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ORLICZ MULTIPLE AFFINE
QUERMASSINTEGRALS*
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Abstract In the paper, our main aim is to generalize the mixed affine quer-
massintegrals of j convex bodies to the Orlicz space. We find a new affine ge-
ometric quantity by calculating first-order variation and call it Orlicz multiple
affine quermassintegrals. The mixed affine quermassintegrals and Aleksandrov-
Fenchel inequality for the mixed affine quermassintegrals of j convex bodies are
extended to an Orlicz setting. A new Orlicz-Aleksandrov-Fenchel inequality
for the mixed affine quermassintegrals of j convex bodies is established. The
new Orlicz-Aleksandrov-Fenchel inequality in special cases yield the classical
Aleksandrov-Fenchel inequality for mixed volumes, the Aleksandrov-Fenchel
inequality for the mixed affine quermassintegrals which is just built, and
Zou’s Orlicz Minkowski inequality for affine quermassintegrals, respectively.
This new concept of L,-multiple affine quermassintegrals and L,-Aleksandrov-
Fenchel inequality for the L,-multiple affine quermassintegrals is also derived.
Moreover, the Orlicz multiple mixed volumes and the Orlicz-Aleksandrov-
Fenchel inequality for the mixed volumes are also included in our new con-
clusions. As an application, a new Orlicz-Brunn-Minkowski inequality for the
mixed affine quermassintegrals of j convex bodies is proved.
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1. Introduction

One of the most important operations in geometry is vector addition. As an oper-
ation between sets K and L, defined by

K+L={c+y:z€K,ye L},

it is usually called Minkowski addition and combine volume play an important
role in the Brunn-Minkowski theory. During the last few decades, the theory has
been extended to the L,-Brunn-Minkowski theory. A set called as L,-addition,
introduced by Firey in [6,7]. Denoted by +,, for 1 < p < oo, defined by

h(K +, L,z)? = h(K,z)? + h(L, )7, (1.1)
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for all x € R™ and compact convex sets K and L in R™ containing the origin. Here
the functions are the support functions. If K is a nonempty closed (not necessarily
bounded) convex set in R™, then

hK,z) =max{z-y:y € K},

for € R™, defines the support function h(K,z) of K. A nonempty closed convex
set is uniquely determined by its support function. L,-addition and inequalities are
the fundamental and core content in the L,-Brunn-Minkowski theory. For recent
important results and more information from this theory, we refer to [11-14, 19,
22,24,27-31, 34, 35, 38,39, 41, 42] and the references therein. In recent years, a
new extension of the L,-Brunn-Minkowski theory is to Orlicz-Brunn-Minkowski
theory, initiated by Lutwak, Yang, and Zhang [32,33]. Gardner, Hug and Weil [9]
introduced first the Orlicz addition, Orlicz mixed volumes and established Orlicz
Minkowski’s, and Brunn-Minkowski’s inequalities. Xi, Jin and Leng [43] have also
established the same concepts and arguments by using the symmetry techniques of
convex geometric. The other articles advance the theory and its dual theory can be
found in literatures [10,16-18, 20, 21, 36, 40,44-52, 54, 55]. Gardner, Hug and Weil
( [9]) introduced the Orlicz addition K +, L of compact convex sets K and L in R"
containing the origin, implicitly, by

s, py e 0o () o (ML) )

where, v € S™~! for unit vectors, and the surface of the unit ball centered at
the origin is S"71, and ¢ : [0,00) — (0,00) is a convex and increasing function
such that ¢(1) = 1 and ¢(0) = 0, and let ® denote the set of convex functions
¢ : [0,00) = [0,00) that is increasing and satisfy ¢(0) = 0 and ¢(1) = 1. When
p > 1 and ¢(t) = t?, the Orlicz addition K +, L becomes the Ly-addition K +, L.
Orlicz multiple mixed volumes of (n + 1) convex bodies with respect to the Orlicz
addition was introduced by Zhao [50], denoted by V,,(K1y,--- , Ky, L), defined by

d
Vo(K1, -+, Ky, Ly) == ¢ (1

D)o V(K K, Ly tp e Ka), o (13)

e=0+

for p € ® and K3, - , K, are convex bodies containing the origin, L,, is a convex
body containing the origin in its interior, and ¢’ (1) denotes the value of the left
derivative of convex function ¢ at point 1. Here, V(K1,- - , K,,) is the usual mixed
volume, defined by (see e.g. [8], p.353),

1
V(Ky,...,K,) = —/ h(K,,u)dS(Kq,...,K,_1,u),
n Jgn—1
where S(K1,...,K,_1,-) is a Borel measure on S"~!, and called it mixed surface
area measure of K1,..., K, _1, and where K1,..., K, _1 are convex bodies contain-

ing the origin.
Lutwak [25] proposed to define the affine quermassintegrals for a convex body
K, &¢(K), ®1(K), ..., D,(K), by taking &¢(K) := V(K), P, (K) := w, and for

0<j<n,
@, j(K) :=uw, [/GJ (VO]j(KK)> h dp;(€)

i

—1/n
) (1.4)
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where G, ; denotes the Grassman manifold of j-dimensional subspaces in R", and p;
denotes the gauge Haar measure on Gy, ;, and vol;(K|¢) denotes the j-dimensional
volume of the positive projection of K on j-dimensional subspace £ C R" and w; de-
notes the volume of j-dimensional unit ball. Lutwak showed the Brunn-Minkowski
inequality for the affine quermassintegrals. If K and L are convex bodies and
0 < j < n, then

Do (K + L)V3 > B ()Y 4+ @, j(L)1V3) (15)
Lutwak [26] conjectured that

W), ®;(K)" ™ < w), ®;(K)",

— n

for 0 <7< j <nand K is a convex body.
In analogy to (1.4), one may also define mixed affine quermassintegrals of j
convex bodies K, ..., Kj, denoted by ®,_;(Kj,...,Kj), defined by (see [53])

—1/n

%ijM&WM%M%<WNMW”&m»anﬂ C(16)

Wi

where 0 < j < n, and vol;((Ky,..., K;)|£) denotes vol;(K4[E, ..., K;|€) is the
j-dimensional mixed volume of K;¢,..., K|, and by letting ®o(Ky,..., K;) :=
V(Ky,...,K,) and ®,(K1,...,K;) := w,. The related inequalities on the mixed
affine quermassintegrals are listed in Section 3.

In the paper, our main aim is to generalize the mixed affine quermassintegrals
of j convex bodies to the Orlicz space. In this framework of the Orlicz-Brunn-
Minkowski theory, we introduce a new affine geometric quantity by calculating
Orlicz first-order variation of the mixed affine quermassintegrals of j convex bodies,
and call it Orlicz multiple affine quermassintegrals. The fundamental notions and
conclusions of the mixed affine quermassintegrals and Aleksandrov-Fenchel inequal-
ity for the mixed affine quermassintegrals of j convex bodies are extended to an
Orlicz setting. A new Orlicz-Aleksandrov-Fenchel inequality for the mixed affine
quermassintegrals of j convex bodies is established. The new Orlicz-Aleksandrov-
Fenchel inequality in special cases yield the classical Aleksandrov-Fenchel inequality
for mixed volumes, the Aleksandrov-Fenchel inequality for the mixed affine quer-
massintegrals which is just built, L,-Aleksandrov-Fenchel inequality and Zou’s Or-
licz Minkowski inequality for affine quermassintegrals, respectively. This new con-
cept of L,-multiple affine quermassintegrals and L,-Aleksandrov-Fenchel inequality
for the L,-multiple affine quermassintegrals is also derived. As a application, a new
Orlicz-Brunn-Minkowski inequality for the mixed affine quermassintegrals of j con-
vex bodies is proved, which implies Orlicz-Brunn-Minkowski inequalities for mixed
volumes and quermassintegrals, and Zou’s Orlicz Brunn-Minkowski ineqaulity for
affine quermassintegrals, respectively.

Following the basic spirit of Aleksandrov [2], Fenchel and Jessen [5] introduction
of mixed quermassintegrals, and introduction of Lutwak’s L,-mixed quermassinte-
grals (see [23]), we are based on the study of the first order Orlicz variational of the
affine quermassintegrals. We prove that Orlicz first order variation of mixed affine
quermassintegral of j convex bodies can be expressed as: For ¢ € ® and 0 < j < n,

d

P q)n,j(Kh...,Kj,th -‘mpE-Kj)
€ le=0+
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1 n —n
280/7(1)¢>n_j(1(1,...,Kj_l,Lj)1+ @y j(K1,...,Kj, L), (1.7)

where Ky, -+, K; are convex bodies containing the origin, L; is a convex body
containing the origin in its interior, and ¢’ (1) denotes the value of left derivative of
convex function ¢ at point 1. Here, K +,¢- L denotes the Orlicz linear combination
of convex bodies K and L. If K, L are convex bodies containing the origin, o, 5 > 0
and ¢ € ®, then Orlicz linear combination of K and L, denoted by +,(K, L, o, 8),
defined by ( [9])

“e (h(m(%fg, m,x)) o (h(+w(?éLi,xoz,ﬁ),x)> -

For @« =1 and 8 = ¢ > 0, the Orlicz linear combination +, (K, L, 1, ) denoted by
K 4+, ¢ - L. In this first order variational equation (1.7), we find a new geometric
quantity. Based on this, we extract the required geometric quantity, denoted by
O, i (K1,...,Kj, Lj) and call it Orlicz multiple affine quermassintegral of (j + 1)
convex bodies K1, ..., K}, L;, defined by

q)go,n—j(Kh e -aKj7Lj)_n
v (1) d
(I)n,j(Kh...,Kj,]_,Lj)lJ'_n de e—0+

én—j(Kla-“ij—lij +@€'Kj), (18)

where Ki,...,K; are convex bodies containing the origin, L; is a convex body
containing the origin in its interior, 0 < 7 < n and ¢ € ®. We prove also the new
affine geometric quantity ®,,,—;(K1,...,K;, L;) has an integral representation.

Py j(Kiy.., Kj L)
i | VI (K, K, 1)16) (volj«m,.--,fq17Lj>|§>>”duj@)’
G

" n,j VOlj((Kla--'aKj—lej)|€) Wi
(1.9)
where p € ®,0 < j < n,and Ky, ---, K; are convex bodies containing the origin, L;
is a convex body containing the origin in its interior, and Vggj)((Kl, K L6
denotes the j-dimensional Orlicz multiple mixed volume of Ki[¢,..., K;|¢, L;|€

(see [50], Definition 4.1). We show the affine invariance of Orlicz multiple affine
quermassintegrals. For 0 < j < n, ¢ € ® and g € SL(n),

(Dap,n—j(gKla ce. 7ng7ng) = (I)Lp,n—j(Kla . '7Kj7Lj)ﬂ (110)

where K7, --- , K; are convex bodies containing the origin, and L; is a convex body
containing the origin in its interior.

Because the Orlicz multiple affine quermassintegrals are extensions of the mixed
affine quermassintegrals of j convex bodies and the Orlicz multiple mixed volumes,
a very natural question is raised: is there a Aleksandrov-Fenchel type inequality for
the Orlicz multiple affine quermassintegrals? in the Section 4, we give a positive
answer to this question and establish an Orlicz-Aleksandrov-Fenchel inequality for
the new affine geometric quantity.

Orlicz-Aleksandrov-Fenchel inequality for mixed affine quermassinte-
grals of j convex bodies Let o € ®, 0<j<nand0<r <j. If Ki,--- , K;
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are convexr bodies containing the origin, L; is a convex body containing the origin
in its interior, then for € >0

<<I>¢,nj(K1,...,Kj,Lj) )n > 0 (H:—l Dy (K, Ky Ky, aKj)l/r>
én—j(Kla"'ij—lej) B (I>n—j(K17"'7Kj—17Lj)

(1.11)
Obviously, the following classical Aleksandrov-Fenchel inequality (see [3]) for
mixed volumes is a special case of (1.11).

3=

V(K- Ky) > [[VE K K, K)o
i=1

This new inequality in special case which yields also the following
Orlicz-Aleksandrov-Fenchel inequality, which was recently established by Zhao [50].
If Ky,---, K, are convex bodies containing the origin, L,, is a convex body con-
taining the origin in its interior, 1 <r <mn and ¢ € ®, then for ¢ > 0

V@(Kl,"' 7Kn7Ln) 2 V(Kla 7Kn717Ln)

M V(Ki...,Ki, Ky, .. K)™
= . 1.12
X$0< V(Kla"'yKn—laLn) ( )

An important special case of (1.11) is the following result. If 0 < i < n, ¢ € P,
and K is a convex body containing the origin in its interior, L is a convex body
containing the origin, then

: 1/(n—1)
Wei(K,L) = Wi(K) ¢ ((WW;((IL(D ) (1.13)

If ¢ is strictly convex, equality holds if and only if K and L are homothetic. Here
W;(K) denotes the usual quermassintegral and W, ;(K, L) is the Orlicz mixed quer-
massintegral of K and L, defined by (see [46])

1 h(L,u)
WK, L) = - h(K, u)dS;(K,u), 1.14
D=1 [ (R s, (1)
where 0 <17 < n.

Obviously, Zou’s [55] the following result is a simpler special case of (1.11).

. -n ) 1/5
<(I>‘Pa"—](K7L)> Z © (q)"—](L) ) ) (115)
@,_;(K) B, ,(K)
If ¢ is strictly convex, equality holds if and only if K and L are homothetic, where
Synj(K,L) =Py ,—;(K,...,K, L, K). Moreover, the Orlicz Minkowski inequality
———
j—1
for i-th mixed affine quemassintegrals (see [46]) is also a special case of (1.11).
In the Section 5, we establish an Orlicz-Brunn-Minkoswki inequality for the
mixed affine quermassintegrals.

Orlicz-Bruun-Minkowski inequality for mixed affine quermassintegrals
of j convex bodies Let ¢ € ® and 0 < j < n. If Ky,---,K; are convex bodies
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containing the origin, L; is a convex body containing the origin in its interior, then
fore >0

1> (bnfj(Kla--ijflij)
- (I)n_j(Kl,...,Kj_l,Lj +¢€'Kj)

%.(p( ®, j(Ky,...,K;) >
énfj(Kla“ijfl;Lj +¢E-Kj) ’

If ¢ is strictly convez, equality holds if and only if K; and L; are homothetic.

This in special case which yields the following Orlicz-Brunn-Minkoswki inequal-
ity for mixed volumes, which was recently established by Zhao [50]. If Ky, -- , K;
are convex bodies containing the origin, L; is a convex body containing the origin
in its interior, and ¢ € ®, then for € > 0

V(Ki,...,Kn—1,Ly) V(Ky,...,K,)
1>¢ +e-p .
V(Kh e ,anl, Ln —hp [ Kn) V(Kh e ,anl, Ln —hp [ Kn)
(1.17)
If ¢ is strictly convex, equality holds if and only if K, and L,, are homothetic.
An important special case of (1.16) is the following: If K, L are convex bodies
containing the origin, ¢ € ® and 0 < i < n, then

If o is strictly convex, equality holds if and only if K and L are homothetic.
Obviously, Zou’s [55] the following result is also a simpler special case of (1.16).

If ¢ is strictly convex, equality holds if and only if K and L are homothetic. More-
over, the Orlicz-Brunn-Minkowski inequality for i-th mixed affine quemassintegrals
(see [46]) is also a special case of (1.16).

(1.16)

2. Preliminaries

The setting for this paper is n-dimensional Euclidean space R™. Let K™ denote
the set of convex bodies (compact convex subsets with nonempty interiors) in R™,
let K7 be the class of members of K™ containing the origin, and let K7, be those
sets in K™ containing the origin in their interiors. We reserve the letter u € S™~1
for unit vectors, and the letter B for the unit ball centered at the origin. The
surface of B is S"~!. For a compact set K, we write V(K) for the (n-dimensional)
Lebesgue measure of K and call this the volume of K. If K is a nonempty closed
(not necessarily bounded) convex set, then

h(K,x) =sup{z -y :y € K},

for x € R™, defines the support function of K, where x - y denotes the usual inner
product z and y in R™. A nonempty closed convex set is uniquely determined by
its support function. Support function is homogeneous of degree 1, that is,

hK,rx) =rh(K, z),
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for all x € R™ and r > 0 (see e.g. [3]). Let d denote the Hausdorff metric on K™,
ie., for K,L € K",
d(K,L) = |h(K,u) — h(L,u)|s0,

where | - | denotes the sup-norm on the space of continuous functions C'(S™~1).
Let K C R™ be a nonempty closed convex set. If £ is a subspace of R™, then it is
easy to show that

h(K|€’ .23) = h(K, $|§),

for x € R™. The formula (see [8], p.18)
h(AK,z) = h(K, A'x), (2.1)

for x € R™ and a linear transformation A : R™ — R™, gives the change in a support
function under A, where A? denotes the transpose of A. Equation (2.1) is proved
in [8], p.18] for compact sets and A € GL(n), but the proof is the same if K is
unbounded or A is singular.

2.1 Mized volumes

K, e K" (i=1,2,...,r)and \; (i = 1,2,...,r) are nonnegative real numbers,
then of fundamental importance is the fact that the volume of Z:le MK is a
homogeneous polynomial in A; given by (see e.g. [37])

VMK 4+ AKn) = Y Ay X, Vi (2.2)

U1,eesln

where the sum is taken over all n-tuples (i1, . . ., i, ) of positive integers not exceeding
r. The coeflicient V;, _;, depends only on the bodies K, ,..., K;, and is uniquely
determined by (2.2), it is called the mixed volume of K;, ..., K; , and is written as
V(Kil,...,Kin). Let K1=: n_i:Kand Kn—i+1:--~: n:L, then
the mixed volume V(Kj,..., K,) is written as V;(K,L). f K1 =--- = K,_; = K,
K, _it1 = - = K, = B The mixed volumes V;(K, B) is written as W;(K) and call
as quermassintegrals (or ith mixed quermassintegrals) of K. We write W, (K, L) for
the mixed volume V (K, --- , K, B,---, B, L) and call as mixed quermassintegrals of
————

K and L. Aleksandrov [1] and Fenchel and Jessen [5] (also see Busemann [4] and
Schneider [37]) have shown that for K € K™, and ¢« = 0,1,...,n — 1, there exists
a regular Borel measure S;(K,-) on S"~! such that the mixed quermassintegrals
W, (K, L) has the following representation:

Wi(K,L) = L i WilK+e- L) = WilK) _ 1 / h(L,u)dS;(K,u).
n — i -0+t € n Jgn-1
(2.3)
Associated with K1,...,K,_1 € K" is a Borel measure S(K1,..., K, _1,-) on S"71,
called the mixed surface area measure of K, ..., K,_1, which has the property that
for each K € K™ (see e.g. [8], p.353),
V(Kl,...,Kn,l,K):%/ MK, u)dS(Ky,...,Kn_1,u). (2.4)
Snfl

In fact, the measure S(Kj,...,K,_1,-) can be defined by the propter that (2.4)
holds foral K e K". Let K1 =...=K,,_, 1 =Kand K,,_;=...=K,,_1 =1L,
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then the mixed surface area measure S(Ki,...,K,_1,-) is written as S;(K, L, ).
When L = B, S;(K, B,-) is written as S;(kK,-) and called as ith mixed surface
area measure. A fundamental inequality for mixed quermassintegrals stats that: If
K, LeK"and 0<i<n—1, then

Wi(K, L)"™" > W;(K)" " 'W;(L), (2.5)

with equality if and only if K and L are homothetic and L = {o}. Good general
references for this material are [4,9].

2.2  p-mized quermassintegrals

Mixed quermassintegrals are the first variation of the ordinary quermassinte-
grals, with respect to Minkowski addition. The p-mixed quermassintegrals
Wpo(K,L), Wy1(K,L),...,Wpn_1(K,L), as the first variation of the ordinary
quermassintegrals, with respect to Firey addition: For K,L € K7, and real p > 1,
defined by (see e.g. [23])

(K L) —Wi(K
p.lim Wi( +pé€ ) — Wi( )

n—1e—rp+ 9

W,i(K,L) =

(2.6)

The mixed p-quermassintegrals W, ;(K, L), for all K,L € K7, has the following
integral representation:
1
W, (K, L) = - / h(L,w)PdSy (K ), (2.7)
n Jegn—1
where S, ;(K,-) denotes the Boel measure on S™~!. The measure S, ;(K,-) is
absolutely continuous with respect to S;(K, -), and has Radon-Nikodym derivative

dS,,i(K,-)

a5, (K, ) M 28)

where S;(K,-) is a regular Boel measure on S"~!. The measure S, 1(K,") is
independent of the body K, and is just ordinary Lebesgue measure, S, on S™~ 1.
Si(B,-) denotes the i-th surface area measure of the unit ball in R™. In fact,
Si(B,-) = S for all i. The surface area measure Sy(K,-) just is S(K,-). When
i =0, Sp;(K,-) is written as S,(K,-) (see [29,30]). A fundamental inequality for
mixed p-quermassintegrals stats that: For K, L € K',p>1and 0 <i<n—1,

Wi (K, L)"™" > W;(K)" " PW;(L)?, (2.9)

with equality if and only if K" and L are homothetic. L,-Brunn-Minkowski inequal-
ity for the quermassintegrals established by Lutwak [23]. If K, L € K? and p > 1
and 0 < ¢ < n, then

Wi(K +, LP/ =0 > Wi (K)P/ =0 oWy (L) (), (2.10)

with equality if and only if K and L are homothetic or L = {0}. Obviously, putting
i = 01in (2.7), the mixed p-quermassintegrals W), ;(K, L) become the well-known
L,-mixed volume V,(K, L), defined by (see e.g. [29])

Vo (K, L) = % /5 ~ h(L,u)dS,(K, ). (2.11)
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2.8 Orlicz addition

Throughout the paper, let ®,,, m € N, denote the set of convex functions
© : [0,00)™ — [0,00) that are strictly increasing in each variable and satisfy
»(0,...,0) = 0 and ¢(0,...,1,...,0) = 1. When m = 1, we shall write ¢ in-
stead of ®;.

Let m > 2,90 € ®,, K; € K} and j = 1,...,m, the Orlicz addition of
Ki,..., Ky, denoted by +,(Kj, ..., K,,), is defined by ( [9])

h(K h( K,
h(+o(K1, ... Kn), ) _inf{)\ >0: <p< ( A”) ( : x)> < 1}, (2.12)
for x € R™.
Equivalently, the Orlicz radial addition +, (K1, ..., K,,) can be defined implic-
itly (and uniquely) by

UGSTE) h(Km, ) B
v (h(—’—LP(Kh .- 'aKm);$)7. o h(—hp(Kl, .. .,Km)’aj)> =1, (213>

if h(Ki,2z)+ -+ h(Kpm,x) > 0 and by h(+,(K1,...,Ky),z) =0, if h(K,z) =
coo=h(Kp,z) =0, for all z € R™.
An important special case is obtained when

go(:cl,,xm) :Z@(x])v (214)

Jj=1

m

for some fixed ¢ € ® such that ¢(1) = 1, and in this case write +,(K1,..., K,,) =
Ky +4 -+, K,,. This means that K 4, --- +, K, is defined either by

" h(K;
MEK1 4y - 4y K, x) = inf )\>O:Zg0<(;’$)>§1 , (2.15)
j=1

for all z € R™, or by the corresponding special case of (2.13). From (2.15), it follows

easy that
h(Kjvx)
)
Zw( 3 > :

Jj=1
if and only if
A=h(Ki+¢ 4y K, ).

The Orlicz addition +, is continuous, monotonic, GL(n) covariant and projec-
tion covariant. The Orlicz linear combination was defined by (see [9])

- h(K;
h(+o(K1,..., Km,a1,...,0p),z) = inf )\>O:Zo¢j<p ((;,x)) <1y,

j=1

for all z € R", where, K1,..., K, € K7, a; >0 and ¢ € ®.
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3. Orlicz multiple affine querlmassintegrals

In order to define the Orlicz multiple affine querlmassintegrals, we need recall the
Orlicz multiple mixed volumes and define mixed affine quermassintegrals of j convex

bodies.

Definition 3.1 (see [50]). (Orlicz multiple mixed volumes) For ¢ € ®, K3,..., K, €
K and L, € K2, the Orlicz multiple mixed volume of (n + 1) convex bodies

00)

Ki,...,Ky, Ly, denoted by V,,(Ky,--- , Ky, Ly), defined by

V(Ko s Koy L) = %/57 0 (W) WL w)AS (K, Ko 0),
(3.1)
Lemma 3.1. If K;,..., K, € K}, L, € K7, and p € ®, then fore >0
V(Ki, -, Kn1,Lp+pe- K,) =Vu(Kq, - Ky, Ly +p - Ky)
+e Vo (K1, -+, Kyn1,Lp, Ly +,¢-Ky). (3.2)
Lemma 3.2. If K;,--- K, € K}, L, € K], and ¢ € ®, then

Vc,o(Kh"' 7Kn7Ln) > V(Kla aKn)
V(Kla”' 7Kn717Ln) =¥ V(Klv aanlen)

(3.3)

If ¢ is strictly convex, equality holds if and only if K,, and L,, are homothetic.
Lemma 3.3. If p € @, Ky,...,K, € K} and L, € K}, then fore >0

d
o (1) — V(K1 Kn1,Ln +p¢- Kp)
dE e=0+
1 h(Ky, u)
=— —— ) h(Ln,uw)dS(K1, ..., Ky_1;0). 4
n/sn,lgo(h(l/n,u)) (L, u)dS (K 151) (34)

Lemmas 3.1-3.3 have been published in reference [50].
Lemma 3.4 ( [9]). If K,L € K} and ¢ € ®, then fore >0
K+pc LK, (3.5)
in the Hausdorff metric as € — 0V
Lemma 3.5 ([9]). If K,L € KI', ¢ >0 and ¢ € D, then
(K +ye- L) = K[+, LI (3.6)

Here, for the following statement, we list first the definition of the mixed affine
quermassintegrals of j convex bodies.

Definition 3.2 ( [53]). (The mixed affine quermassintegrals of j convex bodies)
The mixed affine quermassintegral of j convex bodies K7, ..., K;, denoted by
(I)n—j(Kh ey Kj), defined by

—1/n

D (K1 ) = [ /| (VOIJ'((K“'“’Kﬂ’)'@)_"duj(f)] B

Wi

where 0 < j < n.
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When Ky = --- = K; = K, ®,_;(K1,...,K;) becomes Lutwak’s affine quer-
massintegral ®,_;(K). When K1 =---=K; 1=K and K;=L, ®,_;(K1,..., K;)
becomes a new affine geometric quantity, denoted by ®,,_;(K, L) and call it mixed
affine quermassintegral of K and L.

In order to define the Orlicz multiple affine quermassintegrals, we need calculate
the first-order variation of the mixed affine quermassintegrals of j convex bodies.

Lemma 3.6. Let p € ® and 0 < j < n. If Ky,...,K; € K} and L; € K},
fore >0

then

007’

d

= ®,_j(Ky,...,Kj_1, L)

1
P, i (Ky,...,K;_1,L; -Kj) =——
g P Ko Lo € K9 =5

X(I)<P7n_j(K1,...,Kj,Lj)7n. (38)

Proof. From (3.1), Lemma 3.3 and Lemma 3.4, we have

d -
I AR (LR SRR AR SR
€ e=0t JGn J
:lim/volj((Kh'~'aKj—hLj+¢€'Kj)‘€)7n7V01j((Klv"' Jj— 1, L )|£) ,Ll,j(f)
e—0T, Gn.j £
—n [ (volj«m,... s LI
Gnj
X df VOlj((Kl,...,Kj_l,L]‘ +¢€KJ)|§)>CZ/,&J(§)
€le=0+
-n ,
[ el K LT VI (K K L) 6
¢ (1) Gn,j
(3.9)
On the other hand, from (1.9), (3.6), (3.7) and (3.9), we obtain
d
df q)n_j(Kl,...,Kj_l,Lj +¢€'Kj)
€ le=0+
d —1/n
w —-n
f dig [/ VOIJ((Klv---7Kj—17Lj +¢P5KJ)|£) dﬂj(f)]
J e=0t Gn,j
" —(n+1)/n
= Li((Kq,... "d
—Nnw; (/anvoj(( 1 J 1, L )|§) :U‘J( ))
d —n
X — VOlj((Kl,...,Kjthj +¢€'Kj)|§) d,uj(§)
dE: € 0+ Gn]
—(n+1)/n
Li((Kq,... "
s0/ (1) (/nJVO](( 1 J 1L )|§) d:uj( ))
></G volj (K1, ..., Kj—1, L)|€) "'V ((Ku,..., Kj, Ly)|€)du; (€)
n,j
1
=&, j(Ki,...,Kj 1, L;j)"""®,,_j(Kiy,...,K;,L;j)™" O

¢l (1)



Orlicz multiple affine quermassintegrals 643

Definition 3.3 (Orlicz multiple affine querlmassintegrals). Let ¢ € ® and 0 < j <
n. If Kl, ..., K; € K} and L; € K7, the Orlicz multiple affine querlmassintegral

007

of Ky,... LJ, denoted by <I>%n (K1, ..., Kj,Lj), defined by
VO (K, K, Ly)[€)
@ ,n—"(Kla"-vK’aLl) ::wn|:/ = :
o e G VOlj((Kl,-'- i—1, L)[€)
L((Ky,. .. —i/m
% <VOJ(( 1, ] 1a )|§)> dﬂj(f):| ) (31())
wj
When Ky =---=K; 1=K, K;=L and L; =K, writing
Oy i (Ki,...,Kj,L;) as @, ,—;(K, L) and call it Orlicz mixed affine querlmass-
integral of K and L. When Kl = = j—i—1 = K, Kj—i = L,Kj_i+1 ==

K; = B, and L; = K, where 0 < i < j < n, writing ®, ,_;(K1,...,K;,L;) as
O, n—ji(K, L) and call it i-th Orlicz mixed affine querlmassintegral of K and L.
Specifically, for j = n, we agreed:

VoK, Kny Ln) _1/nV(K1 K,1,Ly,)
) A n—1is nj-

¢¢,O(K1a"'7KnaLn) = (V(Kl K 1 L

Lemma 3.7. Let p € ® and 0 < j < n. If Ky,...,K; € K], then
Qo (K1, K1, Kj, Kj) = @, (K1, ..., Kj). (3.11)

Proof. From the Definitions 3.1, 3.2 and 3.3, (3.11) easy follows. O

Remark 3.1. When ¢(t) = t?,1 < p < oo, we write O, ,;(K1,...,K;,L;) as
O, nj(K1,...,Kj,Lj;), and call it L,-multiple affine quermassintegral of K and L,
and

B VP(J)((Kl,.. Lj)€)
D J(Kla --aKJ7Lj) w"[L VOI‘((KIa )|§)

n,j Kj-1,L
—1/n

X(volj«mw--wjah )'f)) uj(f)] ,

where Vp(j)((Kl, ..., K;,L;)|§) denotes the j-dimensional L,-multiple mixed vol-
umes (see [50]).

When Klz' =Ry :K, Kj =L and Lj :K, Writing q)p,nfj(Kla . ,Kj,Lj)
as @, ,—;(K,L) and call it L, mixed affine querlmassintegral of K and L. When
Klz---: j—i—lZKaKj—i:"': j_lzB,Kj:LandLj:K,where

0<1i<j<n,writing ®,,—;(K1,...,K;,L;) as &, ,_;;(K,L) and call it i-th L,
mixed affine querlmassintegral of K and L.

Lemma 3.8 ([9]). If K,L € K, p € ® and any g € SL(n), then for e >0
9K +p e L) = (gK) +, ¢ (9I). (3.12)

In the following, we prove that the Orlicz multiple affine querlmassintegral is
invariant under simultaneous unimodular centro-affine transformation.
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Lemma 3.9. Let p € ® and 0 < j < n. If Ky,...,K; € K} and L; € K, then
for any g € SL(n)

(btp,n—j(gKla e ,ng,ng) = CI)%n_](Kl, ceey Kj, LJ)
Proof. From Lemma 3.6 and Lemma 3.8, we have for g € SL(n),
(I)Lp,nfj(gKla v angang)

—1/n
Qn—j(gKla e ,ng7ng +¢ E - gLJ))

_ ¢ (1) d
q)n,j(gKl,...,ng)lJ'_n dE

e=0"+

—1/n
cbnfj(gKla cee angag(Kj +QD € LJ)))

_ vl (1) a4
(I)n—j(gKla-~-7ng)1+n de

_ vl (1) 4
(I)n_j(Kl,...7Kj)1+n de

:(I)Ap’nfj(Kh ey Kj7 LJ)

e=0+

—1/n
(I)n,j(Kl,. . .,Kj,Kj +y€- LJ)>

e=01

O

Lemma 3.10 (Jensen’s inequality). Let p be a probability measure on a space X
and g : X — I C R is a p-integrable function, where I is a possibly infinite interval.
If ¢ : I — R is a convex function, then

/. ¢(g(w))du(fc)2¢< /. g<x>du<x>).

If ¢ is strictly convex, equality holds if and only if g(x) is constant for p-almost all
x € X (see [15], p.165).

Lemma 3.11 ( [53]). If Ky, -+ ,K; € K}, 0<j<nand 0 <r <j, then
By (K1, KG) 2 [] @ns (K Ky Ko, K) Y7 (3.13)
i=1

Obviously, a specisl case of (3.13) is the following: If Ki,--- ,K,; € K2 and
0 <j <n, then

(I)n—j(Kla o aKj)j > (I)n—j(Kl) T q)n—j(Kj)v (314>
with equality if and only if K;,---,K; are homothetic. Another specisl case of
(3.13) is the following: If K, L € K and 0 < j < n, then

O (KLY > @ (K 10, (L), (3.15)

with equality if and only if K and L are homothetic.

4. Orlicz-Aleksandrov-Fenchel inequality for mixed
affine quermassintegrals

00’

Soppi(Ky,...,K: ;L)\ " ®,_(Ki,...,K:
(q’@, J( 1 J J)) ><,0< J( 1 J) ) (4.1)
n—j(Kla-”aKj—lij) (I)n—j(Kla-”aKj—lij)

If ¢ is strictly convez, equality holds if and only if K; and L; are homothetic.

Theorem 4.1. Let o € ® and 0 < j <n. IfKy,...,K; € K} and L; € K7, then
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Proof. When j = n, (4.1) becomes the Orlicz-Aleksandrov-Fenchel inequality
(3.3) for mixed volumes, hence we assume 0 < j < n. Let

vol; (K1, ..., Kj—1,L;)|§)~™
fG vol; (K1, ..., Kj—1, L;)|§)~"du;(§)

dv(§) = dp; (€)-

Obviously, this defines a Borel probability measure v on Gy, ;.
From (3.3), (3.7), (3.10), and by using the Jensen inequality and Hélder inequal-
ity, we obtain

<(I)<p,n—j(Kla . .,Kj,Lj) >—n
Q,_j(Ky,.. .,Kj,l,Lj)

_ V(K. K )6
_/Gn,j VOlj((Kla"' Jj— 17 )‘g)dy(g)

ot <1<<1K((KK)E)>|5>> v

. (/G it ol BN R A duj(§)>

_ G, O (B Ky, L)IE) s €)
> fG” vol; ((K1,. .., K;)|€) "du;(€) “1/n
Zp fG volj (K1, ..., Kj—1,L;)[&)~"du; (&)

@n,j(Kl,...,Kjfl,Lj) '

This implies inequality (4.1) holds.
On the other hand, suppose the equality holds in (4.1), then these three inequal-
ities in the above must satisfy the equal. The first inequality is following;:

VE (- Ky, K L)IE) ( voly (K, ... K;)[€) )
volj (K1, ... K1, L )|€) voli (K, ... K1, Ly)[§) )

When ¢ is strictly convex, form the equality of inequality (3.3), it yields that K;|¢
and L;|{ must be homothetic. The second inequality is following:

/ (p( VOIJ<(K17,KJ)|€) )du
Gy \VOL (K1, K1, Lj)[€)
Gy \VOLi (K1, K1, Lj)[€)

When ¢ is strictly convex, form the equality condition of Jensen’s inequality, then
volj?(lk(leKjf{;)Llf))‘E) must be a constant, this yields that K;|¢ and L;|¢ must be
homothetic. The third inequality is obtained by applying the Holder inequality.
Form the equality condition of Hoélder inequality, this yields that equality holds
vol; (K1, ..., K;)|§) and vol; (K, ..., K;_1,L;)|¢) must be proportional, namely

K;|¢ and L;|¢ be homothetic. To sum up, if ¢ is strictly convex, it follows that
equality in (4.1) holds if and only if K; and L, are homothetic. O
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Theorem 4.2 (Orlicz-Aleksandrov-Fenchel inequality for mixed affine quermass-
integrals of j convex bodies). Let ¢ € ®, 0 < 7 < n and 0 < r < j. If
Ky,...,K; €K} and Lj € K}, then
( ¢¢,n*j(K17 B Kj7 Lj) )—" > (H?z‘n:l (I)H—J'(Kia o K K, aKj)l/r) .
Q,_j(K1,...,Kj_1,L;) Oy j(K1,...,Kj_1,L;)

(4.2)

Proof. This yields immediately from Lemma 3.11 and Theorem 4.1. O

Unfortunately, the equality conditions of the Orlicz-Aleksandrov-Fenchel in-
equality are, in general, unknown.

When j = n and K; = Lj, (4.2) becomes the classical Aleksandrov-Fenchel
inequality for mixed volumes. When K; = L;, (4.2) becomes the Aleksandrov-
Fenchel inequality (3.13) for the mixed affine quermassintegrals. A special case
of (4.2) is the following Orlicz-Aleksandrov-Fenchel inequality for mixed volumes
established by Zhao [50].

Corollary 4.1 (Orlicz-Aleksandrov-Fenchel inequality for mixed volumes). Let0 <
r<nandpc®. IfK, - --,K,ecK}, L, €K}, then

Vap(Kla"' 7KnaLn) ZV(Klv 7Kn—1yLn)

y H:ZlV(Ki...,Ki,KrJrh...,Kn)
V(Kla"' 7Kn717Ln) '

3=

Proof. This follows immediately from Definitions 3.1 and 3.3, and (4.2) with
Jj=n O

Corollary 4.2 (L,-Aleksandrov-Fenchel inequality for the mixed affine quermass-
integrals). Letp>1and0<j<n. IfKi,...,K; € K} and L; € K, then

00’

. T @y (K Koy K1, - .,Kj)p/r_

Qpn—j(Kr,...,, Kj, L) ™" > Do (Krveo K1, Ly )P

(4.3)

Proof. This follows immediately from (4.2) with p(¢) =t? and 1 <p<oo. O

Remark 4.1. Obviously, a special case of (4.3) is the following L,-Aleksandrov-
Fenchel inequality for mixed volumes established by Zhao [50].

L,-Aleksandrov-Fenchel inequality for mived volumes If Ki,...,K; € K} and
L;eK},,1<r<nandp2>1,then

00

[IV&E ... KiK. )P
=1

Vi K7 aKnan Z
p( ! ) V(K17 7Kn713Ln)p_l

Corollary 4.3. Let p € @, 0 < j<nand 0 <r < j. If Ky,...,K; € K and
L; € K,, then

007’

(4.4)

1/
Oy i(Ky,... K; L)\ " (@n_j(Kl)-.-cbn_j(Kj))
p.n—j 1y s gy My >0
@, j(Ky,. .., Kj-1,Lj) - Qi (K1,...,Kj_1,L;)

If ¢ is strictly convez, equality holds if and only if K1,--- ,Kj, L; are homothetic.
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Proof. This yields immediately from (3.14) and Theorem 4.1.
Next, we discuss the equality condition of (4.4). When r = j, the Aleksandrov-
Fenchel inequality (3.13) becomes

i (Ky,y . K > @, (K)o @, (K. (4.5)

Although, the precise equality for the Aleksandrov-Fenchel inequality (3.13) are
unknown in general, but it is well known that the equality in (4.5) holds if and only
if K,...,K, are all homothetic of each other (see Lemma 3.11). Hence, if ¢ is
strictly convex, combining the equality conditions of Theorem 4.1, it follows that
the equality in (4.4) holds if and only Ki,...,Kj;,L; are all homothetic of each
other. O

Another special case of (4.2) is the following Orlicz Minkowski inequality for
volumes established by Gardner, Hug and Weil [9] and Xi, Jin and Leng [43], re-
spectively.

Corollary 4.4. (Orlicz-Minkowski inequality) If K, L € K™ and ¢ € ®, then

1/n
Vo(K.L) > V(K)g ((X((f{))) ) |

If  is strictly convez, equality holds if and only if K and L are homothetic.

The following uniqueness is a direct consequence of the Orlicz-Aleksandrov-
Fenchel inequality for the mixed affine quermassintegrals of j convex bodies.

Theorem 4.3. If Ki,--- ,K;,L; e M C K}, 0< 5 <n, and ¢ € O be strictly
convez, and if either

étp,nfj(Kla"’ijflaLij) = q)tp,nfj(Klw"7Kj717Kij)7 fO’I’ all Q € Ma

(4.6)
or
étp nfj(Klw . '7Kj717Q7Lj) q)tp nfj(Kh .- '7Kj717Q7Kj)
> =2 , foral QeM,
Qn—j(Klw")Kj—laLj) (bn—j(Kly"'aKj) f Q (4 7)
then Kj = Lj.

Proof. Suppose (4.6) hold. Taking L; for @), then from Definition 3.2 and Theo-
rem 4.1, we obtain

q)n—j(Kla .. '7Kj—17Lj) = (I)Lp,n—j(Kh cee 7Kj—17Kj7Lj)
<O, j(Ky,...,Kj 1, Lj)

X(p( o, j(Ki,...,K;) )1/”
@n—j(Kly--ij—l;L]’) ’
with equality if and only if K; and L; are homothetic. Hence

1> 80< O, _i(Ky,..., Kj) ) 7
(Dn—j(Kh"'aKj—laLj)

with equality if and only if K; and L; are homothetic. Since ¢ is increasing function
on (0, 00), this follows that

q)n_j(Kl, .. .,Kj) < (I)n—j(Kla .. -7Kj—1,Lj)7
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with equality if and only if K; and L; are homothetic. On the other hand, if
taking K; for @, we similar get ®,,_;(K1,...,K;) > @, ;(K1,...,K;_1,L;), with
equality if and only if K; and L; are homothetic. Hence ®,_;(Ki,...,K;) =
®,,_;(K1,...,Kj_1,L;), and K; and L; are homothetic, it follows that K; and L;
must be equal.

Suppose (4.7) hold. Taking K for @, then from Definition 3.2 and Theorem
4.1, we obtain

—1/n
q)go,n—j(Kla"'aKj)Lj) < ( q)n—j(KlaaK]) ) /
o ) ’

1 =
T, (K1, K1, L) ~ "\ @ (K1, K; 1.1,

with equality if and only if K; and L; are homothetic. Since ¢ is increasing function
on (0, 00), this follows that

D, (Ky,...,K;) < ®p_;(Ky,...,Kj_1,Lj),
with equality if and only if K; and L; are homothetic. On the other hand, if taking

L; for @, we similar get
(I)nfj(Kl, ey KJ) Z (bnfj(Kl, ceey Kjfl,Lj),
with equality if and only if K; and L; are homothetic. Hence ®,,_;(Kq,...,K;) =

®,,_;(K1,...,Kj_1,L;), and K; and L; are homothetic, it follows that K; and L;
must be equal. O

Corollary 4.5. If Ky,--- ,K,,L, € M C K} and ¢ € ® be strictly convez, and if
either

Vgo(Klw .. 7Kn—13Ln7Q) = VQD(Klv' . '7Kn—1aKn7Q)7 fOT’ all Q € Ma

or
Vgo(Klv"')Kn—hQ)Ln) VS&(K17""K71—1’Q7K71)
= , l eM,
V(K1 Kn1, L) V(K. Ky) for all Q
then K,, = L,,.
Proof. This follows immediately from Theorem 4.3 with j = n. O

Corollary 4.6. If ¢ € ® and is strictly convex and M C K such that K,L € M,
and 0 <i<mn. If

Wei(M,K) =W, ;(M,L), forall M eM

or
Wga,i(Ka M) _ W%i(L’M)

Wi(K) — Wi(L)

for all M e M

then K = L.

Corollary 4.7. If ¢ € ® and is strictly conver, 0 < j <n and M C K such that
K, Le M. If

Qo i(M,K)=®,,_;(M,L), forall M €M

or
Dy j(K,M) Oy, (L, M)
: == , foral MeM
@, (K) @, ,(L)

then K = L.
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Corollary 4.8. If K, L € K?, p € ® and 0 < j < n, then

. -n , 1/j
((I)‘Pan—] (K7 L)) Z © ( q)"—] (L) ) ) (48)
@, (K) B, (K)
If p is strictly convex, equality holds if and only if K and L are homothetic (see

[55]).

Proof. Putting K1 =---=K;_1 =L; = K and K; = L in (4.1) and in view of
(3.15), we have
(‘I)w,nj(K» L))” > <‘I’nj(K7L)>
P (K) B P (K)

) 1/j
o[ (=)™,
P (K)
If o is strictly convex, equality holds if and only if K and L are homothetic. O

5. Orlicz-Brunn-Minkoswki inequality for mixed
affine quermassintegrals

Lemma 5.1. Let p € ® and 0 < j < n. If Ky,...,K; € K} and L; € K7, then
fore >0

1= <(I)@77Lj(K1,...,Kj,Lj +gp€ . KJ) >n
(bnfj(Kla-- .,Kj,l,Lj +Lp5' Kj)
Te. <<I>¢,nj(K1,...,Kj1,Lj,Lj +w€‘Kﬂ')>n,
q)n—j(Kla .. .,Kj_l,Lj +4p g K])

(5.1)

Proof. From Lemma 3.1 and Lemma 3.5, we have for € > 0
Véj)((Kl,. . .,Kj,Lj +<p (S KJ)K) +e- Véj)((Kl, .. .,Kj_l,Lj,Lj +¢ g KJ)‘S)
=VIUELE, ... K€ L€ +p - K[€)
+5'Vgp(j)(Klma"'7Kj—1|£aLj|£7Lj‘€+tpg'Kj|£)
ZVOIj(Kl‘g,...,Kj_1‘§7LJ‘|§ Jﬁpg'Kij)
:VOIJ<(K1,,KJ717LJ +¢8KJ)|§) (52)
Let Q = L;j +, ¢ - Kj, from (3.6), (3.10) and (5.2), we have
cbap,nfj(Klv'HijvQ)_n+5'(I)gp,nfj(Klw~~7Kj717Lj7Q)_n
o | Ve (K- Ky, Q) + e Vi (- Ky, L, Q)IE)
" Ja volj ((K1,..., Kj-1,Q)[§)
vol; (K1,...,K;j_1,Q -
X < ](( 1 j—1 )§)> d,LCJ(E)

Wi

vol, ((Ky,...,K;_ -
:wnn‘/Gn’j( O](( 1) w’ J 17Q)|§)) du](g)

n,j

J
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=0, _;(Ki,...,K;1,Q)™".

The proof is complete. O

Lemma 5.2 ( [55]). Let K, L € K2, € >0 and ¢ € D.
(1) If K and L are homothetic, then K and K +, € - L are homothetic.
(2) If K and K +, € - L are homothetic, then K and L are homothetic.

Theorem 5.1. (Orlicz-Brunn-Minkowski inequality for mized affine quermassin-
tegrals) Let ¢ € ® and 0 < j < n. If Ki,...,K; € K} and L; € K,, then for
e>0

1>g0< ¢n7j(K17"~7KjfluLj) )
- q)n—j(Klyu-aKj—th —|—¢€-Kj)
O, _;i(Ky,...,Kj) )

+e- 5.3
S0<(I)nj([(1,...7[(j1,Lj +¥,€-Kj) ( )

If ¢ is strictly convez, equality holds if and only if K; and L; are homothetic.

Proof. From Lemma 5.1 and Theorem 4.1, we obtain for € > 0

1= ((I)%TL—J'(KM""Kj—leijj +¢€'Kj))_n
(I)n,j(Kl,...,Kjfl,Lj +@€'Kj)
te- <<I)¢7n_j(K1,...,Kj,Lj +¢€'Kj)>_n
(bnfj(K17"'aKj717Lj —f—(pE'Kj)

>¢( ®, j(Ki,...,K; 1, L) >
=P\, (K, K, 1,L;+,¢-K;)
+E.<p< @, (Ky,...,K;) )
O, j(Ki, ..., K; 1, L;+pc-K;)

If ¢ is strictly convex, from equality condition of the Orlicz-Minkowski inequality
(4.1), the equality holds if and only if L; and L; 4+, € - K; are homothetic, and K
and L;+,¢- K; are homothetic and combine with Lemma, 5.2, this yields that if ¢ is
strictly convex, equality holds in (5.3) if and only if K; and L; are homothetic. [

Corollary 5.1. If K, L€ K?, o € ® and 0 < j < n, then fore >0

o (52 ) ) e () ) e

If ¢ is strictly convex, equality holds if and only if K and L are homothetic. (see

[55])-

Proof. Putting Ky =---=K;_1 = L; +,¢- Kj in (6.3), we have for ¢ > 0
1> (‘I)n—j(Lj toe: KjaKJ)> tep (‘I)n—j(Lj tee: KjaLj)> . (55)
®y—j(Lj +p e Kj) Cn—j(Lj +p e - Kj)

If ¢ is strictly convex, equality holds if and only if K; and L; are homothetic.
From (3.15) and (5.5), (5.4) follows easily. O
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Corollary 5.2 (L,- Brunn-Minkowski inequality for mixed affine quermassinte-
grals). Letp > 1 and 0 < j < n. If Ky,...,K; € K} and L; € K, then for
e>0

(I’n—j(Kly ey Kj—la Lj‘hp&'Kj)pz@n—j(Kly e ,Kj)p—HE-‘I)n_j(Kl, e ,Kj_l,Lj)p,
with equality if and only if K; and L; are homothetic.

Proof. This follows immediately from (5.3) with p(¢) =t? and 1 <p <oo. O

Theorem 5.2 ( [9,43]). (Orlicz Brunn-Minkowski inequality for mixed volumes)
IfK,L € K" and ¢ € ®, then

() ) (i) ) o

If ¢ is strictly convez, equality holds if and only if K and L are homothetic.
Corollary 5.3. Let o € ® and 0 < j <n. If Ky,...,K; € K} and L; € K7}, then

(@@,nJ(K177KJ5LJ>)_n>¢< q)nij(K]'?’Kj) ) (58)
(I)n—j(Kla---aKj—lej) - (pn—j(Kla-”ij—th)

If ¢ is strictly convez, equality holds if and only if K; and L; are homothetic.

Proof. Let
KEZLJ' +¢5'Kja

where 0 < 57 < n. From Lemma 3.6 and Theorem 5.1, we obtain

1 n —n
m@n,j(Kl,...7Kj,1,Lj)l+ Sy j(Ki,...,Kj, L)
d
:E 0+(I)n7j(K17"' 7Kj717K€)
e=
~ lim O, (K, Kj1, Ke) — @i (Ky, -, K1, Ly)
e—0t e

(K, Kjo1, L)

(K, Ko, Ke)

0 (<I>n_j(K1,~-- ,Kj_l,Lj)>
V(Ky,--- ,Kjfl,Kg)

1—

|
5

1_¢(¢n—j(Kla"' ’Kj—17Lj)>

o, (Ky,- K 1 K

x i 15 i1 Ke) Oy (K, Ko, Ke)
1— (I)n—j(Kla"' 7Kj—1aLj)

. 1-—1t v q)nfj(Kla"' 7Kj717K€)

lim ——— - lim

t—0+ p(1) — p(t) e—o0t €

X lim q)n—j(Kla"' ,Kj_th)

e—0+t

1 'w( (K, -, Kj)
@L(l) q>nfj(K17"' JKj717Lj)

> @y (Kq,---, K1, Lj). (5.4)
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From (5.9), (5.8) easy follows. This proof is complete. O
Through the proof of Theorem 5.1 and Corollary 5.3, it is not difficult to see-

binequality (5.3) is equivalent to inequality (4.1).

Corollary 5.4. If Ky,--- ,K;,L; e K}, 0< 4,5 <n,0<r<n and p € P, then

fore >0

1> 0 <H;=1 (I)n—j(Kia .. '7Ki7KT’+1,~ . 'aKj)l/T>
- (K, K1, Kj 4o L)

tep <H2—1 ¢n—j(Kk7 .. '7Kk7KT'+17 s 7Kj—1aLj)1/T>
(K1, K1, Kj to.e Lj)

Proof. This follows immediately from Theorem 5.1 combining the Aleksandrov-
Fenchel inequality (3.13). O
Similarly, we see also that inequality (5.10) is equivalent to inequality (4.2).

Corollary 5.5. If K1,--- ,K;,L; €e K2, 0< 5 <n and p € O, then fore >0
| 30 < (K1) - By () 4>1“
- (K, K1, K +oc L)

. PR ; y y ] 1/j
L <<q>n_]<m> <I>n_J<KJ_1>¢n_J<L;>) ) (5.11)

(5.10)

O, (Ky, - Kj_1,Kj +oc Lj)l

If ¢ is strictly convex, equality holds if and only if K1, ..., K, L; are all homothetic
of each other.

Proof. This follows immediately from (5.10) with r = j. O
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