Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 11, Number 2, April 2021, 1006-1016 DOI:10.11948/20200128

EXISTENCE OF NON-TRIVIAL SOLUTIONS
FOR THE KIRCHHOFF-TYPE EQUATIONS
WITH FUCIK-TYPE RESONANCE AT
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methods.
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1. Introduction

In this paper, we consider the following Kirchhoff type equation

—(a+0b [, |Vul?de) Au= a(ut)® + B(u™)® + f(z,u) inQ,
(1.1)
u=20 on 012,

where Q is an open ball in RN(N = 1,2,3) or Q C R? is symmetric in z and v,
and convex in the x and y directions, a > 0, b > 0 are real constants and o, 5 € R,
f€C(QxR,R). ut =max{u,0}, u~ = min{u,0}, and u = u* +u".

Let H}(Q) be the usual Hilbert space with inner product and the norm

2
(u,v) = / Vu-Vuvder and |u| = (/ |Vu|2d:17>
Q Q

for all u,v € H}(Q2), and let LP(Q2) (p € [1, 00)) be the usual Lebesgue space with the
norm |ul, = ([, lu[Pda) 7 for any u € LP(R). Since the embedding H2(Q) < LP()
is continuous and compact for any p € [1,2*), where 2* = coif N = 1,2, and 2* =6
it N =3, for every p € [1,2*), there is S, > 0 such that

lul, < Spllul| for any u € Hg(Q). (1.2)
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Let y; be the principal eigenvalue of —A in H{(€), and for the following eigen-
value problem

—b ([ |Vul?dz) Au=u?®  inQ,

(1.3)
u=~0 on 0,
Liang, Li and Shi in [6] showed that the principal eigenvalue is
A1 = inf{b|jul* : uw € H(Q), u|; =1} >0, (1.4)
and the corresponding eigenfunction ¢; > 0 in Q with|p|f = 1. Meanwhile,

problem (1.3) has a sequence of eigenvalues with the variational characterization
(see [12])
Am = inf sup  bljul/*, 1.5
heX,, ueh(Sm—1) H || ( )
where 3, = {h € C(S™1,S) : hisold}(m € N), and S := {u € H}(Q) : |ulf =1}
and S™~! is the unit sphere in R™.
The set ¥ of the points (a, 3) € R? for which the equation

=b ([o |Vul?dz) Au=a(u™)®+ B(u™)® inQ,
(1.6)
u=0 on 09,

has a non-trivial solution is called Fucik spectrum for the Kirchhoff-type problem.
In [7], Li, Rong and Liang have obtained two trivial curves {\1} x R and R x {A\1},
and a nontrivial curve £ of ¥. The construction of the curve ¢ is carried out as
follows in [7]: for any s > 0, we define

T = Ul = st lf, - e(s) = inf max J((0).

where %9 = {y € C([0,1],5) : v(0) = ¢1,7(1) = —p1}, and it was proved that
¢(s) > A for every s > 0. Similarly, for every s > 0, we define

L ~
Tu(w) = blull* = sl E(e) = inf max J((0).

and it was also proved that ¢(s) > A; for every s > 0. Then, ¢ is defined by:
C:={(c(s) + s,¢(8)) : s 20} U{(é(s),é(s) +s):s>0}.

Problem (1.1) is analogous to the stationary case of equations that arise in the
study of string or membrane vibrations, namely,

Upt — <a+ b/ |Vu|2da:) Au = f(x,u), (1.7)
Q

where the parameters have practical physical meaning: u denotes the displacement,
f is the external force, b represents the initial tension, and a is related to the
intrinsic properties of the string. Problem (1.7) was first proposed by Kirchhoff
(see [4]) in 1883 and it is an extension of the classical D’Alembert’s wave equation
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by considering the effects of the changes in the length of the string during the
vibrations. Some early works related to problem (1.7) are seen in [9, 10].
For the following semilinear elliptic equation:

—Au=cut + Bu” + f(z,u) in Q,
(1.8)
u=0 on 0f),

and under different assumptions on f, many people have studied the existence and
multiple of weak solutions for problem (1.8) with Fucik-type resonance(see [2, 5]
and the references therein). Moreover, there are also many results on the existence
of non-trivial solution for p-Laplacian problem with the Fucik resonance(see [15,
16,19] and the references therein). In recent years, many people have studied the
existence and multiplicity of weak solutions of Kirchhoff type problems (o« = =10
in problem (1.1)) by variational methods (see [1,7,8,11-13,18] and the references
therein). Especially, if the nonlinearity f satisfies the certain Landesman-Lazer-
type conditions, Sun and Tang in [12] obtained the existence of weak solutions for
Kirchhoff type problems with resonance at higher eigenvalues, that is, @« = ( in
problem (1.1) is the higher eigenvalue of problem (1.3). In 2019, Li, Rong and
Liang in [7] considered the existence of at least two positive solutions for problem
(1.1), wherea =b =1, a = 8 =0 and f(x,t) = foot® + g(x,t) and g(x,t) = o(t3)
as t — +o0o and fo, > A1 by using Mountain Pass Theorem. Rong, Li and Liang
in [11] studied the existence of nontrivial solutions for problem (1.1) with jumping
nonlinearities at infinity and ¢ = 0 and b = 1.

Inspired by [7,11,12], we will investigate the existence of non-trivial solutions
for problem (1.1) with Fucik spectrum type resonance at infinity. Let F(x,t) =
fot f(z,s)ds for all (z,t) € Q x R, assume that the nonlinearity f (or F)) satisfies:

(f1) f(z,t) = o(|t]?) as |t| — oo uniformly for z € Q;

(f2) f(x,t)t > 0 for any t # 0 and there exist § > 0, § > 2 and Cp > 0 such that

F(z,t) > Colt|® for any [t| <6 and z € Q;

(f2) F(z,t) > 0 and there exist 6 > 0, C; > 0 and r € (1,2) such that
F(z,t) > Ci|t|" for any [t| <6 and x € Q;
(f3) ‘ lim (f(z,t)t — 4F(z,t) + apit?) = oo uniformly for x € Q;
—00

(fs) lim % = +oo uniformly for z € Q.
—00

Now we are ready to state our first theorem:

Theorem 1.1. Assume that f satisfies (f1)—(f1) and let (o, 5) € {A1} x[A1, +00)U
[A1,+00) X {A\1}, then problem (1.1) has at least one non-trivial solution.

Let Qm = {(o, 8) € R? : o, B € (A, Amt1]}(m € N), the second main result is
the following theorem:

Theorem 1.2. Suppose that [ satisfies (fl),(fg),(f4), then problem (1.1) has a
non-trivial solution if one of the following conditions holds:

(i) (o, B) € intQu O (R \ 3),

(ii) (o, B) € intQ., and (f3) holds.
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2. Proof of the main results

The energy functional corresponding to problem (1.1) is defined by
() = Ll + 2l — Lt - Bpumpd - / Fa,wde  (21)
2 4 4 4 q D

for any u € H()). From (f1), we can obtain I € C'(H}(Q), R), and it is well
known that a critical point of the functional I corresponds to a weak solution of
problem (1.1). We will prove Theorem 1.1 by using Mountain Pass Theorem with
the (Ce) condition (see [17]), and Theorem 1.2 by I'-linking Theorem (see [14]). Let
W be a real Banach space, the functional I satisfies the (Ce). condition at the level
¢ € R, if any sequence {u,, } C W such that I(u,) — ¢, (14|lun|)||L’ (un)]|w+ — 0 as
n — 00, has a convergent subsequence. The functional I satisfies the (Ce) condition
if I satisfies the (Ce). condition at any ¢ € R. We note that the (Ce) condition is
weaker than the usual (PS) condition. If I satisfies (PS) or (Ce) condition, then I
satisfies the deformation lemma.

Lemma 2.1 (Lemma 11, [16]). Let I be a C* functional on a Banach space E and
suppose that I satisfies the (Ce) condition at any level ¢ € [a,b] and I has no critical
value in (a,b). Assume that K, := {u € E : I'(u) = 0,I(u) = a} consists only of
isolated points (K, = 0). Moreover, the set {u € E : I(u) < c} is denoted by I¢
for every ¢ € R. Then, there exists a n € C([0,1] X E, E) satisfying the following
conditions:

(i) n(-,-) is non-increasing in t for every u € E;

(it) n(t,u) = u for any u € I*,t € [0,1];

(iii) n(0,u) = u and n(1,u) € I* for any I°\Ky; that is, I* is a strong defor-
mation retract of I°\K".

Lemma 2.2. Let f satisfy (f1). Then the following assertions hold:
(i) if (o, 8) ¢ X, then I satisfies the (PS) condition.
(ii) if (o, B) € X and (f3), then I satisfies the (Ce) condition.

Proof. (i) Let (o, 8) ¢ ¥ and {u,} C H}(Q) be a (PS) sequence of the functional
I, namely
I(up) = ¢ and I'(u,) =0 as n — co. (2.2)

We first claim that {u,} is bounded. If not, without loss of generality, we assume
|lun|l = oo as n — oo. Define v,, = T then {vn} is bounded and |jv,| = 1.
Therefore there is a subsequence of {v,}, still denoted by {v,}, and v € HE(Q) such
that

v, — v in Hi(Q), and w, — v in LP(Q) for any p € [1,2%), (2.3)

as n — oo. Estimating the following equality

I (up,), vy, — v) a / /
= Vv, - V(v, —v)d b Vv, - V(v, —v)d
HE TanlE Jo Vo Von = 0)do b J Vou - V(on —v)de

_ /Q <a(v,j)3 + D)+ M) (vn — v)dz.  (2.4)

[Junl®
From (f1), for any € > 0, there exists a Cy > 0 such that

|f(z,t)] <elt]> + Co for any (z,t) € Q x R. (2.5)
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From the boundedness of € and (1.2), there exists a constant C5 > 0 such that

3
ey <2 ([t + has)” < el + o
Q

Combining this inequality with |Ju,| — oo as n — oo, we have

i [f () /llun* = 0. (2.6)

Hence, from (2.2), (2.4), (2.6) and the Hélder’s inequality, we have [, Vv, -V (v, —
v)daz — 0. Moreover, from (2.3), it follows that [, Vv-V (v, —v)dz — 0. Therefore,
we have v, — v in H}(Q) and ||v|| = 1. By a similar way and from % —0

as n — oo for any w € H} (), we have
b/ Vo - Vwdr — oz/ (v )3wdx — ﬁ/ (v™)3wdzr =0 for any w € H}(RQ).
Q Q Q

From |jv|| = 1, the above equality implies that v is an eigenfunction of problem (1.6)
related with («, 8), which is a contradiction to («, 8) ¢ 3. Hence, {u,} is bounded.
And then, there is a u € H}(Q) such that

U, —u in H3(Q), wu, —u in LP(Q) for any p € [1,2%). (2.7)

From (2.3), (2.5) and the Holder’s inequality, there exists a Cy > 0 such that

’/ L)3+f(x?u’n)) (Un—u)d.r
< Culluf 3+ lug 1+ 1f (2, un)|a)|un —uly — 0 as n — oo

So, we have
(a+ b||un||2)/ Vg, - V(uy, —u)dz
Q

(T (1)t — ) + / (@) + B ) + F(&, un))(tn — u)dz
—0 as n — oo.

From the boundedness of {u,}, we have [, Vu, - V(u, — u)dz — 0 as n — ooc.
In addition, we have [, Vu - V(u, —u)dz — 0 as n — co by (2.7), which implies
|y — ul|? = 0 as n — co. Hence, u, — u in H} ().
(ii) Let (o, B) € ¥ and {u,} C H(Q) be a (Ce) sequence of the functional I,
namely
I(uy) = ¢ and (14 ||un DI (un)||gs — 0 as n — oco.

We first show that {u,} is bounded in Hg(£2). For this we suppose by contra-
diction that ||u,| — oo as n — oco. Letting v, = Tuly» thereis a v € H(Q) such
that

v, = v in H3(Q), v, —v in LP(Q) for any p € [1,2%),

as n — 0o. By the same argument as case (i), we have v, — v in HJ(2) and
|lv|| = 1. Hence, let Qp = {z € Q : |v(z)| > 0}, we have the Lebesgue measure of



The Kirchhoff-type equations with ... 1011

Qg is not zero. Then |u,(z)] — oo for a.e x € Qp. By (f3) and Fatou’s Lemma, we
see

liminf [ (f(2, un)un — 4F (2, u,) + apy |un|?)dz = +oo,

n— oo QO

and it follows that
de+ o(1) =41 (uy) — (I'(un), un)

:anunn2—-auuun@-+j/<f0aqhoun-—4fxx,un>+-auuunﬁ>dx
Q

2/ (f(zyun)uy — 4F (z,u,) + apiy|un|?)dr — +00 as n — oo,

Qo

which is a contradiction. Hence {u,} is bounded. Similar with the proof of case

(i), we have u,, — u in H}(Q). O
We define two C! functionals on H}(2) as follows:

_ _a 2 b 4 5 —14
T (@) = 5l + el = Sl = [ P (oo

a b o
) = Sl + = Gl = [ e,
2 4 4 o

where fi(z,t) := 01if £t < 0 and fi(z,t) = f(z,t) if £t > 0, and Fy(z,t) =
fot fx(z,s)ds.
Lemma 2.3. Let f satisfy (f1), the following assertions hold:

(i) if « # N1, I} satisfies the (PS) condition.

(it) if B# M1, 15 satisfies the (PS) condition.

(iii) if (f3) holds, IS or I satisfies the (Ce) condition.

Proof. (i) Because (a,0) ¢ ¥ and f* also satisfies(f1), I satisfies the (PS)
condition by Lemma 2.3.

(i) We note that (8,0) ¢ ¥ and f~ also satisfies (f1). Hence, I satisfies the
(PS) condition by Lemma 2.2.

(i3i) We just prove the case I, the other case can be proved similarly. If
a # Ap, then (o,0) ¢ X, and from (7), the conclusion holds. Therefore, we assume
that & = Ay, and by the same argument as case (i¢) of Lemma 2.2, the conclusion
also holds. O

Lemma 2.4. Suppose that (f1),(f2), (fa) hold, then there is a hg > 0 and v €
HY(Q)\ {0} such that

max I (hotv™ + ho(1 —t)v™) < 0.
te[0,1]

Proof. From (f3) and (f4), for any M; > 0, there is a constant Ms > 0 such that
F(x,t) > Mi[t]> + My|t|? for any (z,t) € Q x R.

Let v € H}(2) be a nontrivial solution of problem (1.6) with (ag, 8y) € £, we have
that v is sign-changing and

bllol*lv*I* = aolv*[3,  Bllvl*[lvT|I* = Bolv~ 4. (2.8)
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— allvt|® allo” |2
Hence, for any ¢ € [0,1], let M; = max{ R o }, by (2.8) and tlgl[gﬁ](t(l —

t))? = {5, we have
I(htvt + h(1 —t)v™)
a b o
<GP + Pt 2 (he)" = ot [3(h8)" = Mafo[5(ht)?

— Mol §(he)? + 2o P (1~ 0)2 4 3 ol 21— 1))

_8
1

b _
+ S It Il Rt = 1)

[0 [3(h(1 = 1)) = Mifo™ [3(A(1 — 1))? = Ma|v™ [§(h(1 —t))°

a a, _ _
<G It = Mot )% + (Sl I = Mafo~ [3)h

- 1
= Ma|o* [§(ht)” — Ma|v™ [5(h(1 = 1)) + 4 (a0 — a) v [3h*

1 g b e 2
+ 7 (Bo = B)lv™I3h™ + oo ol IR

Since 6 > 2, there is a sufficiently small hy > 0 such that In[aa}ﬁ I(hotvt + ho(1 —
telo,

tyv~) < 0. O
Now, for (a, ) € R?, we define
B(a, ) = {u € Hy(Q) : 0llull* > afu™[i + Blu”[3},
(e, B) := {y € C([0, 1], Hy () : 7(0) = 4(0)" ¢ E(a, 8),7(1) =~(1)” ¢ E(e, B)}-
Proof of Theorem 1.1. (i) We first consider the case o > Ay, 8 = A;. Because

Jo F(z,u)dz = o(|u]}) as |uls — oo from (f1), for any u € E(a + c(a),c(a)), we
have

a b o 8, _
) = Sl + Fhal* = Sttt - Bt - [ Plo,ujas

> Sl + pe(@)lut 4 + 5 (e(a) — 8)|u 4 — oflul)

4 4
1
> 2 ul + (c@) — B)lul — of(uld).

Hence by c¢(a) > A\ = 8, I is bounded from below on E(« + ¢(a),c(«)) and
m =1inf{I(u) : u € E(a+ c(a),c(a))} > —o0.

Setting
:= inf I(y(t
¢i= Inf max (v(t))s
where T' := {y € T'(a + ¢(a), c(a)) : I(7(0)), I(v(1)) < m — 1}. Next, we will show
that I" # () and c is negative, namely, there is a yo € I" such that max;c(o,1 I(70(t)) <
0. From Lemma 2.4, there is hy > 0 and v # 0 such that

max I (hotv™ + ho(1 —t)v™) < 0.
t€0,1]
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By Lemma 2.3, I satisfies the (PS) or the (Ce) condition in the case v > Ay

or a = \; and I satisfies the (Ce) condition. Without loss of generality, we can
assume that [ 5 and I} have not non-trivial critical points. Thus, by Lemma 2.1,

we can obtain a £ € C([0,1], H(Q)) and an n € C([0,1], H}(Q)) satisfying
£(0) = hov™, 1(0) = hov™, IF(£(t)) <m —1, Iz (n(t)) <m —1,
IF(E()) < IF(£(0)) = I(hov™) < 0 for every ¢ € [0, 1],
I3 (n(t)) < 15 (n(0)) = I(hgv™) < 0 for every t € [0, 1],
and
§(0)F = hov™, n(0)” = hov™,
I(§() ") = I3 (§()%) < IF(£(t)) < 0 for every ¢ € [0, 1],
I(n()™) =15 (n(t)") < Iz (n(t) <0 for every t € [0,1],
which yields that
¢ ¢ E(a+c(a),c(a)) and (1)~ ¢ E(a+c(a), c(a)).

Define
n(1—4t)~, if 0<t<d,
Y0(t) = ho(2t — 1/2)v" + ho(3/2 —2t)v~, if + <t <3,
£(4t —3)*, if 3<t<1,

then, we have v € I" and m[ax] I(yo(t)) <O.
te[0,1

(it) Case 8 > A1, = A\;. We can also prove the existence of a negative critical
value by using E(¢(8),&(8) + 8) instead of E(a + c(a), c(a)). O
In order to prove Theorem 1.2, we define

A= {u € Hy(Q) 2 blluf|* > A [uli},
then we have the following results.

Lemma 2.5. Assume that f satisfies (f1), then p := infa, I(u) > —oo for any
(o, B) € ItQm.

Proof. From (f1), we have [, F(z,u)dz = o(||u]|*) as |Ju|| — oo. For any («, 8) €
int@,,, we have

1) = Sl + Sl = Sttt - Zhund = [ B wda
2 4 4 4 g o

o
4)\m+1
hence, from A, 41 > max{a, 8}, it follows that inf I(u) > —oco. O

uEA,
Define

Ty = {h € C(ST, H§(Q)) : hlgm-1 is old, —oo < I(h(S™ 1)) < p — 1},

a
> Sl + (A1 = max{a, BY)[|ull* = o(fJul*) > —oo,

where S is the upper hemisphere of S with boundary Sm~1 we have
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Lemma 2.6. Let (f1) hold, then h(SV') N A, # 0 for every h € T,

Proof. Let h € I',,. If 0 € h(ST"), we have h(ST") N Ay, # 0 . Now, we assume
that 0 ¢ h(ST"). We define the odd extension h* : S™ — H{}(2)\{0} by

* h(Z17227"' 7zm+1)7 if Zm+1 = 0,
h (217227"' aszrl) =
—h(—z1,—29, ", —2Zm+1), I zmt1 <0,

and let 7(u) = u/|u|* (u # 0), then moh* € ¥,,11. By the definition of \,,41, there
isa z* € S™ such that [|(moh*)(z*)||* > A\pi1, namely, ||R*(2*)[|* > A1 |h*(2%)]3,
thus h*(z*),h*(—2*) € Ay, since h* is odd . This shows that h(ST) N A, # 0
because h* is the odd extension of h. O

Proof of Theorem 1.2. By Lemma 2.1, we know that the purpose of the con-
ditions (¢) and (4i) is to guarantee the compactness condition. Now, we define a
minimax value of the functional I:
em = inf sup I(u).
m hel,, ueh(Sm)
From Lemma 2.2, Lemma 2.5, Lemma 2.6 and I'-linking theorem, c,, is a critical
value of I and
Cm = inf sup T = inf I(u) > —oo.
m hel,, ueh(gm) ( ) p u€EAnm, ( )

In the following, let us show that c¢,, < 0 to prove the existence of non-trivial
critical point of /. Namely, there exists a h € I';,, such that SUDyen(sT) I(u) < 0.
Now, we fix ¢ > 0 with min{a, 8} — A\;, > €. By the definition of \,,, there is a
ho € X, such that

sup bllho(2)||* < A + €. (2.9)
zeSm—1

We shall prove the existence of a continuous extension hf € C'(S7,S) of hg. Define
g(2) = ho(2)/||ho(2)]| for any z € S™~1, then g is a continuous from S™~! to G :=
{u € HF(Q) : ||u]| = 1}. Because ST is homeomorphic to the m dimensional closed
unit disc, there is a continuous extension g* : ST — B := {u € Hg(Q) : |lu|| < 1}.
Indeed, for every z = (2/, zp,) € ST(z € R™™1), we define

1—229(z'/\/1—-22), if 2z, €]0,1),

g (z) =

Because G is a retract of the unit ball B, there is an R € C(B,G) such that
R(u) = u for any u € G. Let hf = mo Ro g*(z) for z € ST", where 7(u) = u/|ul4
for any v € H}(Q)\{0}, hence, hj is the desired continuous extension of hq.

By (fg), (fa), for any M3 > 0, there is a constant M, > 0 such that

F(x,t) > Ms|t|*> + My|t|” for any (z,t) € Q x R. (2.10)
Then, let M5 = Iglé(l?g( ) H|u\”4 , we have |[ul* < Mslu|} for any u € h§(ST). Let
ue * m
al|u|®

M3 > max and for any u € hj(ST) and s > 0, one gets
3 uehy(S™) 2ul2 y 6(S1) &

a b
1(8u)=§||u||2$2+1||U||484 Tut st —*\u 15" —/QF(%SU)dx
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a b T LT
< (Gllull® = Msful3)s® + Zllull*s” — Malul7s

bM,
< (—584_7" max |ultT" — My)|ulls".
4 u€hy (ST)
Hence from r € (1,2) and the above inequality, there is a sufficiently small sg > 0
such that

ax [ < 0. 2.11
e (sou) (2.11)

2
Let Mz > Ehrr%%x . C;'mé, for any u € ho(S™ 1) = hf|gm-1(S™71), from
Uu 0 m—

(2.10), for every t > sg, we have

a b Q 8, _
I(ow) = Sl + Full ! = Gl = Friiet = [ ot
Q

a b 1 . .
< Sl + 3l ! — § minfa, Sl — Myful3e? — Malul;

1
< Z(Am + & — min{a, B}t — My|u|"t"
<0, (2.12)
and I(tu) — —oo as t — oo using (2.9). Therefore, there is a ¢y > so such that

sup  I(tou) <p-—1. (2.13)
u€hd(Sm—1)

Define a continuous map hf from ST to Hg(Q) as follows:

B () (1 = 2zm41)to + 22my150)ho(2//y/1 = 22,41), if 0< zpg1 < 3,
1\®) =

sohg(%z” % 22,04 — 1), if 1<z, <1,
where z = (21, -+ , zm41) and 2’ = (21, -+ , 2 ). Therefore, hi € Ty, by (2.13), and
SUDycp:(sm) I(u) < 0 by (2.11) and (2.12), that is, ¢,, < 0. O
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