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OF TRAVELING WAVES IN A HOST-VECTOR

EPIDEMIC MODEL∗
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Abstract In this paper, we are concerned with a diffusive host-vector epi-
demic model with a nonlocal spatiotemporal interaction. When the delay
kernel takes some special form, by employing linear chain techniques and ge-
ometric singular perturbation theory, we establish the existence of travelling
front solutions connecting the two spatially uniform steady states for suffi-
ciently small delays. Furthermore, by employing standard asymptotic theory,
we also obtain the asymptotic behavior of traveling wave fronts of this model.
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1. Introduction
Recently, Wu and Weng [16] introduced the following diffusive host-vector epidemic
model

∂u(t, x)

∂t
=
∂2u

∂x2
− au+

(N − u)
∫ t

−∞
∫
Ω
F (t, s, x, y)u(s, y)dyds

1 + β
∫ t

−∞
∫
Ω
F (t, s, x, y)u(s, y)dyds

, t ≥ 0, x ∈ Ω (1.1)

where u(t, x) represents the population density of infective host at time t and lo-
cation x, a is the recovery rate, β is a positive constant related to the saturation
incidence rate, and N is a constant representing the total host population (i.e. the
birth rate equals to the death rate of the host population). When the domain Ω is
a bounded set of R, the authors obtained the global asymptotic stability of steady
states of eq.(1.1), by using the ideas introduced by Pozio [13]. When Ω = R, the
authors also established the existence of traveling wavefronts for (1.1) by employing
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a new approach based on a combination of perturbation methods, the Fredholm
theory, and the Banach fixed point theorem [12].

In (1.1), the convolution kernel F (t, s, x, y) is a positive continuous function
in its variables t ∈ R, s ∈ R+, x, y ∈ Ω, which satisfies the usual normalization
assumption as follows ∫ +∞

0

∫
Ω

F (t, s, x, y)dyds = 1. (1.2)

so that the kernel does not affect the two spatially uniform steady states u = 0 and
u = N−a

1+aβ .
If the kernel F is taken to be

F (t, s, x, y) = δ(t− s)δ(x− y),

where δ(x) is Dirac delta function, then (1.1) becomes the reaction-diffusion equa-
tion without delay

∂u(t, x)

∂t
=
∂2u

∂x2
− au+

(N − u)u

1 + βu
. (1.3)

If the kernel F is taken to be

F (t, s, x, y) = δ(t− s− τ)δ(x− y),

then (1.1) becomes the reaction-diffusion equation with discrete delay

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
− au(t, x) +

(N − u(t, x))u(t− τ, x)

1 + βu(t− τ, x)
. (1.4)

If the kernel F is taken to be

F (t, s, x, y) =
1√

4π(t− s)
e−

(x−y)2

4(t−s) G(t− s),

where
G(t) =

1

τ
e−

t
τ or G(t) =

t

τ2
e−

t
τ , (1.5)

then (1.1) becomes a reaction diffusion equation with both distributed delay and
spatial averaging. The parameter τ is representative of the delay and the two
kernel functions G in (1.5) are used frequently in the literature on delay differential
equations [5, 6]. The first kernel function G(t) = 1

τ e
− t

τ is sometimes called the
weak generic kernel because it implies that the importance of events in the past
decreases exponentially. The second kernel function G(t) = t

τ2 e
− t

τ is called the
strong generic kernel because it implies that the population density τ time units
ago is more important than any other since this kernel achieves its unique maximum
when t = τ .

In the present paper, we shall study the existence of travelling front solutions of
(1.1) with the weak generic kernel function G in (1.5). The method we employ is
geometric singular perturbation theory and Fredholm alternative [4,9]. It should be
remarked that geometric singular perturbation method has been successfully used
to traveling wave problem for various reaction-diffusion equations with spatially
and temporally nonlocal terms in the form of the convolution of a kernel (see, for
example [1,3,7,8,10,17–20]). Moreover, we shall also study the asymptotic behavior
of the traveling wave fronts of (1.1) by using the standard asymptotic theory.
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This article is organized as follows. In Sect.2, the existence of traveling wave
fronts for Eq.(1.1) with the weak generic kernel is established. In Sect.3, the cor-
responding asymptotic behavior of the traveling wave front is obtained. Finally,
some concluding remarks are presented in Section 4.

2. Existence of traveling wavefront solutions in the
host-vector epidemic model

In this section, we shall show that Eq.(1.1) has a travelling wavefront solution
connecting two non-negative uniform states u = 0 and u = u∗ = N−a

1+aβ for the weak
generic delay kernel

G(t) =
1

τ
e−

t
τ . (2.1)

Firstly, if we define

v(x, t) =

∫ t

−∞

∫ +∞

−∞

1√
4π(t− s)

e−
(x−y)2

4(t−s)
1

τ
e−

t−s
τ u(s, y)dyds, (2.2)

it is straightforward to see that v satisfies

∂v

∂t
=
∂2v

∂x2
+

1

τ
(u− v), (2.3)

and then Eq.(1.1) can be reformulated as the following system
∂u

∂t
=
∂2u

∂x2
− au+

(N − u)v

1 + βv
,

∂v

∂t
=
∂2v

∂x2
+

1

τ
(u− v).

(2.4)

Note that our purpose is to establish the existence of travelling wavefront solu-
tions of system (2.4) connecting the two uniform steady-states (u, v) = (0, 0) and
(u∗, u∗), for sufficiently small delay. To this end, we first need to establish the
existence of traveling wavefront solutions when the delay is zero. However, it can
be easily seen that v → u when τ → 0 by examining (2.2). Thus, in this limit,
system (2.4) is reduced to the model (1.3) without delay. Making travelling wave
transform in the model (1.3) by setting u(x, t) = U(z) with z = x− ct, c > 0, yields
the following second-order ODE for U(z)

d2U(z)

dz2
+ c

dU(z)

dz
− aU(z) +

(N − U(z))U(z)

1 + βU(z)
= 0. (2.5)

By using phase-plane techniques, Wu and Weng [16] have established the following
result for Eq.(2.5):

Lemma 2.1. If N > a and c ≥ 2
√
N − a, then there exists a function U(z) that

satisfies (2.5), together with U(−∞) = u∗ and U(+∞) = 0, and which is strictly
monotonically decreasing for all z ∈ R.

When the delay τ is non-zero, we will show that Eq. (1.1) has traveling wave
fronts for sufficiently small τ > 0 by applying the geometric singular perturbation
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theory. By setting u(x, t) = U(z), v(x, t) = V (z), z = x− ct, c > 0, and substituting
it to Eq.(2.4), then we can obtain the corresponding traveling wave system

U ′′ + cU ′ − aU +
(N − U)V

1 + βV
= 0,

V ′′ + cV ′ +
1

τ
(U − V ) = 0,

(2.6)

where the prime denotes derivative with respect to z. In order to seek solutions
satisfying (U, V )(−∞) = (u∗, u∗), (U, V )(+∞) = (0, 0), it is convenient to introduce
the new variables

Û = U ′ +
1

2
cU, V̂ = V ′ +

1

2
cV,

in terms of which (2.6) can be reformulated as

U ′ = Û − 1

2
cU,

Û ′ =
1

4
c2U − 1

2
cÛ + aU − (N − U)V

1 + βV
,

V ′ = V̂ − 1

2
cV,

V̂ ′ =
1

4
c2V − 1

2
cV̂ − 1

τ
(U − V ).

(2.7)

This system has two equilibria, both of which are independent of τ , namely

(U, Û , V, V̂ ) = (0, 0, 0, 0)

and
(U, Û , V, V̂ ) = (u∗,

1

2
cu∗, u∗,

1

2
cu∗).

Our aim now is to establish a heteroclinic connection between these two equilibrium
points of system (2.7) and it corresponds to the travelling front solutions of system
(2.4).

We introduce the small parameter ϵ =
√
τ and define

u = U, û = Û , v = V, v̂ = ϵV̂ .

With this notation, system (2.7) becomes

uz = û− 1

2
cu,

ûz =
1

4
c2u− 1

2
cû+ au− (N − u)v

1 + βv
,

ϵvz = v̂ − 1

2
ϵcv,

ϵv̂z =
1

4
ϵ2c2v − 1

2
ϵcv̂ + v − u.

(2.8)

Obviously, when ϵ = 0 system (2.8) reduces to the second-order planar dynamical
system which is equivalent to Eq.(2.5). Note that when τ is very small, system (2.8)
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is a singularly perturbed system. Let z = ϵη, then system (2.8) becomes

uη = ϵ(û− 1

2
cu),

ûη = ϵ

(
1

4
c2u− 1

2
cû+ au− (N − u)v

1 + βv

)
,

vη = v̂ − 1

2
ϵcv,

v̂η =
1

4
ϵ2c2v − 1

2
ϵcv̂ + v − u.

(2.9)

These two systems are equivalent for τ > 0, the different time-scales give rise to
two different limiting systems. Letting τ → 0 in (2.8), we obtain

uz = û− 1

2
cu,

ûz =
1

4
c2u− 1

2
cû+ au− (N − u)v

1 + βv
,

0 = v̂,

0 = v − u.

(2.10)

Thus the flow of system (2.10) is confined to the set

M0 =
{
(u, û, v, v̂) ∈ R4 | v̂ = 0, v = u

}
, (2.11)

which is a two-dimensional invariant manifold for (2.8) with ϵ = 0. And it is
very interesting that the dynamics of system (2.10) are determined by the first two
equations only. On the other hand, setting τ → 0 in (2.9) yields the system

uη = 0,

ûη = 0,

vη = v̂,

v̂η = v − u.

(2.12)

Note that any points in M0 are the equilibria of system (2.12). Generally, system
(2.8) is referred to as the slow system, since the time-scale z is slow, and system
(2.9) is referred to as the fast system, since the time-scale η is fast. While systems
(2.10) and (2.12) are referred to as the limiting slow (or reduced problem) and
limiting fast subsystem (or layer problem), respectively. M0 is called the critical
manifold.

Recall that M0 is a normally hyperbolic manifold if the linearization of the fast
system (2.9), restricted to M0, has exactly dimM0 eigenvalues with zero real part.
In fact, the linearization of (2.9) restricted to M0 is given by the matrix

0 0 0 0

0 0 0 0

0 0 0 1

−1 0 1 0

 (2.13)
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the eigenvalues of which are 0, 0, 1,−1. Thus we verified that M0 is normally
hyperbolic.

According to the geometric singular perturbation theory of Fenichel [4], for ϵ > 0
sufficiently small, there exists a two-dimensional manifold Mϵ, which is close to
M0 and which is locally invariant for the flow. Mϵ is called the slow manifold.
Moreover, there exists local stable and unstable manifolds of Mϵ, W s

loc(Mϵ) and
Wu

loc(Mϵ) , that lie within O(ϵ) of and are diffeomorphic to W s(M0) and Wu(M0).
As a consequence, the dynamics in the vicinity of the slow manifold are completely
determined by the one on the slow manifold. Therefore, we only need to study the
flow of the slow system (2.8) restricted to Mϵ and show that the two-dimensional
reduced system has a heteroclinic orbit.

By Fenichel’s theory, we know that a two-dimensional invariant manifold Mϵ

can be written in the form
Mϵ := {(u, û, v, v̂) ∈ R4|v̂ = g(u, û; ϵ), v = u+ h(u, û; ϵ)},

where the functions g(u, û; ϵ) and h(u, û; ϵ) satisfy
g(u, û; 0) = h(u, û; 0) = 0.

Note the fact that Mϵ is an invariant manifold for the flow of slow system (2.8).
Substituting it to (2.8) yields

ϵ

[
(1 +

∂h

∂u
)(û− 1

2
cu) +

∂h

∂û
(
1

4
c2u− 1

2
cû+ au− (N − u)(u+ h)

1 + β(u+ h)
)

]
=g − 1

2
ϵc(u+ h),

ϵ

[
∂g

∂u
(û− 1

2
cu) +

∂g

∂û
(
1

4
c2u− 1

2
cû+ au− (N − u)(u+ h)

1 + β(u+ h)
)

]
=
1

4
ϵ2c2(u+ h)− 1

2
ϵcg + h.

(2.14)

By employing the smallness of ϵ, we can express the functions g and h as the
following form of regular perturbation series with respect to ϵ

g(u, û; ϵ) = ϵg1(u, û) + ϵ2g2(u, û) + · · · ,
h(u, û; ϵ) = ϵh1(u, û) + ϵ2h2(u, û) + · · · .

Substituting and comparing coefficients of ϵ and ϵ2 on both sides of (2.14) leads to
g1(u, û) = û, g2(u, û) = 0,

h1(u, û) = 0, h2(u, û) = au− (N − u)u

1 + βu
.

(2.15)

Thus, we have 
g(u, û; ϵ) = ϵû+O(ϵ3),

h(u, û; ϵ) = ϵ2
[
au− (N − u)u

1 + βu

]
+O(ϵ3).

(2.16)

Then the slow system restricted to Mϵ is given by
uz = û− 1

2
cu,

ûz =
1

4
c2u− 1

2
cû+ au− (N − u)(u+ h)

1 + β(u+ h)
,

(2.17)



608 X. Deng, & A. Chen

where h is given by (2.16). It is easy to verify that when ϵ = 0, system (2.17) reduces
to the corresponding ODE (2.5) for travelling fronts of the non-delay problem.
Moreover, for any ϵ > 0, system (2.17) has equilibrium points (u, û) = (0, 0) and
(u∗, 12cu

∗). Now, we wish to establish the existence of a heteroclinic connection
between these two critical points. From Lemma 2.1, we know that such a connection
exists when ϵ = 0 and we shall seek a solution of (2.17) that is only a perturbation
of this heteroclinic connection. Let (u0, û0) be the solution of (2.17) when ϵ = 0.
To solve the system for ϵ > 0 sufficiently small, we set

u = u0 + ϵ2ϕ+ · · · , û = û0 + ϵ2ψ + · · · .

Substituting it to (2.17) yields that the differential system determining ϕ and ψ (to
lowest order) is

d

dz

ϕ
ψ

+

 1
2c −1

N−2u0−βu2
0

(1+βu0)2
− a− 1

4c
2 1

2c

ϕ
ψ

 =

 0

− (N−u0)H(u0)
(1+βu0)2

 (2.18)

where H(u0) = au0 − (N−u0)u0

1+βu0
and we shall prove that this system has a solution

satisfying ϕ(±∞) = 0 and ψ(±∞) = 0.
Working in the space L2 of square integrable functions, with inner product∫ +∞

−∞
(x(z), y(z))dz,

where (·, ·) denotes the Euclidean inner product on R2. Fredholm theory [15] states
that (2.18) have a solution if and only if

∫ +∞

−∞

x(z),
 0

− (N−u0)H(u0)
(1+βu0)2

 dz = 0

for all functions x(z) in the kernel of the adjoint of the operator L defined by the
left-hand side of (2.18). It is easy to verify that the adjoint operator L∗ is given by

L∗ = − d

dz
+

 1
2c

N−2u0−βu2
0

(1+βu0)2
− a− 1

4c
2

−1 1
2c

 ,

and thus to compute kerL∗ we have to find all x(z) satisfying

dx

dz
=

 1
2c

N−2u0−βu2
0

(1+βu0)2
− a− 1

4c
2

−1 1
2c

x, (2.19)

the general solution of which will be difficult to find because the matrix is non-
constant. However, we are only looking for solutions satisfying x(±∞) = 0. In fact,
we can derive that the only such solution is the zero solution. Recall that u0(z)
is the solution of the unperturbed problem (2.5) and although we have no explicit
expression for it, we do know that it tends to zero as z → +∞. Letting z → +∞
in (2.19), the matrix becomes a constant matrix, the eigenvalues λ of which satisfy

λ2 − cλ+N − a = 0.
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It is easy to see that when N > a and c ≥ 2
√
N − a, the eigenvalues are both real

and positive. Then we can derive that any solution of (2.19) other than the zero
solution must be growing exponentially for large z. So the only solution satisfying
x(±∞) = 0 is the zero solution. This implies that the Fredholm orthogonality
condition trivially holds and so the solutions of (2.18) satisfying ϕ(±∞) = 0 and
ψ(±∞) = 0 exist. In other words, this means that there exists a heteroclinic
connection between the two equilibria (0, 0, 0, 0) and (u∗, 12u

∗, u∗, 12u
∗) of system

(2.7).
To summarize, we have the first main theorem.

Theorem 2.1. If N > a and c ≥ 2
√
N − a, Eq. (1.1) with the weak generic delay

kernel (2.1) has a traveling wave front u(x, t) = U(x− ct) satisfying U(−∞) = u∗

and U(+∞) = 0, provided the time delay τ is sufficiently small.

3. Asymptotic behavior
In this section, by using the standard asymptotic theory, we shall obtain the asymp-
totic behavior of traveling wave front which has been shown in Sect. 2. Here we
use the method which is similar to Smith and Zhao [14], Lv and Wang [11]. Let
Φ(z) = (U(z), V (z))T be the traveling wave front of Eq.(2.6). Differentiating (2.6)
with respect to z, and denoting Φ′(z) = (U1(z), V1(z))

T , then we have
U ′′
1 + cU ′

1 − aU1 +
NV1 − U1V − UV1

1 + βV
− βV (N − U)

(1 + βV )2
V1 = 0,

V ′′
1 + cV ′

1 +
1

τ
(U1 − V1) = 0.

(3.1)

In view of U(+∞) = V (+∞) = 0, the limiting system for system (3.1) as z → +∞
is U

′′
1+ + cU ′

1+ − aU1+ +NV1+ = 0,

V ′′
1+ + cV ′

1+ +
1

τ
(U1+ − V1+) = 0,

(3.2)

where (U1+, V1+)
T is the traveling wave front of system (3.2) as z → +∞. By

setting U ′
1+ = U2+, V

′
1+ = V2+, then the system (3.2) can be written as a first order

system of ordinary differential equation

Z ′ = AZ, Z = (U1+, U2+, V1+, V2+)
T , (3.3)

where

A =


0 1 0 0

a −c −N 0

0 0 0 1

− 1
τ 0 1

τ −c

. (3.4)

Solving the system (3.3), we get

Z = (U1+, U2+, V1+, V2+)
T =

4∑
i=1

cihie
λiz, (3.5)
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where 

λ1 =
−c+

√
c2 + 4Θ0

2
, λ2 =

−c−
√
c2 + 4Θ0

2
,

λ3 =
−c+

√
c2 + 4Θ1

2
, λ4 =

−c−
√
c2 + 4Θ1

2
,

Θ0 =
a+ 1

τ +
√
(a+ 1

τ )
2 + 4(N−a)

τ

2
,

Θ1 =
a+ 1

τ −
√
(a+ 1

τ )
2 + 4(N−a)

τ

2
.

(3.6)

hi(i = 1, 2, 3, 4) are eigenvectors of the matrix A with λi as the corresponding
eigenvalues, and ci are arbitrary constants. It is easy to see that λ1 > 0, λ2 <
0, λ3 < 0, λ4 < 0. Note that (U1+, U2+, V1+, V2+)

T → (0, 0, 0, 0)T as z → +∞, then
we can derive from (3.5) that c1 = 0 and

(U1+, U2+, V1+, V2+)
T =

4∑
i=2

cihie
λiz.

Then we deduce the following asymptotic behavior as z → +∞{
U1(z) = α1(m1 + o(1))eλ2z + α2(m2 + o(1))eλ3z + α3(m3 + o(1))eλ4z,

V1(z) = α1(n1 + o(1))eλ2z + α2(n2 + o(1))eλ3z + α3(n3 + o(1))eλ4z,
(3.7)

where mi, ni(i = 1, 2, 3) are constants, and αi(i = 1, 2, 3) cannot be zero si-
multaneously. By making the similar discussion as [2], we can easily claim that
mi ̸= 0, ni ̸= 0 in (3.7).

Similarly, U(−∞) = V (−∞) = u∗, the limiting system for system (3.1) as
z → −∞ is 

U ′′
1− + cU ′

1− − N

1 + βu∗
U1− +

a

1 + βu∗
V1− = 0,

V ′′
1− + cV ′

1− +
1

τ
(U1− − V1−) = 0,

(3.8)

where (U1−, V1−)
T is the traveling wave front of system (3.8) as z → −∞. By

setting U ′
1− = U2−, V

′
1− = V2−, then the system (3.8) can be written as a first order

system of ordinary differential equation

Z ′ = BZ, Z = (U1−, U2−, V1−, V2−)
T , (3.9)

where

B =


0 1 0 0

N
1+βu∗ −c − a

1+βu∗ 0

0 0 0 1

− 1
τ 0 1

τ −c

. (3.10)

Solving the system (3.9), we get

Z = (U1−, U2−, V1−, V2−)
T =

4∑
i=1

difie
Λiz, (3.11)
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where 

Λ1 =
−c+

√
c2 + 4∆0

2
, Λ2 =

−c+
√
c2 + 4∆1

2
,

Λ3 =
−c−

√
c2 + 4∆0

2
, Λ4 =

−c−
√
c2 + 4∆1

2
,

∆0 =

N
1+βu∗ + 1

τ +
√
( N
1+βu∗ + 1

τ )
2 − 4(N−a)

(1+βu∗)τ

2
,

∆1 =

N
1+βu∗ + 1

τ −
√
( N
1+βu∗ + 1

τ )
2 − 4(N−a)

(1+βu∗)τ

2
.

(3.12)

fi(i = 1, 2, 3, 4) are eigenvectors of the matrix B with Λi as the corresponding
eigenvalues, and di are arbitrary constants. It is easy to see that Λ1 > 0,Λ2 >
0,Λ3 < 0,Λ4 < 0. Note that (U1−, U2−, V1−, V2−)

T → (u∗, 0, u∗, 0)T as z → −∞,
then we can derive from (3.11) that d3 = d4 = 0 and

(U1−, U2−, V1−, V2−)
T =

2∑
i=1

difie
Λiz.

Then we deduce the following asymptotic behavior as z → −∞{
U1(z) = γ1(p1 + o(1))eΛ1z + γ2(p2 + o(1))eΛ2z,

V1(z) = γ1(q1 + o(1))eΛ1z + γ2(q2 + o(1))eΛ2z,
(3.13)

where pi, qi(i = 1, 2) are constants and γi(i = 1, 2) cannot be zero. From the above
discussion, we obtain the second main theorem.

Theorem 3.1. Under the assumptions of Theorem 2.1, there exist positive con-
stants A and B such that Eq. (1.1) with the weak generic delay kernel (2.1) has a
traveling wave front U(z), z = x− ct, which satisfies the following properties

U(z) = (A+ o(1))eλz, z → +∞, (3.14)

and
U(z) = u∗ − (B + o(1))eΛz, z → −∞, (3.15)

where λ may be one of the λ2, λ3 and λ4 presented in (3.6), and Λ may be one of
the Λ1 and Λ2 presented in (3.12).

4. Conclusions
In this paper, we have investigated a host-vector epidemic model with a particular
kernel known as the weak generic delay kernel. For this particular kernel, by using
linear chain techniques the traveling wave equation can be recasted as a singular
perturbed system of ODEs, in which the time delay in the kernel appears as a small
coefficient. Then the travelling fronts of the original host-vector epidemic model,
which correspond to heterclinic orbits, are shown to exist by employing geometric
singular perturbation theory, together with the Fredholm alternative. Furthermore,
by applying the standard asymptotic theory, we also obtained the asymptotic be-
havior of the corresponding traveling wave fronts. Certainly our methods can still
be applied to the strong generic delay case. It should be emphasized the fact here
that only much more complicated calculations are needed, and we believe that the
similar conclusion still holds.



612 X. Deng, & A. Chen

References
[1] P. B. Ashwin, M. V. Bartuccelli and T. J. Bridges, Traveling fronts for the

KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 2002, 53,
103–122.

[2] C. Conley and R. Gardner, An application of the generalized Morse index to
traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ.
Math. J., 1973, 4, 65–81.

[3] Z. Du, J. Li and X. Li, The existence of solitary wave solutions of delayed
Camassa-Holm equation via a geometric approach, J. Fun. Anal., 2018, 275(4),
988–1007.

[4] N. Fenichel, Geometric singular perturbation theory for ordinary differential
equations, J. Differ. Equ., 1979, 31, 53–98.

[5] S. A. Gourley, Travelling fronts in the diffusive Nicholson’s blowflies equation
with distributed delays, Math. Comput. Model., 2000, 32, 843–853.

[6] S. A. Gourley and S. Ruan, Spatio-temporal delays in a nutrient-plankton model
on a finite domain: linear stability and bifurcations, Appl. Math. Comput.,
2003, 145, 391–412.

[7] S. A. Gourley and M. A. J. Chaplain, Traveling fronts in a food-limited popu-
lation model with time delay., Proc. R. Soc. Edinb. Sect. A, 2002, 32, 75–89.

[8] S. A. Gourley and S. Ruan, Convergence and traveling fronts in functional
differential equations with nonlocal terms: a competition model, SIAM J. Math.
Anal., 2003, 35, 806–822.

[9] C. K. R. T. Johns, Geometrical singular perturbation theory, In: Johnson, R.
(ed.) Dynamical Systems, Lecture Notes in Mathematics, Springer, New York,
1995, 1609.

[10] X. Li, F. Meng and Z. Du, Traveling Wave Solutions of a Fourth-order General-
ized Dispersive and Dissipative Equation, J. Nonlinear Model. Anal., 2019,1(3),
307–318.

[11] G. Lv and M. Wang, Existence, uniqueness and asymptotic behavior of traveling
wave fronts for a vector disease model, Nonlinear Anal. RWA, 2010, 11, 2035–
2043.

[12] C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population
model, SIAM J. Math. Anal., 2007, 39, 103–125.

[13] M. A. Pozio, Behaviour of solutions of some abstract functional differential
equations and applications to predator-prey dynamics, Nonlin. Anal., 1980, 4,
917–938.

[14] H. L. Smith and X. Zhao, Global asymptotic stability of traveling waves in
delayed reaction-diffusion equations, SIAM J. Math. Anal., 2000, 31, 514–534.

[15] V. Volpert, Elliptic Partial Differential Equations, Volume 1, Fredholm Theory
of Elliptic Problems in Unbounded Domains, Monographs in Mathematics 101,
Birkhauser: Basel, Switzerland, 2011.

[16] C. Wu and P. Weng, Stability of steady states and existence of traveling waves
for a host-vector epidemic, Inter. J. Bifur.Chaos, 2011, 21(6), 1667–1687.



A Host-vector epidemic model 613

[17] J. Wei et al., Existence and asymptotic behavior of traveling wave fronts for
a food-limited population model with spatio-temporal delay, Japan J. Indust.
Appl. Math., 2017, 34, 305–320.

[18] J. Wei, J. Zhou and L. Tian, Existence and asymptotic behavior of traveling
wave solution for Korteweg-de Vries-Burgers equation with distributed delay, J.
Appl. Anal. Comput., 2019, 9(3), 840–852.

[19] C. Xu, Y. Wu, L. Tian and B. Guo, On kink and anti-kink wave solutions
of Schrodinger equation with distributed delay, J. Appl. Anal. Comput., 2018,
8(5), 1385–1395.

[20] Y. Xu, Z. Du and L. Wei, Geometric singular perturbation method to the exis-
tence and asymptotic behavior of traveling waves for a generalized Burgers-KdV
equation, Nonlinear Dyn., 2016, 83, 65–73.


	Introduction
	Existence of traveling wavefront solutions in the host-vector epidemic model
	Asymptotic behavior
	Conclusions

