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Abstract By using the theory of degree, the existence of nontrivial solution
for boundary value problem of nonlinear fractional differential equation is in-
vestigated. In order to get this conclusion, we make use of Laplace transform
to obtain the conditions that the eigenvalues satisfy. Then, for three different
specific problems, we use Matlab software to calculate the eigenvalues. This
is the fundamental skill that Leray-Schauder degree theorem can be used.

Keywords Fractional differential equation, eigenvalue, Green’s function, Leray-
Schauder degree.

MSC(2010) 26A33, 34A08, 34B15.

1. Introduction
In recent years, fractional differential equations has attracted more and more at-
tention [5–8,10,12], since it can describe many problems in reality more accurately.
Moreover, the research results of fractional differential equations are also very fruit-
ful [1–4, 9, 11, 13–17]. There are many different forms of the definition of fractional
calculus, such as Riemann-Liuville fractional calculus, Caputo fractional derivative
and conformable fractional calculus, etc.

Ma [11]combines the eigenvalue and Leray-Schauder degree to study the bound-
ary value problem of nonlinear fractional differential equation: c

0D
α
t u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = au(1), u′(0) = bu′(1).

This is a new method. But in [11], the existence range of the eigenvalue is not given,
which makes the final result ambiguous.
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In this paper, we will study the boundary value problem of nonlinear fractional
differential equation with Caputo derivative: c

0D
α
t u(t) + f(u(t)) = 0, t ∈ (0, 1),

u(0) = bu′(1), u′(0) = cu(1),
(1.1)

where 1 < α < 2, b and c are real numbers with b >
1

c
− 1, 0 < c < 1.

This article is organized as follows. In Section 2, we give some definitions and
lemmas. In Section 3, we are going to get the equations that the eigenvalue of (1.2)
satisfies.  c

0D
α
t u(t) + λu(t) = 0, t ∈ (0, 1),

u(0) = bu′(1), u′(0) = cu(1).
(1.2)

Then, we use these results and Leray-Schauder degree theorem to prove that (1.1)
has solution. Finally, taking three different sets of data α, b and c, we use Matlab
software to estimate the existence range of eigenvalue of (1.2). These results are in
examples 4.1, 4.2 and 4.3. And, in these three cases, we study the existence of the
solution of (1.1).

2. Preliminaries
Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a
function y : (0,∞) → R is given by

0I
α
t y(t) =

1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2. The Caputo fractional derivative of order α > 0 of a function
y : (0,∞) → R is given by

c
0D

α
t y(t) =

1

Γ(n− α)

∫ t

0

y(n)(s)

(t− s)α−n+1
ds,

provided that the right-hand side is pointwise defined on (0,∞), where n = [α] + 1.

Definition 2.3. The Mittag-Leffler type function is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
,

where α > 0, β > 0.

Lemma 2.1. For α > 0, the general solution of the fractional differential equation
c
0D

α
t u(t) = 0 is given by

u(t) = c0 + c1t+ c2t
2 + c3t

3 + · · ·+ cn−1t
n−1,

where ci ∈ R, i = 1, 2, · · · , n− 1, n = [α] + 1.
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Lemma 2.2. If α > 0, β > m, for m ∈ N, the following equation hold:( d

dt

)m[
tβ−1Eα,β(t

α)
]
= tβ−m−1Eα,β−m(tα).

Lemma 2.3. The following formula holds for the Laplace transforms of the function
tβ−1Eγ

α,β(λt
α).

L
{
tβ−1Eγ

α,β(λt
α); s

}
=

sαγ−β

(sα − λ)γ
,

where Re(s) > 0, β > 0, λ ∈ C and |λs−α| < 1.

Lemma 2.4 (Lemma 3.4, [11]). Let Ω be a bounded open set in infinite dimensional
real Banach space E. θ /∈ ∂Ω and A : Ω → E be completely continuous. Suppose
that ∥ Ax ∥>∥ x ∥, Ax ̸= x,∀x ∈ ∂Ω. Then deg(I −A,Ω, θ) = 0.

Lemma 2.5 (Lemma 3.5, [11]). Let A be a completely continuous operator which is
defined on a Banach space E. Assume that 1 is not an eigenvalue of the asymptotic
derivative. The completely continuous vector field I − A is then nonsingular on
spheres Sρ = {x |∥ x ∥= ρ} of sufficiently large radius ρ and deg(I−A,B(θ, ρ), θ) =
(−1)k, where k is the sum of the algebraic multiplicities of the real eigenvalues of
A

′
(∞) in (1,∞).

Lemma 2.6. Let n − 1 < α ≤ n, h(t) ∈ Cn(R,R+), for any d > 0, h(n)(t) ∈
L1(0, d), then the following formula holds for the Laplace transform of the Caputo
fractional derivative:

L {c0Dα
t h(t); s} = sαH(s)−

n−1∑
l=0

sα−l−1h(l)(0),

where H(s) = L{h(t); s}.

Proof. According to Definition 2.1 and 2.2, we have

c
0D

α
t h(t) =

1

Γ(n− α)

∫ t

0

h(n)(ι)

(t− ι)α−n+1
dι

=0I
n−α
t h(n)(t).

Let h(n)(t) = g(t), then, we get

L {c0Dα
t h(t); s} =L

{
0I

n−α
t h(n)(t); s

}
=L

{
0I

n−α
t g(t); s

}
=L

{
1

Γ(n− α)

∫ t

0

g(s)

(t− s)α−n+1
ds; s

}
=

1

Γ(n− α)
L{tn−α−1; s} × L {g(t); s}

=
1

Γ(n− α)
× Γ(n− α)

sn−α
× L{g(t); s}

=
1

sn−α
L{g(t); s}.
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Since
L{g(t); s} =L

{
h(n)(t); s

}
=

∫ ∞

0

e−sth(n)(t)dt

=

∫ ∞

0

e−stdh(n−1)(t)

=e−sth(n−1)(t)
∣∣∞
0

+ s

∫ ∞

0

h(n−1)(t)e−stdt

=− h(n−1)(0) + s

∫ ∞

0

e−stdh(n−2)(t)

=− h(n−1)(0) + se−sth(n−2)(t)
∣∣∞
0

+ s2
∫ ∞

0

e−sth(n−2)(t)dt

=− h(n−1)(0)− sh(n−2)(0) + s2
∫ ∞

0

e−sth(n−2)(t)dt

= · · · · · · · · ·

=−
n−1∑
k=0

skh(n−k−1)(0) + snH(s),

we conclude that

L {c0Dα
t h(t); s} =s−n+α

(
snH(s)−

n−1∑
k=0

skh(n−k−1)(0)

)

=sαH(s)−
n−1∑
k=0

s−n+k+αh(n−k−1)(0)

=sαH(s)−
n−1∑
l=0

sα−l−1h(l)(0).

Let’s make the following assumptions:
(G1) f ∈ C(R,R) ;

(G2) λ satisfies cEα,1(−λ) + [cEα,2(−λ)− 1]
1−bE

(1)
α,1(−λ)

bE(α,1)(−λ) = 0, and β∞ ̸= λ, where
β∞ = limu→∞

f(u)
u ;

(G3) There exists constant r > 0 such that f(u) > Q, for any |u| ≤ r, where
Q = (bc+c−1)Γ(α+1)

bc r.

3. Main results
Lemma 3.1. Let 1 < α < 2, y(t) ∈ C[0, 1]. The unique solution of{

c
0D

α
t u(t) + y(t) = 0, 0 < t < 1,

u(0) = bu′(1), u′(0) = cu(1),
(3.1)
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is u(t) =
∫ 1

0
G(t, s)y(s)ds, where

G(t, s) =


− 1

Γ(α) (t− s)α−1 + c(b+t)
(bc+c−1)Γ(α) (1− s)α−1

+ b(ct+1−c)
(bc+c−1)Γ(α−1) (1− s)α−2, 0 ≤ s < t < 1,

c(b+t)
(bc+c−1)Γ(α) (1− s)α−1 + b(ct+1−c)

(bc+c−1)Γ(α−1) (1− s)α−2, 0 < t ≤ s < 1.

(3.2)

Proof. It follows from Lemma 2.1 that (3.1) is equivalent to integral equation

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+ c0 + c1t, (3.3)

where c0, c1 ∈ R. So, we get

u′(t) = − 1

Γ(α− 1)

∫ t

0

(t− s)α−2y(s)ds+ c1. (3.4)

Applying the boundary conditions u(0) = bu′(1) and u′(0) = cu(1) to (3.3) and
(3.4), we get

c0 = −
b
∫ 1

0
(1− s)α−2y(s)ds

Γ(α− 1)
+

bc
∫ 1

0
(1− s)α−1y(s)ds

(bc+ c− 1)Γ(α)
+

b2c
∫ 1

0
(1− s)α−2y(s)ds

(bc+ c− 1)Γ(α− 1)
,

c1 =
c
∫ 1

0
(1− s)α−1y(s)ds

(bc+ c− 1)Γ(α)
+

bc
∫ 1

0
(1− s)α−2y(s)ds

(bc+ c− 1)Γ(α− 1)
.

Thus, the unique solution of (3.1) is

u(t) =− 1

Γ(α)

∫ t

0

(t−s)α−1y(s)ds−
b
∫ 1

0
(1− s)α−2y(s)ds

Γ(α− 1)
+

bc
∫ 1

0
(1− s)α−1y(s)ds

(bc+ c− 1)Γ(α)

+
b2c
∫ 1

0
(1− s)α−2y(s)ds

(bc+ c− 1)Γ(α− 1)
+

ct
∫ 1

0
(1− s)α−1y(s)ds

(bc+ c− 1)Γ(α)
+

bct
∫ 1

0
(1− s)α−2y(s)ds

(bc+ c− 1)Γ(α− 1)

=

∫ t

0

[
− (t− s)α−1

Γ(α)
+

c(b+ t)(1− s)α−1

(bc+ c− 1)Γ(α)
+

b(ct+ 1− c)(1− s)α−2

(bc+ c− 1)Γ(α− 1)

]
y(s)ds

+

∫ 1

t

[
c(b+ t)(1− s)α−1

(bc+ c− 1)Γ(α)
+

b(ct+ 1− c)(1− s)α−2

(bc+ c− 1)Γ(α− 1)

]
y(s)ds

=

∫ 1

0

G(t, s)y(s)ds.

Since b >
1

c
− 1, 0 < c < 1, G(t, s) > 0. Taking N1 = bc+c

(bc+c−1)Γ(α+1) +
b

(bc+c−1)Γ(α) ,

we have
∫ 1

0
G(t, s)ds ≤

∫ 1

0
c(b+t)(1−s)α−1

(bc+c−1)Γ(α) + b(ct+1−c)(1−s)α−2

(bc+c−1)Γ(α−1) ds ≤ N1.

Theorem 3.1. The eigenfunction of (1.2) satisfies

u(t) =u(0)

[
Eα,1(−λtα) +

1− bE
(1)
α,1(−λ)

bEα,1(−λ)
tEα,2(−λtα)

]
,
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where u(0) is a constant, E
(1)
α,1(−λ) =

∑∞
k=1

(−λ)k

Γ(αk) , and the eigenvalue λ satisfies
equation

cEα,1(−λ) +
[
cEα,2(−λ)− 1

]1− bE
(1)
α,1(−λ)

bEα,1(−λ)
= 0.

Proof. For linear problem (1.2), by Lemma 2.6, we get

L
{

c
0D

α
t u(t) + λu(t); s

}
= sαL

{
u(t); s

}
− sα−1u(0)− sα−2u′(0) + λL

{
u(t); s

}
= 0,

i.e.
L {u(t); s} =

sα−1

sα + λ
u(0) +

sα−2

sα + λ
u

′
(0).

By Lemma 2.3, we have

u(t) = u(0)Eα,1(−λtα) + u′(0)tEα,2(−λtα), (3.5)

u′(t) = u(0)

∞∑
k=1

(−λ)ktαk−1

Γ(αk)
+ u′(0)Eα,1(−λtα). (3.6)

Then, for u(0) = bu′(1), we get eigenfunction of (1.2) satisfies following equation

u(t) = u(0)

[
Eα,1(−λtα) +

1− bE
(1)
α,1(−λ)

bEα,1(−λ)
tEα,2(−λtα)

]
,

where u(0) is a constant and E
(1)
α,1(−λ) =

∑∞
k=1

(−λ)k

Γ(αk) . According to u′(0) = cu(1),
we get the eigenvalue λ satisfies following equation

cEα,1(−λ) +
[
cEα,2(−λ)− 1

]1− bE
(1)
α,1(−λ)

bEα,1(−λ)
= 0. (3.7)

By Lemma 3.1, the problem (1.2) is equivalent to u(t) = λ
∫ 1

0
G(t, s)u(s)ds.

We define (Tu)(t) =
∫ 1

0
G(t, s)u(s)ds. Then, the eigenvalue of operator T is 1

λ

(λ ̸= 0). Further, we define (Au)(t) =
∫ 1

0
G(t, s)f(u(s))ds, E = C[0, 1] and ∥ u ∥=

max0≤t≤1 | u(t) |.

Lemma 3.2. If (G1) and (G2) holds, the operator A : E → E is completely
continuous.

Proof. Obviously, the operator A is continuous in consideration of continuity of
f(u). Let Ω ⊂ E be bounded, there exists constants R, M > 0 such that ∥ u ∥≤ R,
u ∈ Ω and | f(u(t)) |< M , t ∈ [0, 1]. Taking H = 1

Γ(α+1) + c(b+1)
(bc+c−1)Γ(α+1) +

b
(bc+c−1)Γ(α) , then, for u ∈ Ω, we have

∣∣∣Au(t)∣∣∣ =∣∣∣ ∫ 1

0

G(t, s)f(u(s))ds
∣∣∣

=
∣∣∣ 1

(bc+ c− 1)Γ(α)

∫ 1

0

c(b+ t)(1− s)α−1 + b(ct+ 1− c)(α− 1)(1− s)α−2

× f(u(s))ds− 1

Γ(α)

∫ t

0

(t− s)α−1f(u(s))ds
∣∣∣
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≤ M

(bc+ c− 1)Γ(α)

∫ 1

0

c(b+ 1)(1− s)α−1 + b(α− 1)(1− s)α−2ds

+
M

Γ(α)

∫ t

0

(t− s)α−1ds

≤
[

1

Γ(α+ 1)
+

c(b+ 1)

(bc+ c− 1)Γ(α+ 1)
+

b

(bc+ c− 1)Γ(α)

]
M

=HM.

Hence, the operator A is uniformly bounded on E. From∣∣∣(Au)′(t)∣∣∣ =∣∣∣ c

(bc+ c− 1)Γ(α)

∫ 1

0

(1− s)α−1f(u(s))ds+
bc(α− 1)

(bc+ c− 1)Γ(α)

×
∫ 1

0

(1− s)α−2f(u(s))ds− α− 1

Γ(α)

∫ t

0

(t− s)α−2f(u(s))ds
∣∣∣

<
c

α(bc+ c− 1)Γ(α)
M +

bcM

(bc+ c− 1)Γ(α)
+

M

Γ(α)
tα−1

<

[
c

(bc+ c− 1)Γ(α+ 1)
+

bc

(bc+ c− 1)Γ(α)
+

1

Γ(α)

]
M,

for u ∈ Ω, t1, t2 ∈ [0, 1], t1 < t2, we have∣∣∣Au(t2)−Au(t1)
∣∣∣ =∣∣∣ ∫ t2

t1

(Au)′(s)ds
∣∣∣

≤
∫ t2

t1

∣∣∣(Au)′(s)
∣∣∣ds

<

[
c

(bc+ c− 1)Γ(α+ 1)
+

bc

(bc+ c− 1)Γ(α)
+

1

Γ(α)

]
M(t2 − t1).

Therefore, the operator A is equicontinuous on E. By Arzela-Ascoli theorem, we
get that A : E → E is a completely continuous operator.

Lemma 3.3. The operator A is Fréchet differentiable at ∞, If (G1) and (G2) hold,
A′(∞) = β∞T .

Proof. By Lemma 3.1, we have
∫ 1

0
G(t, s)ds ≤ N1. Since β∞ = limu→∞

f(u)
u ,

there exist a constant uε such that |u| > uε, for any ε > 0, we have∣∣∣f(u)
u

− β∞

∣∣∣ ≤ ε

2N1
,

i.e. ∣∣∣f(u)− β∞u
∣∣∣ ≤ ε|u|

2N1
.

On the one hand, when |u| ≤ uε, there exists M1(ε) > 0 such that
∣∣∣f(u)− β∞u

∣∣∣ ≤
M1(ε). So, we have

∣∣∣f(u)− β∞u
∣∣∣ ≤ ε|u|

2N1
+M1(ε), for all u ∈ R. Then, for u ∈ E,

we have∣∣∣Au− β∞Tu
∣∣∣ = ∣∣∣∣∫ 1

0

G(t, s)f(u(s))ds− β∞

∫ 1

0

G(t, s)u(s)ds

∣∣∣∣
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≤
∫ 1

0

G(t, s)
∣∣∣f(u(s))− β∞u(s)

∣∣∣ds ≤ ∫ 1

0

G(t, s)

[
ε ∥ u ∥
2N1

+M1(ε)

]
ds

≤ ∥ u ∥ ε

2
+M1(ε)N1.

So, we get ∥Au−β∞Tu∥
∥u∥ ≤

(
ε

2N1
+ M1(ε)

∥u∥

)
N1. Let U0 = max

{
uε,

2M1(ε)N1

ε

}
. When

∥ u ∥> U0, we obtain ∥Au−β∞Tu∥
∥u∥ ≤ ε. Therefore, A′

(∞) = β∞T .

Theorem 3.2. If (G1)− (G3) hold, There exists at least one nontrivial solution of
(1.1).

Proof. Apparently, B(θ, r) is a bounded open set, θ /∈ ∂(B(θ, r)). Via Lemma
3.2, we get A : B(θ, r) → E is completely continuous. Now, we prove ∥ Au ∥>∥ u ∥,
for u ∈ ∂(B(θ, r)). Since∣∣∣(Au)(t)

∣∣∣ =∣∣∣ ∫ 1

0

G(t, s)f(u(s))ds
∣∣∣

=
∣∣∣ ∫ t

0

−(bc+ c− 1)(t− s)α−1 + c(b+ t)(1− s)α−1 + b(ct+ c− 1)

(bc+ c− 1)Γ(α)

× (α− 1)(1− s)α−2f(u(s))ds+

∫ 1

t

c(b+ t)(1− s)α−1 + b(ct+ c− 1)

(bc+ c− 1)Γ(α)

× (α− 1)(1− s)α−2f(u(s))ds
∣∣∣

>
∣∣∣ ∫ 1

t

c(b+ t)

(bc+ c− 1)Γ(α)
(1− s)α−1f(u(s))ds

∣∣∣,
taking t = 0 and combining (G3), we have∣∣∣(Au)(0)∣∣∣ >∣∣∣ ∫ 1

0

bc

(bc+ c− 1)Γ(α)
(1− s)α−1f(u(s))ds

∣∣∣
>

bc

(bc+ c− 1)Γ(α+ 1)
×Q = r ≥∥ u ∥ .

Because of ∥ Au ∥= maxt∈[0,1]

{
(Au)(t)

}
, we have ∥ Au ∥>∥ u ∥. Therefore, from

Lemma 2.4, we get
deg(I −A,B(θ, r), θ) = 0. (3.8)

According to (G2), we obtain β∞
λ ̸= 1 (β∞

λ is the eigenvalue of the operator A′
(∞)).

That is to say, 1 is not an eigenvalue of the asymptotic derivative. Consequently,
by Lemma 2.5, we have

deg(I −A,B(θ, ρ), θ) = (−1)k, k ≥ 1. (3.9)

It follows from Eq. (3.8) and Eq. (3.9) that deg(I − A,B(θ, ρ) \ B(θ, r), θ) =
(−1)k − 0 = (−1)k, where k is the sum of the algebraic multiplicities of the real
eigenvalues of A′

(∞) in (1,∞). If Eq. (1.2) has no eigenvalue, we have k = 0. So,
deg(I −A,B(θ, ρ) \B(θ, r), θ) = (−1)0 − 0 = 1.

By the theory of degree, we can obtain that the operator A has at least one
fixed point in B(θ, ρ) \B(θ, r). So, (1.1) has at least one nontrivial solution.
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Remark 3.1. As long as β∞ is not equal to everyone of eigenvalues, the boundary
value problem (1.1) has at least one nontrivial solution. In the boundary value
problem (1.1), for different values of α, b, and c, the distribution of eigenvalue
corresponding to Eq. (1.2) are different, see Examples 4.1, 4.2 and 4.3. Thus,
in [11], it is not feasible that β∞ is not equal to one of the eigenvalues.

Remark 3.2. In order to calculate the eigenvalue of Eq. (1.2) when α, b and c
are given, we should find the solutions of Eq. (3.7). In other words, we have to
investigate the following equation[ ∞∑

k=0

bc(−λ)k

Γ(αk + 1)

]2
+

∞∑
k=0

c(−λ)k

Γ(αk + 2)
−

∞∑
k=0

bc(−λ)k

Γ(αk + 2)

∞∑
k=1

(−λ)k

Γ(αk)
+

∞∑
k=1

b(−λ)k

Γ(αk)
−1 = 0.

(3.10)
First, taking α = 1, we make f1(λ) =

∑n
k=10001

(−λ)k

Γ(k+1) , n = 20000, 30000, 40000 · · · .
Through Matlab calculation, when λ ∈ [1, 200], the value of f1(λ) is approxi-
mately equal to 0. So,

∑n
k=10001

(−λ)k

Γ(αk+1) ≈ 0 for 1 < α < 2, λ ∈ [1, 200], which
means

∑∞
k=10001

(−λ)k

Γ(αk+1) ≈ 0, in the same way, we can obtain
∑∞

k=10001
(−λ)k

Γ(αk+2) ≈

0,
∑∞

k=10001
(−λ)k

Γ(αk) ≈ 0. Therefore, the Eq. (3.10) is equivalent to

bc

[
10000∑
k=0

(−λ)k

Γ(αk + 1)

]2
+ c

10000∑
k=0

(−λ)k

Γ(αk + 2)
− bc

10000∑
k=0

(−λ)k

Γ(αk + 2)

10000∑
k=1

(−λ)k

Γ(αk)

+ b

10000∑
k=1

(−λ)k

Γ(αk)
− 1 = 0,

(3.11)

for λ ∈ [1, 200]. That is to say, when λ ∈ [1, 200], the eigenvalue λ of (1.2) satisfies
Eq. (3.11).

4. Examples
Example 4.1. Consider the following boundary value problem

c
0D

5
3
t u(t) + f(u(t)) = 0, 0 < t < 1,

u(0) = 2u′(1), u′(0) =
1

2
u(1),

(4.1)

where

f(u) =


8
3u+ 8

3 , u < − 1
2 ,

4
3 , − 1

2 ≤ u ≤ 1
2 ,

8
3u, u > 1

2 .

Now, we show that (G1) − (G3) hold. Obviously, f ∈ C(R,R). Corresponding
(1.1), we get α =

5

3
, b = 2, c = 1

2
. For convenience, we let

f2(λ) =

[
10000∑
k=0

(−λ)k

Γ( 5k3 + 1)

]2
+

1

2

10000∑
k=0

(−λ)k

Γ( 5k3 + 2)
−

10000∑
k=0

(−λ)k

Γ( 5k3 + 2)

10000∑
k=1

(−λ)k

Γ( 5k3 )

+ 2

10000∑
k=1

(−λ)k

Γ( 5k3 )
− 1.
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Through Matlab calculation, we get the function image of f2(λ) (see Figure 1). The
intersections of f2(λ) and y = 0 in Figure 1 are the eigenvalues of (1.2) corresponding
to α =

5

3
, b = 2 and c =

1

2
. As showed in Figure 1, the image fluctuates around

Figure 1. Graph of equation f2

−1 and tends to be stable with the increase of λ. So, the two eigenvalues are in
the intervals (7, 8) and (18, 19), respectively. In (4.1), β∞ =

8

3
. Clearly, β∞

λ
̸= 1.

Choosing r =
1

2
, we have Q =

1

4
Γ(

8

3
). So, we get f(u) =

4

3
> Q, for |u| ≤ 1

2
.

With the use of Theorem 3.2, we conclude that the problem (4.1) has at least
one nontrivial solution.

Example 4.2. Consider the following boundary value problem
c
0D

7
4
t u(t) + f(u(t)) = 0, 0 < t < 1,

u(0) = 4u′(1), u′(0) =
1

4
u(1),

(4.2)

where

f(u) =


11
4 u+ 11

8 , u < − 1
4 ,

11
16 , − 1

4 ≤ u ≤ 1
4 ,

11
4 u, u > 1

4 .

Now, we prove that (G1) − (G3) hold. Clearly, f ∈ C(R,R). Corresponding
(1.1), we get α =

7

4
, b = 4, c = 1

4
. As a matter of convenience, we make

f3(λ) =

[
10000∑
k=0

(−λ)k

Γ( 7k4 + 1)

]2
+

1

4

10000∑
k=0

(−λ)k

Γ( 7k4 + 2)
−

10000∑
k=0

(−λ)k

Γ( 7k4 + 2)

10000∑
k=1

(−λ)k

Γ( 7k4 )

+ 4

10000∑
k=1

(−λ)k

Γ( 7k4 )
− 1.

As showed in Figure 2, when α =
7

4
, b = 4, and c =

1

4
, the eigenvalues of (1.2) are in

the intervals (7, 8), (23, 24), (52, 53), (81, 82), (134, 135) and (162, 163), respectively.
In (4.2), β∞ =

11

4
. So, we have β∞

λ
̸= 1. Making r =

1

4
, we have Q =

1

16
Γ(

11

4
).

Hence, we get f(u) =
11

16
> Q, for |u| ≤ 1

4
.

With the use of Theorem 3.2, we conclude that the problem (4.2) has at least
one nontrivial solution.
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Figure 2. Graph of equation f3

Example 4.3. Consider the following boundary value problem
c
0D

4
3
t u(t) + f(u(t)) = 0, 0 < t < 1,

u(0) = 2u′(1), u′(0) =
1

2
u(1),

(4.3)

where

f(u) =


7
3u+ 7

3 , u < − 1
2 ,

7
6 , − 1

2 ≤ u ≤ 1
2 ,

7
3u, u > 1

2 .

Now, we show that (G1) − (G3) hold. Obviously, f ∈ C(R,R). Corresponding
(1.1), we get α =

4

3
, b = 2, c = 1

2
. For convenience, we set

f4(λ) =

[
10000∑
k=0

(−λ)k

Γ( 4k3 + 1)

]2
+

1

2

10000∑
k=0

(−λ)k

Γ( 4k3 + 2)
−

10000∑
k=0

(−λ)k

Γ( 4k3 + 2)

10000∑
k=1

(−λ)k

Γ( 4k3 )

+ 2

10000∑
k=1

(−λ)k

Γ( 4k3 )
− 1.

As showed in Figure 3, when α =
4

3
, b = 2 and c =

1

2
, (1.2) has no eigenvalue.

Figure 3. Graph of equation f4

Taking r =
1

2
, we have Q =

1

4
Γ(

7

3
). Therefore, we get f(u) =

7

6
> Q, for |u| ≤ 1

2
.

With the use of Theorem 3.2, we conclude that the problem (4.3) has at least
one nontrivial solution.
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