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AN EFFICIENT NUMERICAL METHOD
BASED ON LEGENDRE-GALERKIN
APPROXIMATION FOR THE STEKLOV
EIGENVALUE PROBLEM IN SPHERICAL
DOMAIN

Ting Tan' and Jing An®T

Abstract We present in this paper an efficient numerical method based on
Legendre-Galerkin approximation for the Steklov eigenvalue problem in spher-
ical domain. Firstly, by means of spherical coordinate transformation and
spherical harmonic expansion, the original problem is reduced to a sequence
of equivalent one-dimensional eigenvalue problems that can be solved individu-
ally in parallel. Through the introduction of the appropriate weighted Sobolev
spaces, the weak form and corresponding discrete scheme are established for
each one-dimensional eigenvalue problem. Then from the approximate prop-
erty of orthogonal polynomials in the weighted Sobolev spaces, we prove the
error estimates of approximate eigenvalues for each one dimensional eigen-
value problem. Finally, some numerical examples are provided to illustrate
the validity of our algorithms.
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1. Introduction

The Steklov eigenvalue problems on the bounded domains in the plane was in-
troduced by Steklov in 1902 [13]. The eigenfunction represents the steady state
temperature on domain 2 such that the flux on the boundary is proportional to
the temperature. It is also important in conductivity and harmonic analysis as it
was initially studied by Calderén [10]. This connection arises because the set of
eigenvalues for the Steklov problem is the same as the set of eigenvalues of the
well-known Dirichlet-Neumann map. Thus, the Steklov eigenvalue problems have
important physical background and applications. For more details we can refer
to [4-6,9,11,15]. In this paper, we consider the following model problem

—AY 4+ =0, in Q,
% A, on 01,
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where (2 is a sphere of radius R and g—ﬁ is the outward normal derivative on 0f).

In recent years, many numerical methods have been proposed and received more
and more attention for the Steklov eigenvalue problems. Andreev and Todorov [1]
discussed the isoparametric finite element method. Armentano and Padra [2] intro-
duced and analyzed the conforming linear finite element approximation in a bounded
polygonal domain. Alonso and Russo [3], Yang et al. [27] and Li et al. [20] studied
nonconforming finite elements approximation. Li and Yang [19], Bi and Yang [7]
discussed a two-grid method of the conforming and non-conforming finite element
method, respectively. Li et al. [18] studied the extrapolation and superconvergence.
Tang et al. [25] studied the boundary element approximation. Bi and Yang [8] dis-
cussed the multi-scale discretization scheme based on the Rayleigh quotient iterative
method. Garau and Morin [14] analyzed the convergence and quasi-optimality of
adaptive FEM. Cao et al. [12] discussed multiscale asymptotic method in composite
medias. Xie et al. [16,17,26] studied a type of multilevel method. Zhang et al. [2§]
discussed the spectral method with the tensor-product nodal basis in rectangular
domain.

In theoretical research and practical applications, we often need to solve the
Steklov eigenvalue problem in some special domains, such as circular domain, spher-
ical domain and so on. Then an essential problem is how to efficiently solve the
Steklov eigenvalue problem in these special domains, especially for three-dimensional
spherical domains. To the best of our knowledge, there has few reports until re-
cently. Thus, the aim of this paper is to present an efficient numerical method based
on Legendre-Galerkin approximation for the Steklov eigenvalue problem in spheri-
cal domain. Firstly, by means of spherical coordinate transformation and spherical
harmonic expansion, the original problem is reduced to a sequence of equivalent
one-dimensional eigenvalue problems that can be solved individually in parallel.
Through the introduction of the appropriate weighted Sobolev spaces, the weak
form and corresponding discrete scheme are established for each one-dimensional
eigenvalue problem. Then from the approximate property of orthogonal polynomi-
als in the weighted Sobolev spaces, we prove the error estimates of approximate
eigenvalues for each one dimensional eigenvalue problem. Finally, some numerical
examples are provided to illustrate the validity of our algorithms.

The remainder of this paper is organized as follows. In §2, we derive dimension
reduction scheme of the Steclov eigenvalue problem. In §3, we formulate a weak
form and derive an error estimate of approximate eigenvalues. In §4, we deduce
in detail an efficient implementation of the spectral Galerkin approximation. We
present several numerical results in §5 to demonstrate the accuracy and efficiency
of our algorithm. Finally, in §6, we give some concluding remarks.

For brief, we use the symbol a < b to mean that a < Cb hereafter, where C is a
positive constant independent of N.

2. Dimension reduction scheme
In this section, we shall reduce the problem (1.1) into a series of equivalent one-
dimensional eigenvalue problems. At first, applying the spherical coordinate trans-

formation

r =rsinfcos¢,y = rsinfsin ¢,z = rcosb (2.1)
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to (1.1), we obtain

1 9 1 : 1 _
— ﬁar(’l" aru) — m@@(sln Hagu) — m&wu +u= 0,
(r,0,9) € [0, R) x [0, 7] x [0, 27] (2.2)

Oru(R,0,¢) = Mu(R.0,9),(0,¢) € [0,7] x [0,27],
where u(r, 0, ¢) = 1(rsin 6 cos ¢, r sin 0 sin ¢, r cos §).

Let S be the unit spherical surface, and denote by Ag the Laplace-Beltrami
operator on S, namely,

_ 1 : L o
Agu = ﬁﬁe(sm 00pu) + mdﬁu. (2.4)

The spherical harmonics {Y;”} (as normalized in [21]) are eigenfunctions of Ag,
ie.,

AgY™ ==l(l+1)Y",m,l € Z,1>0,|m| <L (2.5)
By spherical harmonic expansion we have
e’} l
u(r,0,6) =Y > uvm. (2:6)
=0 |m|=0
From (2.5), the (2.2)-(2.3) can be reduced to

— 0p(r20,ul™) + 11 + Duf™ +r*u™ = 0,7 € [0, R), (2.7)
Oru*(R) = Nu*(R). (2.8)

Let r = LR, 4y (t) = (3L R). Then (2.7) - (2.8) is equivalent to

— O ((t + 1)20uhy) +1(1 4 1)y + %2(75 + 1% =0,t € [-1,1), (2.9)

Ohi(1) = Azgdil(l) (2.10)
3. Weak form and Error Estimation

3.1. Weak form and its discrete scheme

We denote by w = 1+t a weight function and introduce the usual weighted Sobolev
space

LE(I) = {¢: /mp?dt < oo}
I
equipped with the inner product and norm

(4, B = /I wibdt, [l = ( /I wiPdt)?
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Next, we introduce the following non-uniformly weighted

where I = (—1,1).
Sobolev space Hil(f). For [ = 0, we define

HY o) = {1 0y € L2 (1), k = 0,1}

equipped with the corresponding inner product and norm

1
Z 8k1/),8k¢> ||7/1||1,w,0 = (%Wiw,o-

k=0

qulw

For [ > 1, we define
H () ={y: ak'(/}ELw’zk( ),k=0,1}

equipped with the corresponding inner product and norm

1
(1w = D _(0F, 08 ) uoe, [l = (¥, 9)F,,

k=0
L, (I), such that

Then the weak form of (2.9) -(2.10) is: Find (A;,¢) € R x H,

Ai(thr, ) = NBi(vr, ),V € H, (1), (3.1)

where
R2
A ) = [ (€ 02000410+ Do+ T e+ 1P

Bi (1, ¢) = 2R (1)¢(1).

Let Py be the space of polynomials of degree less than or equal to N, and set
Xn() = Py N HUIJ’Z(I). Then the discrete form of (3.1) is: Find (A, ¥in) €

R x Xn(1), such that
(3.2)

(hin, dn) = NnBi(hin, on),Von € Xn(1).

3.2. Error estimation of approximation eigenvalues

Theorem 3.1. A;(1,$) is a continuous and coercive bilinear form on HL (I) x

Hfj’l(I), i.e.,
AL (Y, D) S 1111wl @1 0,05

Al(d}ﬂ/}) Z Hw”%,w,l'

Proof. For the case of [ = 0, from Schwartz inequality we can derive that
2 Rr? 2
Ao(,0)] =1 [ (6 126+ T+ P

< / (¢ + D2'| + (¢ + 1)) )dt
< / (£ 122 + (¢ 4+ 1)202de)( / (£ 12(6)° + (¢ + 1)) de)

1
2
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= ||7/)H1.,w,0||¢”1,w70,
2
Ao(w) = [[((6+ VPP + T+ 120
I

z/<<t+1>2(w>+<t+1> 2t = ]2 0.
I

For the case of [ > 1, again by using Schwartz inequality we can derive that
R2
A0 = | [ (E+ 0200+ 10+ Dot e+ 1Poo)at
S [+ P+ loolas
I
S ([ (1207 +)ant([ @+ 026 + 6

I I

= [l
2
M) = [+ DR 10+ 100 + e+ 10

> / (4 12 ()2 + 0?)dt = [l

I
O

Lemma 3.1. Let A} be the eigenvalues of (3.1) and Vi be any k-dimensional
subspace oinJ(I), Then, for )\ll < )\l2 <... < )\f < .-, it holds

A, )
)’
Proof. See Theorem 3.1 in [22]. O

)\é€ = min max

3.3
ViCHL (1) v€Vi Bi( (3.3)

)

Lemma 3.2. Let ! be the eigenvalues of (5.1) and be arranged in an ascending
order, and define

Ei,j :Span{@/}f,-'- 7w‘lj}7

where ) is the eigenfunction corresponding to the eigenvalue Ni. Then we have

k _ Al(% ¢)
N B " 4
k_ Ay, )
A= Ienbl;?w Bl 0) k <n. (3.5)
Proof. See Lemma 3.2 in [22]. O

It is true that the minimax principle is also valid for the discrete formulation
(3.2) (see [22]).

Lemma 3.3. Let \fy be the eigenvalues of (3.2), and Vi, be any k-dimensional
subspace of Xn(1). Then, for Ny < Moy < -+ < AFy <+, there holds

A, ¥)

Ak — 3.6
v vkén§?v<z vV Bl ) (36)
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Let H}\}l : H$7Z(I) — Xn(I) be an orthogonal projection, defined by

Ai(hy — TNy, ) = 0,9 € X (D).

Theorem 3.2. Let \Fy be k-th eigenvalue of (3.2) and be an approzimation of AF,
k-th eigenvalue of (3.1). Then, we have

B
A< AES < AF max % (3.7)
vebLr By (I, I')
Proof. Owing to Xn(I) C H ,(I), then from (3.3) and (3.6) we have AF < AR
Let l’[}\’,lEL;c denote the space spanned by H}\}l }7H}\}lwl2, ‘e ,H}\}lz/)lk. It’s obvious

that H}\}lEl,k is a k-dimensional subspace of Xy (I). From the minimax principle,
we can derive that

e @09) ATy, T )

= max .
N penyie,, B, ¢)  webis By(I1Np, 1N )
From the symmetry of A;(-,-), we have
A, ) = LI, T ) + 24, (¢ — TI, TI) + Ay(4 — T, — TI'p).

From A; (¢ — Hjl\}l’l/J, H}\}lz/}) = 0 and the non-negativity of A;(¢) — H}\}lw, P — H}\}lw),
we obtain

AT, TN'Y) < A, 9).
Thus, we have

k _AWY)
A S B B Ty 1)
= D) Biw,9)
YEE k Bl(w7 w) Bl(H}\}lqp7 H}\}lw)
< \F max %
veELx By (T, Ty e)

This finishes our proof. O
We introduce the following non-uniformly weighted Sobole spaces:

Hsayﬁ,*(l) = {p . afp S Li"+k=ﬁ+l"’ (1)70 S k S 3}

w
equipped with the inner product and norm
° 1
(pa Q)s7w”“ﬁ7* = Z(afpv an)wa‘*'kvﬁ‘*'kv ||p||s7w°‘1[37* = (pvp)j7wa,87*7
k=0
and

Sal) ={¢ € Ho ()N HY(I) : Op € LY a0, 2 <k < s},
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equipped with the inner product and norm
[qua d)]s,w,l = (1/)7 (b)l,w,l + Z(af¢7 af¢)w_1+k’_1+k7
k=2
1
|| |¢|| |s,w,l = [’(/}7 w];,w,l’

where w®?(t) = (1 — t)*(1 + t)? denotes the Jacobi weight function with index
(v, B). Define orthogonal projection 7y ,,-1.-1 : L2, (1) — Q]_Vl’_l by

-1,-1
(P = TN w-1.-1D,qN)w-1.-1 = 0,Yqn € Q7

where Q"' = {q € Py : q(#1) = 0}. From the Theorem 1.8.2 in [23] we have the
following Lemma:

Lemma 3.4. ForVpc H3_, _, (I), the following inequality holds:
||8§(7TN7M71,71p —p)||w—1+k,—1+k 5 Nk_sllafp|‘w71+s,71+s,0 <k<s.

Theorem 3.3. There exists an operator 71']1\}1 tHY(I) = Xy (1) such that

ﬂll\}lu(:tl) = u(%1) and for u € H;, (1) with s > 1, there holds
08 (mx = ) [|-14k—145 S NF72105u]| 140, -142,0 < k < 5.
2

u.)(£1) = 0. For Vu € Hf, ,,(I) , we have u —u, € Hj ., (I). In fact, from
Hardy inequality (cf. B8.8 in [24]) we can derive that

/Iw_l’_l(u —u,)?dt S /Iw_Q’_Q(u —u,)?dt < /(at(u — uy))?dt. (3.8)

1

Proof. Let u,(t) = Ftu(—1) + Ftu(1) for Yu € H. (1), then we have (u —

Since

[ @ayde = [ G~ u(-0)d = S (u) - u-1)?

I I
1
— 5( Opudt)? < /(@U)th,
I I
then we have

/ (9 (u — wy))2dt < / (Byu)2dt + / (Oyus)2dt < / (Byu)2dt. (3.9)

I I I I
For k > 2, we have
/ W IR (R (g ))2dt = / W TR (k)2 gy, (3.10)
I I

Thus, u —u, € H_, _, ,(I). Define

TN U= Ty 11 (u — ) + us € Xy (), Vu € M (1).

Then from Lemma 3.4 we derive that

Haf(ﬂ']l\}lu - U)||w—1+k,—1+k = Haf(ﬂ']v’w—l.—l (u - u*) - (u - U*))||w—1+lc,—1+k

< NE 07 (0= )l

Together with (3.8), (3.9) and (3.10) we can obtain desired result. O
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Theorem 3.4. Let )\fN be the k-th approximate eigenvalue of /\f. Then for all
{iyr  Cc HE () with Bi(¢i, i) =1 and s > k, we have

O3] |40 14s,

) 1 .
My = AL S e(R)NZC79) max  —[|074] |11+
B.G=1, k]

where c(k) is a constant independent of N.

k
Proof. For V¢ € E; i, we have ¢p = 3 mz/Jl". Then we can derive that

i=1
By, ) — Bi(ly'y, ') _ 2|By(4, v — Iy')|
Bi(y, = B,
2 3 |allpgl|Bo(wi — T, )]
S 1,7=1 -
Z i [?
<2k max B — Ty, )

1,j=1

From Cauchy-Schwarz inequality and the property of orthogonal projection we can
derive that

Bu(vi — Ty, v)|
1y i i i
= B i - )|
l

1 P i 1 j i i Ao
= F|Al(¢zjv¢z —Iy'y))| = F|Al(¢zj — Iy i — T )|
i !

I A

1 j N i\ 5 i i AT
7(Az (W — TN of — TN ) 2 (A (] — T, o) — TIR')) 2

2/\

3 LA — ] — TR (A — e — )t

Since

) = [+ 0202 410+ 00+ T 1

I

< / (¢4 12 () + ?)dt < / ()2 + 2)dt

I I
S [P e tvar
I
then from Theorem 3.3 we obtain

By (¢ — T, o))| S N20- 9L ||aswl|\w+sfusuawA\musfus

Since

Bl(d’ﬂ/’) < 1 i
Bi(IIy'y, Iy'y) ~ 1 -2k max |Bz(w;'—n}dwz,wi>|

1,j=1
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then from Theorem 3.2 we can get desired results. O

Remark 3.1. For the error estimation of eigenfunctions, it can be treated similarly.
For the sake of brevity, we omit the detail.

4. Efficient implementation of the algorithm

We propose in this section an efficient numerical algorithm to solve the problems
(3.2). Let

. t+1
@i(t) = Li(t) — Liya(t),i=0---N =2, 0on_1 = e =1, (4.1)

where Ly is the Legendre polynomial of degree k. It is obvious that

Xn (1) = span{po(t), -, on(t)}-
Set
Qi = /I(t + 1)24,0;-(,020375,[)1']‘ = /Igojtpidt,
Cij = /I(t + 1)2<pjkpidt,di]’ = (pj(l)goi(l).

Then we shall look for

N
Yiv =) Yipilt). (4.2)

i=0
Now, plugging the expression (4.2) in (3.2), and taking ¢ through all the basis

functions in Xy (I), we will arrive at the following linear eigen-system:

2
(A+1(1+1)B+ RIC)\I/l = \n2RDU! (4.3)

where
A= (aij), B = (bij),C = (ciz), D = (dij),
\Ill = (11[}67 aquV)T'

In order to illustrate the effectiveness of our algorithm, we will prove that the stiff
matrix and mass matrix are all sparse matrices.

Theorem 4.1. For the basis functions (4.1), the matrices A, B, C, D are symmetric
banded matrices such that

aij =0 for 0<i,j<N—-2 and |i—j|>2,
aN_1p = N1 =0 for 2<k<N -2,
ang =agny =0 for 0<k<N;

bij =0 for 0<i,j <N-2 and |i—j| > 2,
bn—1k =bg,N-1=0 for 2<k<N -2,
bvg=bpen=0 for 1<k<N-—2;
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cij =0 for 0<4,j<N—-2 and |i—j| >4,

en—1k =CcpN-1=0 for 4<k<N-2

ecng=ceNn =0 for 3<E<N -2

dij =0 for 0<4,j <N =2,

dv_ix=dpn1=dngp =dpgny =0 for 0<k<N-—-2.
Proof. For 0 <i,j < N — 2, we derive that

%=A@+W¢%ﬁ:—[%w+n%ww

— /I(Li — Lio)((t + 1)%¢)) dt.

Thus, a;; = 0 for [i —j| > 2 since ((t + 1)%¢})’ is a j-degree polynomial. For
2 <k < N — 2, from the orthogonal property of Legendre polynomial we have

AN_1k = Qg N—1 = /(t+ 1%y _ydt = _/Sﬁk((t‘i‘ 1%y _y) dt
I I

=~ [+ 1~ Ly =0
I

For 0 < k < N, from ¢y = 0 we have

aNk = ag,N = /(t +1)% ) pydt = 0.
I

For 0 <14,57 < N — 2, we have
bij = /%’%‘df = /(Li — Lit2)(Lj — Ljy2)dt,
I I

ie., bjj =0 for |i—j|>2. For2<k<N —2, we have
bnv_1x = br,N_1 = /tpksON—wlt
I

t+1
:/—(Lk—LkJrQ)dt:O.
;2
For 1 <k < N — 2, we have

by = br,n = /@kSDth
I

= /(Lk — Ly2)dt = 0.
I

Similarly, we can prove that
ci; =0 for 0<4,j <N—-2 and |i—j| >4,
cN—1s=CkN-1=0 for 4 <k <N -2,
ecng=cpn =0 for 3<E<N -2,
In addition, from ¢;(1) =0(i =0,1,--- , N — 2), we obtain
dij = ¢j(1)pi(1) =0 for 0<1i,j <N -2,
dvoigp =dino1 =dng =de,ny =0 for 0<kE<N -2
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5. Numerical experiments

We now perform a sequence of numerical tests to study the convergence behavior
and show the effectiveness of our algorithm. We perform our programs in MATLAB
2015b. We take R =1 and [ = 0,1, 2,3 as our examples. The numerical results of

first meaningful physical eigenvalue for different [ and N are listed in Table 1.

Table 1. The first meaningful physical eigenvalue for different [ and N in a unit ball.

Aon

AN

/\2N

AN

10
12
14
16
18
20

0.313035285499535
0.313035285499331
0.313035285499332
0.313035285499331
0.313035285499332
0.313035285499332
0.313035285499332
0.313035285499331

1.194528049467097
1.194528049465325
1.194528049465325
1.194528049465325
1.194528049465327
1.194528049465326
1.194528049465325
1.194528049465325

2.140646825765955
2.140646825733227
2.140646825733230
2.140646825733231
2.140646825733231
2.140646825733227
2.140646825733231
2.140646825733229

3.110007601420826
3.110007600859386
3.110007600859385
3.110007600859386
3.110007600859385
3.110007600859385
3.110007600859389
3.110007600859382

We know from Table 1 that the eigenvalues achieve at least fourteen-digit accu-
racy with NV > 8. In order to further show the efficiency of our algorithm, we choose
the solutions of N = 60 as reference solutions, the error figures of the approximate
eigenvalue Ay (I = 0,1,2,3) with different N are listed in Figure 1.

1045

1046 L L L L L
6 8 10 12 14 16 18 20

Figure 1. Errors between numerical solutions and the reference solution for [ = 0, 1, 2, 3.

Before concluding this section, we would like to present some figures of the real
part of eigenfunctions u}"(r)Y;™ (6, ¢) for different [ and m with N = 60. Since the
eigenfunctions are three dimensional functions, we only present the figures on the
cutting plane along the direction of z = 0 in Figure 2-9.
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-08 -06 -04 -02 0 02 04 06 08

. X o o Figure 3. Contour image of
Figure 2. Mesh image of real(ugy(r)Yy (7/2, ¢)). real(u(r) Y2 (x/2, 6)).

08
06
0.4

0.2

-08 -06 -04 -02 0 02 04 06 08

Fi 4. Mesh i ¢ Hw® (M YO (/2 Figure 5. Contour image of
igure 4. Mesh image of real(uj (r)Y7 (7/2, ¢)). real(u(l)(r)Ylo(ﬂ-/Q,d))).

-08 -06 -04 -02 0 02 04 06 08

. . N 1 Figure 7. Contour image of
Figure 6. Mesh image of real(uy(r)Yy (7/2, ¢)). real(ul (MY} (7/2, $)).
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)

08

06

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-08 -06 -04 -02 0 02 04 06 08

Figure 9. Contour image of

Figure 8. Mesh image of real(u3(r)Yy (7/2, $))- real(ud(r)YQ (r/2, $)).

6. Conclusions

We present in this paper a high precision numerical method based on Legendre-
Galerkin approximation for the Steklov eigenvalue problem in spherical domain.
Firstly, each one-dimensional eigenvalue problem is independent of each other and
can be solved in parallel, which greatly reduces the computational time and memory
capacity. Secondly, we observe from the numerical results that each one-dimensional
eigenvalue problem has only one meaningful physical eigenvalue. Finally, by com-
bining with a spectral element method or a boundary perturbation algorithm, the
method developed in this paper can be extended to more complex eigenvalue prob-
lems which will be the subject of our future work.
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