds.

Lemma 2.4. Suppose that (f1), (f2), (f4) hold, then there is a h0 > 0 and v ∈
H1

0 (Ω) \ {0} such that

max
t∈[0,1]

I(h0tv
+ + h0(1− t)v−) < 0.

Proof. From (f2) and (f4), for any M1 > 0, there is a constant M2 > 0 such that

F (x, t) ≥ M1|t|2 +M2|t|θ for any (x, t) ∈ Ω×R.

Let v ∈ H1
0 (Ω) be a nontrivial solution of problem (1.6) with (α0, β0) ∈ `, we have

that v is sign-changing and

b∥v∥2∥v+∥2 = α0|v+|44, b∥v∥2∥v−∥2 = β0|v−|44. (2.8)
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Hence, for any t ∈ [0, 1], let M1 = max{a∥v+∥2

|v+|22
, a∥v−∥2

|v−|22
}, by (2.8) and max

t∈[0,1]
(t(1 −

t))2 = 1
16 , we have

I(htv+ + h(1− t)v−)

≤a

2
∥v+∥2(ht)2 + b

4
∥v∥2∥v+∥2(ht)4 − α

4
|v+|44(ht)4 −M1|v+|22(ht)2

−M2|v+|θθ(ht)θ +
a

2
∥v−∥2(h(1− t))2 +

b

4
∥v∥2∥v−∥2(h(1− t))4

− β

4
|v−|44(h(1− t))4 −M1|v−|22(h(1− t))2 −M2|v−|θθ(h(1− t))θ

+
b

2
∥v+∥2∥v−∥2h4[t(1− t)]2

≤(
a

2
∥v+∥2 −M1|v+|22)h2 + (

a

2
∥v−∥2 −M1|v−|22)h2

−M2|v+|θθ(ht)θ −M2|v−|θθ(h(1− t))θ +
1

4
(α0 − α)|v+|44h4

+
1

4
(β0 − β)|v−|44h4 +

b

32
∥v+∥2∥v−∥2h4.

Since θ > 2, there is a sufficiently small h0 > 0 such that max
t∈[0,1]

I(h0tv
+ + h0(1 −

t)v−) < 0.
Now, for (α, β) ∈ R2, we define

E(α, β) = {u ∈ H1
0 (Ω) : b∥u∥4 ≥ α|u+|44 + β|u−|44},

Γ(α, β) := {γ ∈ C([0, 1],H1
0 (Ω)) : γ(0) = γ(0)+ /∈ E(α, β), γ(1) = γ(1)− /∈ E(α, β)}.

Proof of Theorem 1.1. (i) We first consider the case α ≥ λ1, β = λ1. Because∫
Ω
F (x, u)dx = o(|u|44) as |u|4 → ∞ from (f1), for any u ∈ E(α + c(α), c(α)), we

have

I(u) =
a

2
∥u∥2 + b

4
∥u∥4 − α

4
|u+|44 −

β

4
|u−|44 −

∫
Ω

F (x, u)dx

≥ a

2
∥u∥2 + 1

4
c(α)|u+|44 +

1

4
(c(α)− β)|u−|44 − o(|u|44)

≥ a

2
∥u∥2 + 1

4
(c(α)− β)|u|44 − o(|u|44).

Hence by c(α) > λ1 = β, I is bounded from below on E(α+ c(α), c(α)) and

m = inf{I(u) : u ∈ E(α+ c(α), c(α))} > −∞.

Setting
c := inf

γ∈Γ
max
t∈[0,1]

I(γ(t)),

where Γ := {γ ∈ Γ(α + c(α), c(α)) : I(γ(0)), I(γ(1)) < m − 1}. Next, we will show
that Γ ̸= ∅ and c is negative, namely, there is a γ0 ∈ Γ such that maxt∈[0,1] I(γ0(t)) <
0. From Lemma 2.4, there is h0 > 0 and v ̸= 0 such that

max
t∈[0,1]

I(h0tv
+ + h0(1− t)v−) < 0.
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By Lemma 2.3, I−β satisfies the (PS) or the (Ce) condition in the case α > λ1

or α = λ1 and I+α satisfies the (Ce) condition. Without loss of generality, we can
assume that I−β and I+α have not non-trivial critical points. Thus, by Lemma 2.1,
we can obtain a ξ ∈ C([0, 1],H1

0 (Ω)) and an η ∈ C([0, 1],H1
0 (Ω)) satisfying

ξ(0) = h0v
+, η(0) = h0v

−, I+α (ξ(t)) < m− 1, I−β (η(t)) < m− 1,

I+α (ξ(t)) ≤ I+α (ξ(0)) = I(h0v
+) < 0 for every t ∈ [0, 1],

I−β (η(t)) ≤ I−β (η(0)) = I(h0v
−) < 0 for every t ∈ [0, 1],

and 
ξ(0)+ = h0v

+, η(0)− = h0v
−,

I(ξ(t)+) = I+α (ξ(t)+) ≤ I+α (ξ(t)) < 0 for every t ∈ [0, 1],

I(η(t)−) = I−β (η(t)−) ≤ I−β (η(t) < 0 for every t ∈ [0, 1],

which yields that

ξ(1)+ /∈ E(α+ c(α), c(α)) and η(1)− /∈ E(α+ c(α), c(α)).

Define

γ0(t) =


η(1− 4t)−, if 0 ≤ t ≤ 1

4 ,

h0(2t− 1/2)v+ + h0(3/2− 2t)v−, if 1
4 ≤ t ≤ 3

4 ,

ξ(4t− 3)+, if 3
4 ≤ t ≤ 1,

then, we have γ0 ∈ Γ and max
t∈[0,1]

I(γ0(t)) < 0.

(ii) Case β ≥ λ1, α = λ1. We can also prove the existence of a negative critical
value by using E(c̃(β), c̃(β) + β) instead of E(α+ c(α), c(α)).

In order to prove Theorem 1.2, we define

Am := {u ∈ H1
0 (Ω) : b∥u∥4 ≥ λm+1|u|44},

then we have the following results.

Lemma 2.5. Assume that f satisfies (f1), then p := infAm I(u) > −∞ for any
(α, β) ∈ intQm.

Proof. From (f1), we have
∫
Ω
F (x, u)dx = o(∥u∥4) as ∥u∥ → ∞. For any (α, β) ∈

intQm, we have

I(u) =
a

2
∥u∥2 + b

4
∥u∥4 − α

4
|u+|44 −

β

4
|u−|44 −

∫
Ω

F (x, u)dx

≥ a

2
∥u∥2 + 1

4λm+1
(λm+1 −max{α, β})∥u∥4 − o(∥u∥4) > −∞,

hence, from λm+1 > max{α, β}, it follows that inf
u∈Am

I(u) > −∞.
Define

Γm := {h ∈ C(Sm
+ ,H1

0 (Ω)) : h|Sm−1 is old,−∞ < I(h(Sm−1)) ≤ p− 1},

where Sm
+ is the upper hemisphere of Sm with boundary Sm−1, we have
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Lemma 2.6. Let (f1) hold, then h(Sm
+ ) ∩Am ̸= ∅ for every h ∈ Γm.

Proof. Let h ∈ Γm. If 0 ∈ h(Sm
+ ), we have h(Sm

+ ) ∩ Am ̸= ∅ . Now, we assume
that 0 /∈ h(Sm

+ ). We define the odd extension h∗ : Sm → H1
0 (Ω)\{0} by

h∗(z1, z2, · · · , zm+1) =

h(z1, z2, · · · , zm+1), if zm+1 ≥ 0,

−h(−z1,−z2, · · · ,−zm+1), if zm+1 < 0,

and let π(u) = u/|u|4 (u ̸= 0), then π ◦h∗ ∈ Σm+1. By the definition of λm+1, there
is a z∗ ∈ Sm such that ∥(π◦h∗)(z∗)∥4 ≥ λm+1, namely, ∥h∗(z∗)∥4 ≥ λm+1|h∗(z∗)|44,
thus h∗(z∗), h∗(−z∗) ∈ Am since h∗ is odd . This shows that h(Sm

+ ) ∩ Am ̸= ∅
because h∗ is the odd extension of h.
Proof of Theorem 1.2. By Lemma 2.1, we know that the purpose of the con-
ditions (i) and (ii) is to guarantee the compactness condition. Now, we define a
minimax value of the functional I:

cm := inf
h∈Γm

sup
u∈h(Sm

+ )

I(u).

From Lemma 2.2, Lemma 2.5, Lemma 2.6 and Γ-linking theorem, cm is a critical
value of I and

cm := inf
h∈Γm

sup
u∈h(Sm

+ )

I(u) ≥ p := inf
u∈Am

I(u) > −∞.

In the following, let us show that cm < 0 to prove the existence of non-trivial
critical point of I. Namely, there exists a h ∈ Γm such that supu∈h(Sm

+ ) I(u) < 0.
Now, we fix ε > 0 with min{α, β} − λm > ε. By the definition of λm, there is a
h0 ∈ Σm such that

sup
z∈Sm−1

b∥h0(z)∥4 < λm + ε. (2.9)

We shall prove the existence of a continuous extension h∗
0 ∈ C(Sm

+ , S) of h0. Define
g(z) = h0(z)/∥h0(z)∥ for any z ∈ Sm−1, then g is a continuous from Sm−1 to G :=
{u ∈ H1

0 (Ω) : ∥u∥ = 1}. Because Sm
+ is homeomorphic to the m dimensional closed

unit disc, there is a continuous extension g∗ : Sm
+ → B := {u ∈ H1

0 (Ω) : ∥u∥ ≤ 1}.
Indeed, for every z = (z′, zm) ∈ Sm

+ (z′ ∈ Rm−1), we define

g∗(z) =


√

1− z2mg(z′/
√
1− z2m), if zm ∈ [0, 1),

0, if zm = 1.

Because G is a retract of the unit ball B, there is an R ∈ C(B,G) such that
R(u) = u for any u ∈ G. Let h∗

0 = π ◦ R ◦ g∗(z) for z ∈ Sm
+ , where π(u) = u/|u|4

for any u ∈ H1
0 (Ω)\{0}, hence, h∗

0 is the desired continuous extension of h0.
By ˜(f2), (f4), for any M3 > 0, there is a constant M4 > 0 such that

F (x, t) ≥ M3|t|2 +M4|t|r for any (x, t) ∈ Ω×R. (2.10)

Then, let M5 = max
u∈h∗

0(S
m
+ )

∥u∥4

|u|4r
, we have ∥u∥4 ≤ M5|u|4r for any u ∈ h∗

0(S
m
+ ). Let

M3 > max
u∈h∗

0(S
m
+ )

a∥u∥2

2|u|22
and for any u ∈ h∗

0(S
m
+ ) and s > 0, one gets

I(su) =
a

2
∥u∥2s2 + b

4
∥u∥4s4 − α

4
|u+|44s4 −

β

4
|u−|44s4 −

∫
Ω

F (x, su)dx
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≤ (
a

2
∥u∥2 −M3|u|22)s2 +

b

4
∥u∥4s4 −M4|u|rrsr

≤ (
bM5

4
s4−r max

u∈h∗
0(S

m
+ )

|u|4−r
r −M4)|u|rrsr.

Hence from r ∈ (1, 2) and the above inequality, there is a sufficiently small s0 > 0
such that

max
u∈h∗

0(S
m
+ )

I(s0u) < 0. (2.11)

Let M3 > max
u∈h0(Sm−1)

a∥u∥2

2|u|22
, for any u ∈ h0(S

m−1) = h∗
0|Sm−1(Sm−1), from

(2.10), for every t ≥ s0, we have

I(tu) =
a

2
∥u∥2t2 + b

4
∥u∥4t4 − α

4
|u+|44t4 −

β

4
|u−|44t4 −

∫
Ω

F (x, tu)dx

≤ a

2
∥u∥2t2 + b

4
∥u∥4t4 − 1

4
min{α, β}|u|44t4 −M3|u|22t2 −M4|u|rrtr

≤ 1

4
(λm + ε−min{α, β})t4 −M4|u|rrtr

< 0, (2.12)

and I(tu) → −∞ as t → ∞ using (2.9). Therefore, there is a t0 > s0 such that

sup
u∈h∗

0(S
m−1)

I(t0u) ≤ p− 1. (2.13)

Define a continuous map h∗
1 from Sm

+ to H1
0 (Ω) as follows:

h∗
1(z) =

 ((1− 2zm+1)t0 + 2zm+1s0)h0(z
′/
√

1− z2m+1), if 0 ≤ zm+1 ≤ 1
2 ,

s0h
∗
0(

2√
3
z′, 2√

3

√
z2m+1 − 1

4 ), if 1
2 ≤ zm+1 ≤ 1,

where z = (z1, · · · , zm+1) and z′ = (z1, · · · , zm). Therefore, h∗
1 ∈ Γm by (2.13), and

supu∈h∗
1(S

m
+ ) I(u) < 0 by (2.11) and (2.12), that is, cm < 0.
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