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HYERS-ULAM STABILITY FOR AN NTH

ORDER DIFFERENTIAL EQUATION USING
FIXED POINT APPROACH
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Abstract In this paper, we prove the Hyers-Ulam stability and the Hyers-
Ulam-Rassias stability of the nth order differential equation of the form

x(n)(t) = f(t, x(t))

and
x(n)(t) = f

(
t, x(t), x′(t), x′′(t), · · · , x(n−1)(t)

)
with initial conditions

x(a) = x0, x
′(a) = x1, x

′′(a) = x2, · · · , x(n−1)(a) = xn−1

for all t ∈ I = [a, b] ⊂ R and x ∈ C(n)(I) by using fixed point method in the
sense of Cadariu and Radu.

Keywords Hyers-Ulam stability, Hyers-Ulam-Rassias stability, fixed point
method, differential equation.
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1. Introduction
The Hyers-Ulam stability problem was introduced by Ulam [28] in 1940. Then in the
next year, Hyers [13] was handled the issue of Ulam for Cauchy additive functional
equation in Banach spaces. From that point forward, many mathematicians are
interested in the Ulam problem, in particular, Aoki [4], Bourgin [5] and Rassias [26]
are generalized the Hyers result. Starting there onwards, a number of authors have
proved the Hyers-Ulam stability for various functional equation on different spaces
(see [6, 22–24,29]).

As of late, the Hyers-Ulam stability property was proposed by supplanting func-
tional equations by differential equations. In 1998, Alsina et al. [3] are the primary
authors who contemplated the Hyers-Ulam stability of x′(t) = x(t). Then Takashi
et al. [27] generalized the result reported in [3] for Banach space valued function.
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In 2003, Agarwal, Xu and Zhang [1] established the Hyers-Ulam stability for dif-
ferential equations. The Hyers-Ulam stability theory of differential equations was
developed in a series of papers [2, 10–12,15,17–20].

In 2010, Jung [16] investigated the Hyers-Ulam-Rassias stability of the differen-
tial equations y′(x) = F (x, y(x)) for a bounded and continuous function F (x, y) in
the sense of Cadariu and Radu [8, 9]. Recently, Murali and Ponmana Selvan [21]
studied the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the differen-
tial equation of the form u′′(t) = h(t, u(t)) using fixed point method. Motivated and
connected by the above ideas in [16,21] and in the sense of Cadariu and Radu [7,9]
by using fixed point method, we establish the Hyers-Ulam stability and Hyers-Ulam-
Rassias stability of the nth order differential equations of the form

x(n)(t) = f(t, [x(t)]) (1.1)

where f(t, [x(t)]) is a bounded and continuous function. Here [x(t)] :=(x(t), x′(t), · · ·,
x(n−1)(t)]. We also investigate the Hyers-Ulam stability and Hyers-Ulam-Rassias
stability of the nth order differential equations of the form

x(n)(t) = f
(
t, x(t), x′(t), x′′(t), · · · , x(n−1)(t)

)
(1.2)

with initial conditions

x(a) = x0, x′(a) = x1, x′′(a) = x2, · · · , x(n−1)(a) = xn−1 (1.3)

for all t ∈ I = [a, b], x ∈ C(n)(I), (t, [x(t)]) ≡
(
t, x(t), x′(t), x′′(t), · · · , x(n−1)(t)

)
and a, b ∈ R, and f (t, [x(t)]) is defined on a closed bounded set X ⊂ Rn+1 that
satisfies the condition

|f (t, [x(t)])− f (t, [y(t)])| ≤ w(t)
|x(t)− y(t)|
(b− a)n−1

(1.4)

where w(t) : I → (0,∞) is an integrable function.

2. Preliminaries
The following definitions and theorem are very useful to our main results. For the
reader’s convenience and explicite later use, we will recall some fundamental results
in fixed point theory.

Definition 2.1 ( [7,9]). Let X be a nonempty set. A function ρ : X×X → [0,∞]
is called a generalized metric on X if and only if ρ satisfies the following conditions:

(M1) ρ(x, y) = 0 if and only if x = y,
(M2) ρ(x, y) = ρ(y, x) for all x, y ∈ X,
(M3) ρ(x, y) ≤ ρ(x, z) + ρ(z, x) for all x, y, z ∈ X.

We observe that the only one difference of the generalized metric from the usual
metric is that the range of the former is allowed to include the infinity.

Example 2.1. Let X be a nonempty set. A function ρ : X × X → [0,+∞] is
defined as follows: if x ̸= y then ρ(x, y) = +∞ and if x = y then ρ(x, y) = 0. Then
ρ is a generalized metric on X, which is not a metric on X.
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We now recall one of the fundamental results of fixed point theory. For the proof
we can refer [9] (see also [25]). The following theorems will play an important role
in proving our main results.

Theorem 2.1 ( [25], Banach’s contraction principle). Let (X, ρ) be a complete
metric space, and consider a mapping T : X → X which is strictly contractive, that
is

ρ(Tx, Ty) ≤ L ρ(x, y)

for all x, y ∈ X and for some Lipschitz constant L < 1. Then

(i). The mapping T has one and only one fixed point x∗ = T (x∗);
(ii). The fixed point x∗ is globally attractive, that is,

lim
k→∞

T kx = x∗

for any starting point x ∈ X;
(iii). One has the following estimation inequalities:

ρ(T kx, x∗) ≤ Lk ρ(x, x∗), ∀ x ∈ X;

ρ(T kx, x∗) ≤ 1

1− L
ρ(T kx, T k+1x), ∀ k ≥ 0, x ∈ X;

ρ(x, x∗) ≤ 1

1− L
ρ(x, Tx) ∀ x ∈ X.

Theorem 2.2 ( [7, 9]). Suppose we are given a complete generalized metric space
(X, ρ)-i.e., one for which ρ may assume infinite values and a strictly contractive
operator T : X → X with the Lipschitz constant L < 1. If there exists a nonnegative
integer k such that ρ(T k+1, T k) < ∞ for some x ∈ X, then the followings conditions
are satisfied:

(i) the sequence {Tn(x)} converges to a fixed point x∗ of T ;
(ii) x∗ is the unique fixed point of T in X∗ =

{
y ∈ X/ρ(T kx, y) < ∞

}
;

(iii) If y ∈ X∗, then ρ(y, x∗) ≤ 1

1− L
ρ(Ty, y).

Now, we give the definitions of the Hyers-Ulam stability and the Hyers-Ulam-
Rassias stability of the differential equations (1.1) and (1.2).

Definition 2.2. We say that the differential equation (1.1) has the Hyers-Ulam
stability if there exists a constant K > 0 such that if for every ϵ > 0, there exists
an n times continuously differentiable function x(t) satisfying the inequality

|x(n)(t)− f(t, x(t))| ≤ ϵ,

then there exists some y : (0,∞) → F satisfying the differential equation (1.1) such
that |x(t) − y(t)| ≤ Kϵ, for all t > 0. We call such K as the Hyers-Ulam stability
constant for (1.1).

Definition 2.3. We say that the differential equation (1.2) has the Hyers-Ulam
stability if there exists a constant K > 0 such that if for every ϵ > 0, there exists
an n times continuously differentiable function x(t) satisfying the inequality

|x(n)(t)− f
(
t, x(t), x′(t), x′′(t), · · · , x(n−1)(t)

)
| ≤ ϵ,
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then there exists some y : (0,∞) → F satisfying the differential equation (1.2) such
that |x(t) − y(t)| ≤ Kϵ for all t > 0. We call such K as the Hyers-Ulam stability
constant for (1.2).

Definition 2.4. We say that the differential equation (1.1) has the Hyers-Ulam-
Rassias stability if there exists a constant K > 0 such that if for every ϵ > 0, there
exist an n times continuously differentiable function x(t) and ϕ : (0,∞) → (0,∞)
satisfying the inequality |x(n)(t) − f(t, x(t))| ≤ ϕ(t)ϵ, then there exists some y :
(0,∞) → F satisfying the differential equation (1.1) such that |x(t)−y(t)| ≤ K ϕ(t)ϵ
for all t > 0. We call such K as Hyers-Ulam-Rassias stability constant for (1.1).

Definition 2.5. We say that the differential equation (1.2) has the Hyers-Ulam-
Rassias stability if there exists a constant K > 0 such that if for every ϵ > 0, there
exist an n times continuously differentiable function x(t) and ϕ : (0,∞) → (0,∞)
satisfying the inequality

|x(n)(t)− f
(
t, x(t), x′(t), x′′(t), · · · , x(n−1)(t)

)
| ≤ ϕ(t)ϵ,

then there exists some y : (0,∞) → F satisfying the differential equation (1.2) such
that |x(t) − y(t)| ≤ K ϕ(t)ϵ for all t > 0. We call such K as Hyers-Ulam-Rassias
stability constant for (1.2).

3. Hyers-Ulam stability
Cadariu and Radu [7] applied the fixed point method to the investigation of the
Jensen’s functional equation. Using such an idea, they could present a proof for the
Hyers-Ulam stability of that equation.

In this section, by using the idea of Cadariu and Radu [7], we will prove the
Hyers-Ulam stability of the differential equation (1.1) and (1.2) defined on a closed
and bounded interval by using Theorem 2.2.

Theorem 3.1. Let K and L be positive constants with 0 < KL < 1. Assume that
f : I × Rn → R is a continuous function which satisfies the Lipschitz condition

|f(t, x(t))− f(t, y(t))| ≤ L |x− y| (3.1)

for all t ∈ I and x, y ∈ R. If x ∈ Cn(I) satisfies the inequality∣∣∣x(n)(t)− f(t, x(t))
∣∣∣ ≤ ϵ (3.2)

for all t ∈ I, then there exists a unique solution y(t) ∈ Cn(I) such that

|x(t)− y(t)| ≤ Mϵ.

Proof. Let us assume that X is the set of all continuous functions g : I ×R → R,
i.e.,

X = {g : I × R → R : g is continuous} .
Firstly, we define an operator T : X → X by

(Tg)(t) =

n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, g(s)) ds (3.3)



618 R. Murali, C. Park & A. Ponmana Selvan

for all t ∈ I. Now, let us introduce the metric on X as follows:

ρ(g, h) = inf {c ∈ [0,∞] : |g(t)− h(t)| ≤ cϵ} (3.4)

for all g, h ∈ X and t ∈ I. Now, we have to prove that ρ is a generalized metric on
X. For that, we will here only prove the triangle inequality. Suppose that

ρ(g, h) > ρ(g, i) + ρ(i, h),

for some g, h, i ∈ X. Then we obtain that

|g(t)− h(t)| = ρ(g, h) > ρ(g, i) + ρ(i, h)

= |g(t)− i(t)|+ |i(t)− h(t)|,

a contradiction. Hence ρ is a generalized metric on X. Now, we claim that (X, ρ)
is complete. Let {in} be a Cauchy sequence in (X, ρ).

Then for any ϵ > 0, there exists an integer Nϵ > 0 such that

ρ(im, in) ≤ ϵ

for all m,n ≥ Nϵ. By using (3.4), we have that for every ϵ > 0 there exists an
integer Nϵ > 0 such that

|im(t)− in(t)| ≤ ϵ (3.5)

for all m,n ≥ Nϵ, t ∈ I. If t is fixed, then (3.5) implies that {in} is a Cauchy
sequence in R. Since R is complete, {in} converges for all t ∈ I.

Thus we define a function i : I × R → R such that

i(t) = lim
n→∞

in(t).

Using (3.4), we get for every ϵ > 0 there exists an integer Nϵ ∈ N such that

|i(t)− in(t)| ≤ ϵ. (3.6)

That is, {in} converges uniformly to i. Hence i is a continuous function and i ∈ X.
Then by using (3.6), for any ϵ > 0, there exists an integer Nϵ ∈ N such that
ρ(i, in) ≤ ϵ for all n ≥ Nϵ. That is, the Cauchy sequence {in} converges to i on X.
Hence (X, ρ) is complete. Since f and g are continuous, by Fundamental Theorem
of Calculus, Tg is n times continuously differentiable on I.

Hence we can conclude that Tg ∈ X. Now, we assert that T is a strictly
contractive mapping on X. For any g, h ∈ X, let cgh ∈ [0,∞] be an arbitrary
constant with ρ(g, h) ≤ cghϵ. Then by using (3.4), we have

|g(t)− h(t)| ≤ cghϵ (3.7)

for all t ∈ I. Then using (3.1), (3.3), (3.4) and (3.7), we have

ρ(Tg, Th) = |Tg(t)− Th(t)|

=

∣∣∣∣∣∣ 1

(n−1)!

t∫
a

(t−s)n−1f(s, g(s)) ds− 1

(n− 1)!

t∫
a

(t−s)n−1f(s, h(s)) ds

∣∣∣∣∣∣
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≤ 1

(n− 1)!

t∫
a

|t− s| |f(s, g(s))− f(s, h(s))| ds

≤ L

(n− 1)!

t∫
a

|t− s| |g(s)− h(s)| ds

≤ L

(n− 1)!
cghϵ

t∫
a

|t− s| ds,

ρ(Tg, Th) ≤ KLcghϵ = KLρ(g, h)

for all g, h ∈ X and 0 < KL < 1. It follow from (3.3) that for any arbitrary h0 ∈ X,
there exists a constant 0 < c < ∞ with

|Th0(t)− h0(t)| =

∣∣∣∣∣∣
n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, h0(s)) ds− h0(t)

∣∣∣∣∣∣
< cϵ

for all t ∈ I. Since f(s, h0(s)) and h0(t) are bounded on I, ρ(Th0, h0) < ∞. Hence
by using Theorem 2.2, there exists a continuous function y0(t) ∈ Cn(I) such that
Th0 → y0 in (X, ρ) and Ty0 = y0. That is, y0 is a solution of

x(t) =

n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, x(s)) ds.

Now, we have to prove that {h ∈ X : ρ(h0, h) < ∞}. For all h ∈ X, since h0 and h
are bounded on I, there exists a constant ch ∈ [0,∞] such that

ρ(h0, h) = |h0(t)− h(t)| ≤ chϵ

for all t ∈ I. Thus we have ρ(h0, h) < ∞ for all h ∈ X. Hence by Theorem 2.2, y0
is the unique continuous function with the property (3.4). Now, from the inequality
(3.2), we get

−ϵ ≤ x(n)(t)− f(t, x(t)) ≤ ϵ (3.8)

for all t ∈ I. Now, we integrate (3.8) n times from a to t, we obtain∣∣∣∣∣∣x(t)−
n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, x(s)) ds

∣∣∣∣∣∣ ≤ (b− a)n

n!
ϵ

for all t ∈ I. Thus

ρ(Tx, x) ≤ Mϵ. (3.9)

Finally, by using Theorem 2.2 and (3.9), we obtain that

ρ(x, y0) ≤
1

1−KL
ρ(Tx, x) ≤ Mϵ

1−KL
= Hϵ.

Hence by virtue of Definition 2.2, the differential equation (1.1) has the Hyers-Ulam
stability.
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Theorem 3.2. Let K and L be positive constants with 0 < KL < 1. Assume that
f : I × Rn → R is a continuous function which satisfies the Lipschitz condition

|f (t, [x(t)])− f (t, [y(t)])| ≤ L

n−1∑
ℓ=0

∣∣∣x(ℓ)(t)− y(ℓ)(t)
∣∣∣ (3.10)

for all t ∈ I. If x ∈ Cn(I) satisfies the inequality∣∣∣x(n)(t)− f
(
t, x(t), x′(t), x′′(t), ..., x(n−1)(t)

)∣∣∣ ≤ ϵ (3.11)

for all t ∈ I, then there exists a unique solution y(t) ∈ C(n)(I) such that

|x(t)− y(t)| ≤ Hϵ.

Proof. Let us assume that X is the set of all continuous functions g : I×Rn → R,
i.e., X = {g : I × Rn → R : g is continuous}. Firstly, we introduce an operator
T : X → X by

(Tg)(t) =

n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, [g(s)]) ds (3.12)

for all t ∈ I. Now, let us introduce the metric on X as follows:

ρ(g, h) = inf {M ∈ [0,∞] : |g(t)− h(t)| ≤ Mϵ} (3.13)

for all g, h ∈ X and t ∈ I. Now, we have to prove that ρ is a generalized metric
on X. For that, we will here only prove the triangle inequality. Suppose that
ρ(g, h) > ρ(g, i) + ρ(i, h) for some g, h, i ∈ X. Then we obtain that

|g(t)− h(t)| = ρ(g, h) > ρ(g, i) + ρ(i, h) = |g(t)− i(t)|+ |i(t)− h(t)|,

a contradiction. Hence ρ is a generalized metric on X. Now, we claim that (X, ρ)
is complete. Let {ik(t)} be a Cauchy sequence in (X, ρ). Then for any ϵ > 0, there
exists an integer Nϵ > 0 such that ρ(ik, ij) ≤ ϵ for all j, k ≥ Nϵ. By using (3.13),
we have for every ϵ > 0 there exists an integer Nϵ > 0 such that

|ij(t)− ik(t)| ≤ ϵ (3.14)

for all j, k ≥ Nϵ, t ∈ I. If t is fixed, then (3.14) implies that {ik} is a Cauchy
sequence in R. Since R is complete, {ik} converges for all t ∈ I. Thus we define a
function i(t) : I × Rn → such that i(t) = lim

k→∞
ik(t).

If k → ∞ and using (3.13), we get for every ϵ > 0 there exists an integer Nϵ ∈ N
such that

|i(t)− ik(t)| ≤ ϵ. (3.15)

That is, {ik} converges uniformly to i. Hence i(t) is a continuous function and
i(t) ∈ X. Then by using (3.15), for any ϵ > 0 there exists an integer Nϵ ∈ N such
that ρ(i(t), ik(t)) ≤ ϵ for all k ≥ Nϵ. That is, the Cauchy sequence {ik} converges
to i on X. Hence (X, ρ) is complete. Since f and g are continuous, by Fundamental
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Theorem of Calculus, Tg is n times continuously differentiable on I. Hence we can
conclude that Tg ∈ X.

Now, we assert that T is a strictly contractive mapping on X. For any g, h ∈ X,
let Mgh ∈ [0,∞] be an arbitrary constant with ρ(g, h) ≤ Mghϵ. Then by using
(3.13), we have

|g(t)− h(t)| ≤ Mghϵ (3.16)

for all t ∈ I. Then using (3.10), (3.12), (3.13) and (3.16), we have

ρ(Tg, Th)

=

∣∣∣∣∣∣ 1

(n− 1)!

t∫
a

(t− s)n−1f(s, [g(s)]) ds− 1

(n− 1)!

t∫
a

(t− s)n−1f(s, [h(s)]) ds

∣∣∣∣∣∣
≤ 1

(n− 1)!

t∫
a

∣∣(t− s)n−1
∣∣ |f(s, [g(s)])− f(s, [h(s)])| ds

≤ L

(n− 1)!

t∫
a

∣∣(b− a)n−1
∣∣w(s) |g(s)− h(s)|

(b− a)n−1
ds

≤ L

(n− 1)!
ϵ

t∫
a

w(s)Mgh ds.

Hence ρ(Tg, Th) ≤ KLMghϵ = KLρ(g, h), where K =
1

(n− 1)!

t∫
a

w(s) ds for all

g, h ∈ X and 0 < KL < 1. It follow from (3.12) that for any arbitrary h0 ∈ X,
there exists a constant 0 < M < ∞ with

|Th0(t)− h0(t)| =

∣∣∣∣∣∣
n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, [h0(s)]) ds− h0(t)

∣∣∣∣∣∣
< Mϵ

for all t ∈ I. Since f(s, [h0(s)]) and h0(t) are bounded on I, ρ(Th0, h0) < ∞. Hence
by using Theorem 2.2, there exists a continuous function h0(t) ∈ Cn(I) such that
Th0 → h0 in (X, ρ) and Ty0 = y0. That is, y0 is a solution of

x(t) =

n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, [x(s)]) ds.

Now, we have to prove that {h ∈ X : ρ(h0, h) < ∞}. For all h ∈ X, since h0 and h
are bounded on I, there exists a constant M ∈ [0,∞] such that

ρ(h0, h) = |h0(t)− h(t)| ≤ Mϵ

for all t ∈ I. Hence we have ρ(h0, h) < ∞ for all h ∈ X. Thus by Theorem 2.2, y0 is
the unique continuous function with the property (3.13). Now, from the inequality
(3.11), we get

−ϵ ≤ x(n)(t)− f(t, [x(t)]) ≤ ϵ (3.17)
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for all t ∈ I. Now, we integrate (3.17) n times from a to t, we obtain∣∣∣∣∣∣x(t)−
n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, [h0(s)]) ds

∣∣∣∣∣∣ ≤ (b− a)n

n!
ϵ

for all t ∈ I. Thus we have |x(t)− (Tx)(t)| ≤
∣∣∣∣ (b− a)n

n!
ϵ

∣∣∣∣ ≤ Sϵ and so

ρ(Tx, x) ≤ Sϵ. (3.18)

Hence, by using Theorem 2.2 and (3.18), we have

ρ(x, y0) ≤
1

1−KL
ρ(Tx, x) ≤ Sϵ

1−KL
= Hϵ.

Then by the virtue of Definition 2.3, the differential equation (1.2) has the Hyers-
Ulam stability, as desired.

4. Hyers-Ulam-Rassias stability
In this section, we prove the Hyers-Ulam-Rassias stability of the differential equa-
tions (1.1) and (1.2) defined on a closed and bounded interval by using the fixed
point theorem.

Theorem 4.1. Let K and L be positive constants with 0 < KL < 1. Assume that
f : I × Rn → R is a continuous function which satisfies the Lipschitz condition

|f(t, x(t))− f(t, y(t))| ≤ L |x− y| (4.1)

for all t ∈ I and x, y ∈ R. If there exists ϕ : (0,∞) → (0,∞) such that x ∈ Cn(I)
satisfies the inequality ∣∣∣x(n)(t)− f(t, x(t))

∣∣∣ ≤ ϕ(t)ϵ (4.2)

for all t ∈ I, then there exists a unique solution y(t) ∈ Cn(I) such that

|x(t)− y(t)| ≤ Mϕ(t)ϵ.

Proof. Let us assume that X is the set of all continuous functions g : I ×R → R,
i.e., X = {g : I × R → R : g is continuous} . Now, we define an operator T : X → X
by

(Tg)(t) =

n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, g(s)) ds (4.3)

for all t ∈ I. Now, let us introduce the metric on X as follows:

ρ(g, h) = inf {c ∈ [0,∞] : |g(t)− h(t)| ≤ cϕ(t)ϵ} (4.4)
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for all g, h ∈ X and t ∈ I, where ϕ : (0,∞) → (0,∞) with∣∣∣∣∫ t

a

ϕ(t)dt

∣∣∣∣ ≤ Kϕ(t). (4.5)

Now, we have to prove that ρ is a generalized metric on X. For that, we will here
only prove the triangle inequality. Suppose that ρ(g, h) > ρ(g, i) + ρ(i, h) for some
g, h, i ∈ X. Then we obtain that

|g(t)− h(t)| = ρ(g, h) > ρ(g, i) + ρ(i, h) = |g(t)− i(t)|+ |i(t)− h(t)|,

a contradiction. Hence ρ is a generalized metric on X. Now, we claim that (X, ρ)
is complete. Let {in} be a Cauchy sequence in (X, ρ). Then for any ϵ > 0, there
exists an integer Nϵ > 0 such that ρ(im, in) ≤ ϵ for all m,n ≥ Nϵ. By using (4.4),
we have for every ϵ > 0 there exists an integer Nϵ > 0 such that

|im(t)− in(t)| ≤ ϕ(t)ϵ (4.6)

for all m,n ≥ Nϵ, t ∈ I. If t is fixed, then (4.6) implies that {in} is a Cauchy
sequence in R. Since R is complete, {in} converges for all t ∈ I. Thus we define a
function i : I × R → R such that i(t) = lim

n→∞
in(t). If m → ∞ and using (4.4), we

get for every ϵ > 0 there exists an integer Nϵ ∈ N such that

|i(t)− in(t)| ≤ ϕ(t)ϵ. (4.7)

That is, {in(t)} converges uniformly to i(t). Hence i(t) is a continuous function
and i ∈ X. Then by using (4.7), for any ϵ > 0 there exists an integer Nϵ ∈ N
such that ρ(i, in) ≤ ϕ(t)ϵ for all n ≥ Nϵ. That is, the Cauchy sequence {in}
converges to i on X. Hence (X, ρ) is complete. Since f and g are continuous, by
Fundamental Theorem of Calculus, Tg is n times continuously differentiable on I.
Hence we can conclude that Tg ∈ X. Now, we assert that T is a strictly contractive
mapping on X. For any g, h ∈ X, let cgh ∈ [0,∞] be an arbitrary constant with
ρ(g, h) ≤ cghϕ(t)ϵ. Then by using (4.4), we have

|g(t)− h(t)| ≤ cghϕ(t)ϵ (4.8)

for all t ∈ I. Then using (4.1), (4.3), (4.4) and (4.8), we have

ρ(Tg, Th) = |Tg(t)− Th(t)|

=

∣∣∣∣∣∣ 1

(n−1)!

t∫
a

(t− s)n−1f(s, g(s)) ds− 1

(n−1)!

t∫
a

(t−s)n−1f(s, h(s)) ds

∣∣∣∣∣∣
≤ 1

(n− 1)!

t∫
a

|t− s| |f(s, g(s))− f(s, h(s))| ds

≤ L

(n− 1)!

t∫
a

|t− s| |g(s)− h(s)| ds

≤ L

(n− 1)!
cghϕ(t)ϵ

t∫
a

|t− s| ds,
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ρ(Tg, Th) ≤ KLcghϕ(t)ϵ = KLρ(g, h)

for all g, h ∈ X and 0 < KL < 1. It follow from (4.3) that for any arbitrary h0 ∈ X,
there exists a constant 0 < c < ∞ with

|Th0(t)− h0(t)| =

∣∣∣∣∣∣
n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, h0(s)) ds− h0(t)

∣∣∣∣∣∣
< cϕ(t)ϵ

for all t ∈ I. Since f(s, h0(s)) and h0(t) are bounded on I, ρ(Th0, h0) < ∞. Hence
by using Theorem 2.2, there exists a continuous function y0(t) ∈ Cn(I) such that
Th0 → y0 in (X, ρ) and Ty0 = y0. That is, y0 is a solution of

x(t) =

n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, x(s)) ds.

Now, we have to prove that {h ∈ X : ρ(h0, h) < ∞}. For all h ∈ X, since h0

and h are bounded on I, there exists a constant ch ∈ [0,∞] such that

ρ(h0, h) = |h0(t)− h(t)| ≤ chϕ(t)ϵ

for all t ∈ I. Hence we have ρ(h0, h) < ∞ for all h ∈ X. Thus by Theorem 2.2, y0
is the unique continuous function with the property (3.4). Now, from the inequality
(3.2), we get

−ϕ(t)ϵ ≤ x(n)(t)− f(t, x(t)) ≤ ϕ(t)ϵ (4.9)

for all t ∈ I. Now, we integrate (4.9) n times from a to t, we obtain∣∣∣∣∣∣x(t)−
n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, x(s)) ds

∣∣∣∣∣∣ ≤ (b− a)n

n!
ϵ

∣∣∣∣∫ t

a

ϕ(t)dt

∣∣∣∣
for all t ∈ I. Thus using the above inequality with (4.3) and (4.5), we have

|Tx(t)− x(t)| ≤ (b− a)n

n!
ϵ

∣∣∣∣∫ t

a

ϕ(t)dt

∣∣∣∣ ≤ MKϕ(t)ϵ

for all t ∈ I and so

ρ(Tx, x) ≤ MKϕ(t)ϵ. (4.10)

Finally, by Theorem 2.2 and (4.10), we obtain

ρ(x, y0) ≤
1

1−KL
ρ(Tx, x) ≤ MKϕ(t)ϵ

1−KL
= Hϕ(t)ϵ.

Hence by the virtue of Definition 2.4 the differential equation (1.1) has the Hyers-
Ulam-Rassias stability.
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Theorem 4.2. Let K,J and L be positive constants with 0 < KJL < 1. Assume
that f : I ×Rn → R is a continuous function which satisfies the Lipschitz condition

|f (t, [x(t)])− f (t, [y(t)])| ≤ L

n−1∑
ℓ=0

∣∣∣x(ℓ)(t)− y(ℓ)(t)
∣∣∣ (4.11)

for all t ∈ I. If there exists ϕ : (0,∞) → (0,∞), and x ∈ Cn(I) satisfying∣∣∣x(n)(t)− f
(
t, x(t), x′(t), x′′(t), ..., x(n−1)(t)

)∣∣∣ ≤ ϕ(t)ϵ (4.12)

for all t ∈ I, then there exists a unique solution y(t) ∈ C(n)(I) such that

|x(t)− y(t)| ≤ Hϕ(t)ϵ.

Proof. Let us assume that X is the set of all continuous functions g : I×Rn → R,
i.e., X = {g : I × Rn → R : g is continuous}. Firstly, we introduce an operator
T : X → X by

(Tg)(t) =

n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, [g(s)]) ds (4.13)

for all t ∈ I. Now, let us introduce the metric on X as follows:

ρ(g, h) = inf {M ∈ [0,∞] : |g(t)− h(t)| ≤ Mϕ(t)ϵ} (4.14)

for all g, h ∈ X and t ∈ I, where ϕ : (0,∞) → (0,∞) with∣∣∣∣∫ t

a

ϕ(t)dt

∣∣∣∣ ≤ Kϕ(t). (4.15)

Now, we have to prove that ρ is a generalized metric on X. For that, we will here
only prove the triangle inequality. Suppose that ρ(g, h) > ρ(g, i) + ρ(i, h), for some
g, h, i ∈ X. Then we obtain that

|g(t)− h(t)| = ρ(g, h) > ρ(g, i) + ρ(i, h) = |g(t)− i(t)|+ |g(t)− h(t)|,

a contradiction. Hence ρ is a generalized metric on X. Now, we claim that (X, ρ)
is complete. Let {ik(t)} be a Cauchy sequence in (X, ρ). Then for any ϵ > 0, there
exists an integer Nϵ > 0 such that ρ(ik, ij) ≤ ϕ(t)ϵ for all j, k ≥ Nϵ. By using
(4.14), we have for every ϵ > 0 there exists an integer Nϵ > 0 such that

|ij(t)− ik(t)| ≤ ϕ(t)ϵ (4.16)

for all j, k ≥ Nϵ, t ∈ I. If t is fixed, then (4.16) implies that {ik} is a Cauchy
sequence in R. Since R is complete, {ik} converges for all t ∈ I. Thus we define a
function i(t) : I × Rn → such that i(t) = lim

k→∞
ik(t). Using (4.14), we get for every

ϵ > 0 there exists an integer Nϵ ∈ N such that

|i(t)− ik(t)| ≤ ϕ(t)ϵ. (4.17)
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That is, {ik} converges uniformly to i(t). Hence i(t) is a continuous function and
i(t) ∈ X. Then by using (4.17), for any ϵ > 0 there exists an integer Nϵ ∈ N
such that ρ(i(t), ik(t)) ≤ Mϕ(t)ϵ for all k ≥ Nϵ. That is, the Cauchy sequence {ik}
converges to i(t) on X. Hence (X, ρ) is complete. Since f and g are continuous, by
Fundamental Theorem of Calculus, Tg is n times continuously differentiable on I.

Hence we can conclude that Tg ∈ X. Now, we assert that T is a strictly
contractive mapping on X. For any g, h ∈ X, let Mgh ∈ [0,∞] be an arbitrary
constant with ρ(g, h) ≤ Mghϕ(t)ϵ. Then by using (4.14), we have

|g(t)− h(t)| ≤ Mghϕ(t)ϵ (4.18)

for all t ∈ I. Then using (4.11), (4.13), (4.14), (4.15) and (4.18), we have

ρ(Tg, Th)

=

∣∣∣∣∣∣ 1

(n− 1)!

t∫
a

(t− s)n−1f(s, [g(s)]) ds− 1

(n− 1)!

t∫
a

(t− s)n−1f(s, [h(s)]) ds

∣∣∣∣∣∣
≤ 1

(n− 1)!

t∫
a

∣∣(t− s)n−1
∣∣ |f(s, [g(s)])− f(s, [h(s)])| ds

≤ L

(n− 1)!

t∫
a

∣∣(b− a)n−1
∣∣w(s) |g(s)− h(s)|

(b− a)n−1
ds

≤ L

(n− 1)!
ϵ

t∫
a

w(s)Mghϕ(s) ds,

and so ρ(Tg, Th) ≤ KJLMghϕ(t)ϵ = KJLρ(g, h), where J =
1

(n− 1)!

t∫
a

w(s) ds for

all g, h ∈ X and 0 < KJL < 1. It follow from (4.13) that for any arbitrary h0 ∈ X,
there exists a constant 0 < M < ∞ with

|Th0(t)− h0(t)| =

∣∣∣∣∣∣
n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, [h0(s)]) ds− h0(t)

∣∣∣∣∣∣
< Mϕ(t)ϵ

for all t ∈ I. Since f(s, [h0(s)]) and h0(t) are bounded on I, ρ(Th0, h0) < ∞. Hence
by using Theorem 2.2, there exists a continuous function h0(t) ∈ Cn(I) such that
Th0 → h0 in (X, ρ) and Ty0 = y0. That is, y0 is a solution of

x(t) =

n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, [x(s)]) ds.

Now, we have to prove that {h ∈ X : ρ(h0, h) < ∞}. For all h ∈ X, since h0

and h are bounded on I, there exists a constant Cn ∈ [0,∞] such that

ρ(h0, h) = |h0(t)− h(t)| ≤ Mϕ(t)ϵ
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for all t ∈ I. Hence we have ρ(h0, h) < ∞ for all h ∈ X. Thus by Theorem 2.2, y0 is
the unique continuous function with the property (4.14). Now, from the inequality
(4.12), we get

−ϕ(t)ϵ ≤ x(n)(t)− f(t, [x(t)]) ≤ ϕ(t)ϵ (4.19)

for all t ∈ I. Now, we integrate (4.19) n times from a to t, we obtain∣∣∣∣∣∣x(t)−
n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1f(s, [h0(s)]) ds

∣∣∣∣∣∣
≤ (b− a)n

n!

∣∣∣∣∣∣
t∫

a

ϕ(s) ds

∣∣∣∣∣∣ ϵ
for all t ∈ I. Thus we have |x(t)− (Tx)(t)| ≤

∣∣∣∣ (b− a)n

n!
Kϕ(t)ϵ

∣∣∣∣ ≤ SKϕ(t)ϵ,

ρ(Tx, x) ≤ SKϕ(t)ϵ. (4.20)

Finally, by Theorem 2.2 and (4.20), we obtain

ρ(x, y0) ≤
1

1−KJL
ρ(Tx, x) ≤ SKϕ(t)ϵ

1−KJL
= Hϕ(t)ϵ.

Then by the virtue of Definition 2.5 the differential equation (1.2) has the Hyers-
Ulam-Rassias stability.

5. Some examples
In this section, we provide some examples to illustrate the main results.

Example 5.1. Let η and L be positive constants with ηL < 1. Let

I = {t ∈ R| ν − η ≤ t ≤ ν + η}

for some real number ν. Suppose that x is an n times continuously differentiable
function satisfying the inequality∣∣∣x(n)(t)− L x(t)− ξ(t)

∣∣∣ ≤ ϵ

for all t ∈ I and for some ϵ ≥ 0, where ξ(t) is a polynomial. Then by Theorem 3.1,
there exists a unique n times continuously differentiable function y0 ∈ Cn(I) such
that

y0(t) =

n−1∑
l=0

(t− a)lxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1 [L x(s)− ξ(s)] ds

and
|x(t)− y0(t)| ≤

M ϵ

1−KL
= H ϵ.

for all t ∈ I.
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Example 5.2. Let I = [0, 5K − ϵ] be a closed interval for positive numbers ϵ and
K with ϵ < 5K. For a given polynomial ℓ(t), we assume that x ∈ Cn(I) satisfies
the inequality ∣∣∣x(n)(t)− L x(t)− ℓ(t)

∣∣∣ ≤ ϵ

for all t ∈ I. If we set f(t, x(t)) = L x(t) + ℓ(t), according to Theorem 3.1, there
exists a unique n times continuously differentiable function y0(t) such that

y0(t) =

n−1∑
l=0

tlxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1 {L x(s)− ℓ(s)} ds

and
|x(t)− y0(t)| ≤

M ϵ

1−KL
= H ϵ.

for all t ∈ I.

Example 5.3. Assume that K and L be positive constants with KL < 1. Let
I = [0, 3K − ϵ] be a closed interval for a positive number ϵ < 3K. For a given
polynomial ℓ(t), we assume that x ∈ Cn(I) satisfies the inequality∣∣∣x(n)(t)− L x(t)− ℓ(t)

∣∣∣ ≤ t2 ϵ

for all t ∈ I. If we set f(t, x(t)) = L x(t) + ℓ(t) and ϕ(t) = t2, then the above
inequality has the identical form with (4.2). Moreover, we obtain∣∣∣∣∣∣

t∫
0

ϕ(s) ds

∣∣∣∣∣∣ = t3

3
≤ K ϕ(t)

for all t ∈ I, since K ϕ(t) − t3

3
≥ 0 for all t ∈ I. According to Theorem 4.1, there

exists a unique n times continuously differentiable function y0(t) such that

y0(t) =

n−1∑
l=0

tlxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1 {L x(s)− ℓ(s)} ds

and
|x(t)− y0(t)| ≤

M K ϕ(t)ϵ

1−KL
= H ϕ(t)ϵ.

for all t ∈ I.

Example 5.4. Assume that K and L be positive constants with KL < 1. Let
I = [0, 2K − ϵ] be a closed interval for a positive number ϵ < 2K. For a given
polynomial ℓ(t), we assume that x ∈ Cn(I) satisfies the inequality∣∣∣x(n)(t)− L x(t)− ℓ(t)

∣∣∣ ≤ α tn ϵ

for all t ∈ I. If we set f(t, x(t)) = L x(t)+ℓ(t) and ϕ(t) = α tn, where n is a positive
integer and α is a constant, then the above inequality has the identical form with
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(4.2). Moreover, we obtain∣∣∣∣∣∣
t∫

0

ϕ(s) ds

∣∣∣∣∣∣ = α tn+1

n+ 1
≤ K ϕ(t)

for all t ∈ I, since K ϕ(t) − α tn+1

n+ 1
≥ 0 for all t ∈ I. According to Theorem 4.1,

there exists a unique n times continuously differentiable function y0(t) such that

y0(t) =

n−1∑
l=0

tlxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1 {L x(s)− ℓ(s)} ds

and
|x(t)− y0(t)| ≤

M K ϕ(t)ϵ

1−KL
= H ϕ(t)ϵ.

for all t ∈ I.

Example 5.5. Let ϑ > 1 be a constant and η be a constant with 0 < η < lnϑ.Let
I = [0,∞) and ξ(t) be a polynomial. Suppose that x ∈ Cn(I) satisfies the inequation∣∣∣x(n)(t)− η (3 x′′′(t)− 2 x′′(t)− 6 x(t))− ξ(t)

∣∣∣ ≤ β ϑt ϵ

for all t ∈ I. If we set f (t, [y(t)]) = η (3 x′′′(t)− 2 x′′(t)− 6 x(t))− ξ(t) and ϕ(t) =
β ϑt, β is a constant, then the above inequality has the identical form with (4.12).
Moreover, we obtain ∣∣∣∣∣∣

t∫
0

ϕ(s) ds

∣∣∣∣∣∣ = β ϑt

lnϑ
≤ K ϕ(t)

for all t ∈ I, since K ϕ(t)− β ϑt

lnϑ
≥ 0 for all t ∈ I. According to Theorem 4.2, there

exists a unique n times continuously differentiable function y0(t) such that

y0(t) =

n−1∑
l=0

tlxl

l!
+

1

(n− 1)!

t∫
a

(t− s)n−1 {η (3 x′′′(t)− 2 x′′(t)− 6 x(t))− ξ(s)} ds

and
|x(t)− y0(t)| ≤

S K ϕ(t)ϵ

lnϑ−KJL
= H ϕ(t)ϵ.

for all t ∈ I.
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