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BISTABILITY OF A TWO-SPECIES
GILPIN-AYALA COMPETITION MODEL

WITH STAGE STRUCTURE

Xizhuang Xie1,2,† and Jinsen Zhuang2

Abstract The dynamic behavior of bistability is considered for a two-species
Gilpin-Ayala competition model with stage structure. By the theory of gener-
alized saddle-point behavior for monotone semiflows, it is shown that there ad-
mits an invariant and K-unordered C1-separatrix, which separates the basins
of attraction of the two locally stable single-species steady states. This implies
that bistability occurs for two species. When two delays vary in their exis-
tence regions, we prove that the stability switching of the positive equilibria
does not arise. By comparing with classical two-species Gilpin-Ayala compe-
tition model, we find that the introduction of stage structure brings negative
effect on permanence of one species, but positive effect on its competitor. Fi-
nally, some numerical examples are given to illustrate the effectiveness of our
theoretical results.

Keywords Gilpin-Ayala, bistability, competition, stage structure, monotone
semiflow.
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1. Introduction

In the biological science and population ecology, there are many mathematical com-
petition models in which an increase of the population density of one species does
have a negative effect on the per capita growth rate of other species. The most
famous one is the Lotka-Volterra competiton model, which has been extensively
studied in the literature during the last decades. Later, Gilpin and Ayala [7] pointed
out that Lotka-Volterra systems are the linearization of the per capita growth rates
Ṅi/Ni about the equilibrium. In order to fit data in their experiments on fruit
fly dynamics and to test the validity of competition results, they stated that a
slightly more complicated model was needed. Thus, they presented the following
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competition model:
ẋ1(t) = x1(t)

(
b1 − a11x

1+θ1
1 (t)− a12x2(t)

)
,

ẋ2(t) = x2(t)
(
b2 − a22x

1+θ2
2 (t)− a21x1(t)

)
,(

x1(0), x2(0)
)
= x0 ∈ R2

+,

(1.1)

where θi > 0 (i = 1, 2) stands for a non-linear measure of interspecific interference.
There are also many investigations on system (1.1), including deterministic type
and random type (see [8, 9, 14, 17, 21, 23]). In these literatures, verifiable sufficient
conditions that guarantee the extinction and persistence are provided. However,
it is assumed that each species admits the same density-dependent rate and the
identical ability to compete with other species. For many animals, whose babies are
raised by their parents or are dependent on the nutrition from the eggs, the babies
are much weaker than the mature. Their competition with other individuals can be
ignored. Based on this, Liu et al. [16] introduced the maturation time delay into the
Gilpin-Ayala competition model (1.1) and derived the following model with stage
structure, 

ẏ1(t) = b1x1(t)− d1y1(t)− b1e
−d1τ1x1(t− τ1),

ẋ1(t) = b1e
−d1τ1x1(t− τ1)− a11x

1+θ1
1 (t)− a12x1(t)x2(t),

ẏ2(t) = b2x2(t)− d2y2(t)− b2e
−d2τ2x2(t− τ2),

ẋ2(t) = b2e
−d2τ2x2(t− τ2)− a22x

1+θ2
2 (t)− a21x1(t)x2(t),

xi(t) = φi(t), yi(t) = ξi(t), −τi ≤ t ≤ 0, i = 1, 2,

(1.2)

where xi(t) and yi(t) (i = 1, 2) denote the density of the mature and that of the
immature of the ith species, respectively. τi (i = 1, 2) represents the time length of
its immature stage. They obtained global asymptotical stability criteria for stable
coexistence and competitive exclusion between two species, as well as the effects of
the nonlinear intraspecific regulation parameter θi (i = 1, 2).

Recall that a biological phenomena is called Bistability if a dynamical system
possesses three equilibria a, b and c such that a and b are stable attractors, and
the state space is divided into three disjoint and invariant parts: the basin of at-
traction B1 of a, the basin of attraction B2 of b and a manifold M containing c

with codimension one. Here, M is usually called the separatrix of the domains of
attraction B1 and B2. Such a system is also said to admit a saddle-point struc-
ture/behavior. If the equilibrium c is replaced by a set of some equilibria and the
same statements as above hold, then such a system is said to admit a generalized
saddle-point structure/behavior (see Jiang et al. [12]).

Bistability is widely used by theoretical ecologists, chemists and physicists to
explain different kinds of biological, chemical and physical phenomena. For exam-
ple, Murray [18] considered a two-species Lotka-Volterra competition model and
observed that the bistability occurs for two competing species under appropriate
conditions. More precisely, there admits a separatrix curve connecting the original
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point to the infinity in the phase space R2
+ such that species 1 wins whenever the

initial value is below the curve, while species 2 wins whenever the initial value is
above the curve. By introducing a reaction-diffusion term to two-species competi-
tion Lotka-Volterra model, Iida et al. [11] reconsidered its bistability and found an
interesting phenomenon. If the two species do not migrate, then the numerically
superior species will wipe out the inferior one, however, the numerically superior
species may become extinct if the diffusion is taken into consideration. In mathe-
matical epidemilolgy of infectious diseases, a within-host HIV model with immune
impairment is presented in Wang et al. [24]. They derived two threshold values
for the immune cell proliferation parameter. Moreover, between the two immune
thresholds, the model exhibits the dynamic behavior of bistability, which suggests
that patients either undergo viral rebound after treatment termination or achieve
the post-treatment control. Ferris and Best [6] investigated an evolution equation
of host defence to parasitism with seasonality and found that a region of parameter
space that allows evolutionary bistability. In delay differential equations, there also
exists dynamic behaviors of bistability. In particular, in some models, delay has a
destabilizing effect and induces bistability. Recently, Shu et al. [22] proposed an
intraguild predation model with delay. They found that the delay in the model
can promote very complex dynamics, and further induce three types of bistability:
node-node bistability, node-cycle bistability and cycle-cycle bistability. Meanwhile,
Chang et al. [4] considered a population model with delayed Allee effect. The basins
of attraction of the two locally stable equlibria are characterized in terms of param-
eter values, which implies that bistability occurs. Furthermore, when the delay is
large, the basin of attraction of the persistence equilibrium and limit cycle shrinks
to a single point. In view of this, it is interesting for us to consider the bistability
of system (1.1) and the effect of the delay on bistability. This is the motivation and
the goal of this paper.

Notice that system (1.2) generates a infinite dimensional dynamical system.
The state space is a Banach space of continuous functions, not the Euclid space.
For abstract two-species competitive systems on ordered Banach spaces, Smith and
Thieme [19] first showed that a ”thin” separatrix separates the basins of attraction
of the two single-population steady states when a single saddle-point coexistence
steady state exists. Besides, sufficient conditions are derived for stable coexistence
and competitive exclusion, which implies that a complete classification of all possi-
ble competition outcomes is obtained. Based on the above results, Jiang et al. [12]
extended and generalized the theory to monotone semiflows and abstract competi-
tive systems with weak bistability structure. They also applied these results to three
reaction-diffusion systems: man-environment-man epidemic model, single-loop pos-
itive feedback system and two-species competition in a convex spatial domain, and
got the dynamic behaviors of bistability of these systems, respectively. Next, we
will use the theory of generalized saddle-point behavior for monotone semiflows to
investigate the global dynamics of bistability of system (1.2).

The main purpose of this paper is to analyze the bistability of system (1.2) and
the effect of the delay on bistability. A sufficient condition is presented to guar-
antee that there exist two locally stable equilibriums and an unstable coexistence
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equilibrium in terms of two simple inequalities (see Lemma 3.2). When two delays
vary in their existence regions, subsystem (3.1) does not exhibit stability switching
(see Corollary 3.1 and 3.2). Theorem 4.1 gives the global dynamics of bistability
on the state space C. Finally, with the introduction of stage structure, it is easier
for the species to drive itself into extinction (see Corollary 5.1-5.2).

This paper is organized as follows. In Section 2, we introduce some important
notations and preliminaries. Section 3 is devoted to study the asymptotical behavior
of equilibria of system (1.2) and stability switching of the positive equilibria. The
main conclusion of global dynamics of bistability on state space is given in Section
4. The effect of the delay on bistability and some numerical examples to illustrate
the theoretical results are provided in Section 5. This paper ends with a discussion
in Section 6.

2. Notations and Preliminaries
Let X1 = C([−τ1, 0],R), X2 = C([−τ2, 0],R), X+

1 = {φ1 ∈ X1 : φ1(θ) ≥ 0,−τ1 ≤
θ ≤ 0} and X+

2 = {φ2 ∈ X2 : φ2(θ) ≥ 0,−τ2 ≤ θ ≤ 0}. IntX+
i is the set of all

positive functions in Xi, i = 1, 2. Define the product space X = X1 ×X2, then X

is a Banach space with the norm ∥φ∥ = ∥φ1∥+ ∥φ2∥, where ∥φ1∥ = sup
−τ1≤θ≤0

|φ1(θ)|

and ∥φ2∥ = sup
−τ2≤θ≤0

|φ2(θ)|. Let X+ = X+
1 ×X+

2 represent the cone of nonnegative

functions in X and ≤ (<,≪) be the corresponding (strict, strong) order relations.
Obviously, IntX+ =IntX+

1 ×IntX+
2 . In addition, we write K = X+

1 × (−X+
2 ), then

X is also a Banach space with the positive cone K and the supremum norm, and
≤k (<k, ≪k) is denoted by the (strict, strong) order induced by cone K. Further,
IntK+ =IntX+

1 ×(-IntX+
2 ). For a fixed ψ ∈IntX+, the order norm is defined by

|φ|ψ = inf{λ ∈ R+ : −λψ ≤ φ ≤ λψ}, which induces the order topology in X.
Let C0 = {(ϕ1, ϕ2) ∈ X+ : ϕ1 > 0, ϕ2 > 0}, C1 = {(ϕ1, 0) ∈ X+ : ϕ1 > 0},

C2 = {(0, ϕ2) ∈ X+ : ϕ2 > 0}, then C0 =IntX+. Define C = C0 ∪ C1 ∪ C2.
Suppose Φ : [0,+∞) × C → C is a continuous semiflow on C. If x ∈ C, then
O(x) = {Φt(x) : t ≥ 0} is called a positive orbit of Φ. An equilibrium e is a point
for which Φt(e) = e, ∀t ≥ 0. An equilibrium e is referred to as locally stable if
for any neighborhood U of e, there exists another neighborhood V of e such that
Φt(V ) ⊂ U , ∀t ≥ 0; asymptotically stable if it is stable and there is a neighborhood
U of e such that ω(y) = {e}, ∀y ∈ U . Φt is defined as monotone if Φt(x) ≤ Φt(y)

whenever x, y ∈ C with x ≤ y and t > 0; strongly monotone if Φt(x) ≪ Φt(y)

whenever x, y ∈ C with x < y and t > 0. If Φt is monotone and whenever x < y

there is some t0 > 0 and open subsets U, V of C with x ∈ U , y ∈ V such that
Φt0(U) < Φt0(V ), we say Φt is strongly order preserving, known as SOP for short.
Next, we give some important hypotheses about Φt presented by Jiang et al. [12]:

(A1) There is a positive number τ such that the mapping Φτ is a strict α-contraction,
that is, there is a positive number k < 1 such that α(Φτ (B)) ≤ kα(B) for any
bounded subset B ⊂ C.

(A2) The semiflow Φt is uniformly bounded in the sense that O(B) = ∪t≥0Φt(B)
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is bounded whenever B is a bounded subset of C.
(A3) Φt(C) ⊂ C and Φt(Cj) ⊂ Cj , ∀t > 0, j = 1, 2. The semiflow Φt is strictly

K-monotone on C, strongly K-order preserving on C0, and SOP on Ci with
respect to the order induced by X+

i , i = 1, 2.

(A4) The set ζ of all equilibria of Φt in C is the union of Ē0 = (0, 0), Ē1 = (x1, 0)

with x1 ∈ IntX1, Ē2 = (0, x2) with x2 ∈ IntX2, and a nonempty set ζ0
of coexistence equilibria in C0. Moreover, Ē0 does not attract any point in
C \ {Ē0}, and Ēi is locally stable in C, i = 1, 2; For each e ∈ ζ0, DxΦτ (e) is
strongly K-positive and ρ(e) = r(DxΦτ (e)) > 1 if ζ0 is not a singleton.

Lemma 2.1 (Theorem 2.4, [12] ). Assume that the C1-semiflow Φt satisfies (A1)-
(A4), and Φτ is strongly K-monotone in C0. Then Γ = C \ (B1 ∪ B2) is a K-
unordered and positively invariant Lipschiz manifold with codimension one in the
type-K order norm | · |ψ, where Bi is the basin of attraction of Ēi, i = 1, 2.
Furthermore, Γ is C1 if Φτ is compact.

3. Equilibria and asymptotic behaviors
For system (1.2), we assume yi(0) =

∫ 0

−τi ξi(s) · e
disds, i = 1, 2 to guarantee the

continuity of initial conditions. Considering the biological significance, we need
to take positive initial values yi(0) > 0 and φi(t) > 0 (−τi ≤ t ≤ 0, i = 1, 2).
Throughout this paper, we are only concerned with two cases: θi ≥ 1 (i = 1, 2)

and θi < 1 (i = 1, 2). From system (1.2), it is easy to see that yi(t) is completely
and linearly determined by xi(t), i = 1, 2, respectively. Therefore, we are devoted
to investigate the following subsystem:

ẋ1(t) = b1e
−d1τ1x1(t− τ1)− a11x

1+θ1
1 (t)− a12x1(t)x2(t),

ẋ2(t) = b2e
−d2τ2x2(t− τ2)− a22x

1+θ2
2 (t)− a21x1(t)x2(t),

xi(t) = φi(t) > 0, −τi ≤ t ≤ 0; i = 1, 2.

(3.1)

By a simple calculation or [16], one can get that system (3.1) has three equilib-
riums,

E0 = (0, 0), E1 = ((
b1
a11

e−d1τ1)
1
θ1 , 0), E2 = (0, (

b2
a22

e−d2τ2)
1
θ2 ).

Besides, if
b1
a12

e−d1τ1 > (
b2
a22

e−d2τ2)
1
θ2 ,

b2
a21

e−d2τ2 > (
b1
a11

e−d1τ1)
1
θ1 ,

or
b1
a12

e−d1τ1 < (
b2
a22

e−d2τ2)
1
θ2 ,

b2
a21

e−d2τ2 < (
b1
a11

e−d1τ1)
1
θ1 ,

then there exists a unique positive equilibrium E = (x∗1, x
∗
2), where x∗1 and x∗2 satisfy b1e

−d1τ1 − a11(x
∗
1)
θ1 − a12x

∗
2 = 0,

b2e
−d2τ2 − a22(x

∗
2)
θ2 − a21x

∗
1 = 0.

(3.2)
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By the right-hand side expressions of system (3.1), it follows from the existence
and uniqueness theory of delay differential equations in Kuang [13] that the solution
of system (3.1) with the positive initial value exists and is unique. The following
Lemma tells us that the solution is not only positive, but also ultimately bounded.

Lemma 3.1 (Lemma 4.1, [16]). Given system (3.1), then:

(i) System (3.1) with positive initial conditions φi(t) (i = 1, 2) has strictly positive
solutions for all t > 0.

(ii) Solutions of system (3.1) are bounded, that is, there exist positive constants
M̃ and T (T > τ) such that xi(t) < M̃ , i = 1, 2 for all t ≥ T − τ .

By the stability and attraction analysis of equilibria, Liu et al. [16] presented
the criteria of competitive exclusion and competitive coexistence as below.

Proposition 3.1. (Proposition 3.1 and Theorem 4.4-4.6, [16])

(1) E0 is unstable.

(2) If b1
a12
e−d1τ1 < ( b2a22 e

−d2τ2)
1
θ2 and b2

a21
e−d2τ2 > ( b1a11 e

−d1τ1)
1
θ1 , then E1 is globally

asymptotically stable.
(3) If b1

a12
e−d1τ1 > ( b2a22 e

−d2τ2)
1
θ2 and b2

a21
e−d2τ2 < ( b1a11 e

−d1τ1)
1
θ1 , then E2 is globally

asymptotically stable.
(4) If b1

a12
e−d1τ1 > ( b2a22 e

−d2τ2)
1
θ2 and b2

a21
e−d2τ2 > ( b1a11 e

−d1τ1)
1
θ1 , then E is globally

asymptotically stable.

For simplicity of presentation, we introduce the following notation:
b2
a21

e−d2τ2 < (
b1
a11

e−d1τ1)
1
θ1 ,

b1
a12

e−d1τ1 < (
b2
a22

e−d2τ2)
1
θ2 . (H)

Note that under the condition (H), system (3.1) admits a unique positive equilibria
E. By the stability analysis of equilibria E1, E2 and E, we have

Lemma 3.2. Suppose that (H) holds, then E1 and E2 are asymptotically stable,
while E is unstable for system (3.1).

Proof. The characteristic equation about E1 is

[λ+ (1+ θ1)b1e
−d1τ1 − b1e

−d1τ1−λτ1 ]× [λ+ a21 · (
b1
a11

e−d1τ1)
1
θ1 − b2e

−d2τ2−λτ2 ] = 0.

The eigenvalues about E1 are the roots λ of the equation

λ+ (1 + θ1)b1e
−d1τ1 − b1e

−d1τ1−λτ1 = 0, (3.3)

and the equation

λ+ a21 · (
b1
a11

e−d1τ1)
1
θ1 − b2e

−d2τ2−λτ2 = 0. (3.4)

Firstly, we consider all the roots of (3.3). Let λ = u + iv, where u, v are real
numbers. Substituting λ by u+ iv into (3.3), we have

F (λ) = u+ iv + (1 + θ1)b1e
−d1τ1 − b1e

−d1τ1e−(u+iv)τ1 = 0.
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Then
ReF (λ) = u+ (1 + θ1)b1e

−d1τ1 − b1e
−d1τ1e−uτ1 cos(vτ1) = 0.

If u ≥ 0, then ReF (λ) > 0, which is a contradiction. Hence, Reλ = u < 0.
Next, we focus on all roots of (3.4). Assume that there exists a root λ∗ of (3.4)

such that Reλ∗ ≥ 0. Then

|λ∗ + a21 · (
b1
a11

e−d1τ1)
1
θ1 | = |b2e−d2τ2e−λ

∗τ2 | = b2e
−d2τ2 |e−λ

∗τ2 |.

Taking λ∗ = u+ iv into the above equation, we get

|u+ a21 · (
b1
a11

e−d1τ1)
1
θ1 + iv| = b2e

−d2τ2e−uτ2 .

If Reλ∗ = u ≥ 0, then e−uτ2 ≤ 1, and hence,

|u+ a21 · (
b1
a11

e−d1τ1)
1
θ1 + iv| ≤ b2e

−d2τ2 .

Consequently, (
u+ a21 · (

b1
a11

e−d1τ1)
1
θ1

)2

+ v2 ≤ (b2e
−d2τ2)2.

Since u ≥ 0, it follows that a21 · ( b1a11 e
−d1τ1)

1
θ1 ≤ b2e

−d2τ2 , that is,

(
b1
a11

e−d1τ1)
1
θ1 ≤ b2

a21
e−d2τ2 ,

which is contrary to the first part of the hypothesis (H). Hence, λ must have negative
real part.

By symmetric arguments, one can obtain E2 that is asymptotically stable pro-
vided b1

a12
e−d1τ1 < ( b2a22 e

−d2τ2)
1
θ2 .

For the positive equilibria E, its characteristic equation is

F (λ)=(λ+b1e
−d1τ1(1−e−λτ1)+a11θ1(x∗1)θ1)×(λ+b2e

−d2τ2(1−e−λτ2)+a22θ2(x∗2)θ2)
− a12a21x

∗
1x

∗
2 = 0. (3.5)

Clearly,
F (0) = a11a22θ1θ2(x

∗
1)
θ1(x∗2)

θ2 − a12a21x
∗
1x

∗
2. (3.6)

By the proof of Proposition 3.4 in [16] and the assumption (H), it follows that
F (0) < 0. On the other hand, by the expression of F (λ), it is evident that F (λ) > 0

for sufficiently large λ > 0. Therefore, the equation F (λ) = 0 has at least a positive
root, which implies that E is unstable. This Lemma is completed.

For system (1.2), time delays appear in the survive rate e−diτi , i = 1, 2 of the
delayed populations. Such model is also called model with delay dependent param-
eters or delay-dependent coefficients. In most types of models, time delay can be
both stabilizing and destabilizing, depending on the delay lengths, and hence the
corresponding systems will exhibit complex dynamics, see [2,3,10,15]. In particular,
An et al. [2] proposed a practical geometric method to study the stability switching
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properties for delay differential equations with two delays, and delay dependent pa-
rameters that dependent only on one of two delays. They also applied this method
to a two discrete delay SIR model and obtained the sufficient conditions of stability
switch. However, this method does not seem to be applicable for our system (3.1).
By the expression of the equations (3.5) and (3.6), we can see that the positive
equilibria E always has a positive eigenvalue for any τi ≥ 0 (i = 1, 2) under the
condition (H). This implies that E is always unstable, and hence, the stability
switch of E does not occur.

When θ1 ≥ 1 and θ2 ≥ 1, by (H), it follows that τ1 > τ∗1 and τ2 > τ∗2 , where

τ∗1 =
1

d1(θ1θ2 − 1)
(θ1θ2 ln

b1
a12

+ θ1 ln
a22
a21

+ ln
a11
b1

)

and
τ∗2 =

1

d2(θ1θ2 − 1)
(θ1θ2 ln

b2
a21

+ θ2 ln
a11
a12

+ ln
a22
b2

).

Let τ∗∗1 = max{τ∗1 , 0} and τ∗∗2 = max{τ∗2 , 0}. Then I1 = (τ∗∗1 ,+∞) and I2 =

(τ∗∗2 ,+∞) are existing regions of two delays τ1 and τ2, respectively. For each
(τ1, τ2) ∈ I1 × I2, by the proof of Lemma 3.2, the real parts of eigenvalues of E1

and E2 are negative, which implies that E1 and E2 are asymptotically stable. For
the positive equilibria E, since the expression of F (0) has no relation with τ1 and
τ2, we have F (0) < 0 under the condition H. Again, F (+∞) = +∞, then there
always exists a positive eigenvalue, and hence, E is unstable. This implies that the
stabilities of E1, E2 and E do not switch as τ1 and τ2 vary in I1 × I2. Thus, we
have

Corollary 3.1. Suppose that θ1 ≥ 1, θ2 ≥ 1 and (H) holds. Then, for each
(τ1, τ2) ∈ I1 × I2, the positive equilibria E is always unstable, while E1 and E2

are asymptotically stable. This implies that stability switching does not arise.

When θ1 < 1 and θ2 < 1, it follows from (H) that τ∗1 > 0, τ∗2 > 0, and hence
0 ≤ τ1 < τ∗1 and 0 ≤ τ2 < τ∗2 . Let Ĩ1 = (0, τ∗1 ) and Ĩ2 = (0, τ∗2 ). Using similar
analysis, we also have

Corollary 3.2. Suppose that θ1 < 1, θ2 < 1 and (H) holds. Then, for each
(τ1, τ2) ∈ Ĩ1 × Ĩ2, the positive equilibria E is always unstable, while E1 and E2

are asymptotically stable. This implies that stability switching does not arise.

4. Bistability
From the above section, we have known that for any ϕ ∈ C, system (3.1) has a
unique negative global solution x(t, ϕ) on [0,+∞), which can generates a semiflow
on C defined by Φt(ϕ) = x(t, ϕ). By the linear variational equation of x(t, ϕ), Φt(ϕ)
is continuously differentiable in ϕ for fixed t ≥ 0. By the generalized saddle-point
structure for two-species competitive systems on ordered Banach spaces, the global
dynamic behavior of bistability on the state space C is given below.

Theorem 4.1. Suppose that the condition (H) holds. For system (3.1), there exists
a K-unordered, invariant and one-codimensional C1-separatix Γ = C \B1 ∪B2 on
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the state space C, which separates B1 and B2, where Bi is the basin of attraction
of Ei, i = 1, 2. More precisely, all solutions of system (3.1) with initial positive
functions below Γ asymptotically converge to E1, while all solutions of the system
with initial positive functions above Γ asymptotically converge to E2.

Proof. By Lemma 3.1(ii), it is easy to see that there exists a large positive con-
stant M̄ such that for each φ ∈ B, ∥Φt(φ)∥ ≤ M̄ , whenever B is a bounded subset
of C. This implies that Φt is uniformly bounded, that is, the condition (A2) is satis-
fied. For convenience, we rewrite system (3.1) as ẋ(t) = f(x(t), x(t− τ1), x(t− τ2)),
where x(t) = (x1(t), x2(t)) and f = (f1, f2) with f1 = b1e

−d1τ1x1(t− τ1)− a11x
1+θ1
1 (t)− a12x1(t)x2(t),

f2 = b2e
−d2τ2x2(t− τ2)− a22x

1+θ2
2 (t)− a21x1(t)x2(t).

Then, f maps bounded subsets of C into bounded subsets of R2, and hence, Φ′
t(φ)

is uniformly bounded on t ≥ 0. By Ascoli-Arzela Theorem, the orbit {Φt(φ) =

x(t, ϕ) : t ≥ 0} has compact closure in C and Φt : C → C is a compact mapping for
each t > 0. From Proposition 7.2(a) in [5], for any B ⊂ C, we have α(Φt(B)) = 0,
and then Φt (t > 0) is also a strict α-contraction mapping. Thus, for the semiflow
Φt (t > 0), the condition (A1) is also satisfied.

For any (ϕ1, 0) ∈ C1, it follows from the second equation of system (3.1)
that ẋ2(t)|(ϕ1,0)∈C1

≡ 0, and then x2(t)|(ϕ1,0)∈C1
≡ 0 for any t ≥ 0. Moreover,

ẋ1(t)|(ϕ1,0)∈C1
= b1e

−d1τ1x1(t − τ1) − a11x
1+θ1
1 (t). By Lemma 4.2 and 4.3 in [16],

we get that x1(t)|(ϕ1,0)∈C1
> 0 for any t ≥ 0 and lim

t→+∞
x1(t) =

(
b1e

−d1τ1

a11

) 1
θ1 . This

implies that Φt(C1) ⊂ C1 for any t ≥ 0. Since E1 =
(
( b1e

−d1τ1

a11
)

1
θ1 , 0

)
, we have

W s(E1)∩C1 = C1 \ {E0}. By symmetric arguments, we also have Φt(C2) ⊂ C2 for
any t ≥ 0, and W s(E2)∩C2 = C2 \{E0}. By Lemma 3.1, system (3.1) with positive
initial functions has strictly positive solutions for all t > 0, then Φt(C0) ⊂ C0, for
any t ≥ 0. Thus, Φt(C) ⊂ C, for any t ≥ 0.

Let Px = u, where x = (x1, x2)
T , u = (u1, u2)

T and P =

1 0

0 −1

. Observe

that P = P−1, it follows that x ≤k y if and only if Px ≤ Py. Then, system (3.1)
can be converted into the following cooperative system: u̇1(t) = b1e

−d1τ1u1(t− τ1)− a11u
1+θ1
1 (t) + a12u1(t)u2(t),

u̇2(t) = b2e
−d2τ2u2(t− τ2) + a22(−1)1+θ2u1+θ22 (t)− a21u1(t)u2(t).

(4.1)

Thus system (4.1) generates a semiflow Ψt defined by Ψt(u) = PΦt(x) = PΦt(Pu).
One can easily check that system (4.1) is cooperative and irreducible (see Chapter
5 in [20]). By Corollary 5.3.5 in [20], we can obtain that Ψt is eventually strongly
monotone. That is, if φ := (φ1, φ2)

T ≤k (ψ1, ψ2)
T := ψ, then Pφ ≤ Pψ, and hence,

Ψt(Pφ) ≪ Ψt(Pψ), t > 3T0, where T0 = max{τ1, τ2}. Since Ψt(u) = PΦt(Pu),
we get PΦt(P 2φ) ≪ PΦt(P

2ψ), t > 3T0, which implies that PΦt(φ) ≪ PΦt(ψ),
t > 3T0. Consequently, Φt(φ) ≪k Φt(ψ), t > 3T0. By Proposition 1.1.1 in [20], Φt
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is strongly K-order preserving on C0. By Lemma 5.3.3 and Theorem 5.1.1 in [20],
Φt is strictly K-monotone on C.

Since x2(t)|(ϕ1,0)∈C1
≡ 0 for any t ≥ 0 and the first equation of system (3.1),

we can get ẋ1(t) = b1e
−d1τ1x1(t − τ1) − a11x

1+θ1
1 (t). In view of b1e−d1τ1 > 0, by

Corollary 5.3.5 in [20], we obtain that the semiflow Φt on C1 is eventually strongly
monotone with respect to the order relation ” ≤ ”. Therefore, Φt is SOP on C1.
Analogously, Φt is also SOP on C2.

Now, we show that E0 does not attract any point in C \ {E0}. Since W s(E1)∩
C1 = C1 \ {E0} and W s(E2)∩C2 = C2 \ {E0}, we only need to verify W s(E0)∩ C0

= ∅. By contradiction, suppose that there exists a positive solution (x1(t), x2(t))

such that lim
t→+∞

(x1(t), x2(t)) = (0, 0). For any sufficient small ϵ > 0, there exists a
T = T (ϵ) > 0 such that 0 < x2(t) < ϵ. From the first equation of system (3.1), it
follows that

ẋ1(t) = b1e
−d1τ1x1(t− τ1)− a11x

1+θ1
1 (t)− a12x1(t)x2(t)

> b1e
−d1τ1x1(t− τ1)− a11x

1+θ1
1 (t)− a12ϵx1(t).

We can choose ϵ > 0 so small that b1e−d1τ1 > a12ϵ. By Lemma 4.3 in [16], we

can obtain lim
t→+∞

x1(t) =
(
b1e

−d1τ1−a12ϵ
a11

) 1
θ1

> 0, contradicting lim
t→+∞

x1(t) = 0.
By Lemma 3.2, both E1 and E2 are locally stable in C, while the unique positive
equilibria E is unstable. Then ρ(E) := r(DϕΦt(E)) > 1.

Since x(t, ϕ) = Φt(ϕ) is continuously differentiable in ϕ, we denote Dϕx(t, ϕ)β :=

y(t, β) for any β ∈ K \ {O}. Then, y(t, β) satisfies the linear variational equation
y′(t) = Df(xt(ϕ))yt, y0 = β, which generates a strongly K-monotone semiflow
from the analysis of system (4.1). Since β >k 0, it follows that y(t, β) ≫k 0, that is,
Dϕx(t, ϕ)β ≫k 0. Thus, DϕΦt(E)β ≫k 0. This implies that DϕΦt(E) is strongly
K-positive. So far, the conditions (A3) and (A4) are satisfied.

Let Bi be the basin of attraction of Ei, i = 1, 2. Define Γ = C \ (B1 ∪B2). By
Lemma 2.1, Γ is an invariant and K-unordered separatrix with codimension one,
which separates the basins of attractions of E1 and E2. Since Φt is compact for each
t > 0, Γ is a C1-manifold. Since C = B2∪Γ∪B1 and E2 ≪k E1, all solutions of the
system with initial positive functions below Γ asymptotically converge to E1, while
all solutions of the system with initial positive functions above Γ asymptotically
converge to E2. The proof is completed.

Remark 4.1. By Theorem 4.1, one can see that under the condition (H), the state
space C is divided into three invariant parts: B1, B2 and the separatrix Γ. Here,
Bi is the basin of attraction of Ei (i = 1, 2) and Γ connects unstable equilibria E0

and E to the infinity in C. Since Γ is codimension one, it is said to be a ”thin”
separatrix bounding the basins of attraction of E1 and E2 in Smith and Thieme [19].
In other words, all orbits starting in C \ Γ converge to E1 or E2. E2 attracts all
orbits whenever the initial positive function is above Γ, while E1 attracts all orbits
whenever the initial positive function is below Γ. In the biological context, this
implies that in the initial state one species is numerically superior to the other
species at their habitat, then the superior species will wipe out the inferior one.
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5. Numerical simulation and the effect of the delays
Firstly, we provide some numerical simulations to illustrate our theoretical results.
When the difference of the strength of two species is not so large, which species will
become extinct crucially depends on the initial data. Two cases are given as below.

Case 1: θ1 = 4 > 1 and θ2 = 5 > 1.
By taking parameters b1 = 0.22, b2 = 0.2, d1 = 0.1, d2 = 0.15, a11 = 0.1,

a21 = 0.18, a12 = 0.14, a22 = 0.2, it follows that τ∗1 = τ∗∗1 = 4.5646 and τ∗2 =

τ∗∗2 = 0.1491. Now we arbitrarily select τ1 = 9, τ2 = 2, and different positive initial
functions x1(t), t ∈ [−τ1, 0] and x2(t), t ∈ [−τ2, 0] in the following two subcases.

Subcase (i): When taking x1(t) ≡ 8, t ∈ [−9, 0] and x2(t) ≡ 3, t ∈ [−2, 0], it is
obvious that species 1 is numerically superior to species 2. One can see that Species
1 wins the competition as shown in Fig 1.

Subcase (ii): When taking x1(t) ≡ 5, t ∈ [−9, 0] and x2(t) ≡ 7, t ∈ [−2, 0], it is
obvious that species 2 is numerically superior to species 1. One can see that Species
2 wins the competition as shown in Fig 2.
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Figure 2.

Case 2: θ1 = 1
2 < 1 and θ2 = 1

4 < 1.
By taking parameters b1 = 0.22, b2 = 0.2, d1 = 0.1, d2 = 0.15, a11 = 0.1,

a21 = 0.18, a12 = 0.14, a22 = 0.1, it follows that τ∗1 = 11.724 and τ∗2 = 5.8217.
Now, we arbitrarily select τ1 = 5, τ2 = 3, and different positive initial functions
x1(t), t ∈ [−5, 0] and x2(t), t ∈ [−3, 0] in the following two subcases.

Subcase (i): When taking x1(t) ≡ 6, t ∈ [−5, 0] and x2(t) ≡ 4, t ∈ [−3, 0], it is
obvious that species 1 is numerically superior to species 2. One can see that Species
1 wins the competition as shown in Fig 3.

Subcase (ii): When taking x1(t) ≡ 3, t ∈ [−5, 0] and x2(t) ≡ 6, t ∈ [−3, 0], it is
obvious that species 2 is numerically superior to species 1. One can see that Species
2 wins the competition as shown in Fig 4.

In order to consider the effect of the stage structure, we let τ1 = τ2 = 0 and
obtain four situations of the competition outcome in model (1.1) by Lemma 3.2 and
Theorem 4.1 , namely:
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(A) If b1
a12

< ( b2a22 )
1
θ2 and b2

a21
> ( b1a11 )

1
θ1 , then species 1 wins the competition.

(B) If b1
a12

> ( b2a22 )
1
θ2 and b2

a21
< ( b1a11 )

1
θ1 , then species 2 wins the competition.

(C) If b1
a12

> ( b2a22 )
1
θ2 and b2

a21
> ( b1a11 )

1
θ1 , then two species coexist at a stable equi-

librium.
(D) If b2

a21
< ( b1a11 )

1
θ1 and b1

a12
< ( b2a22 )

1
θ2 , then the bistability occurs for two species.

On the other hand, without loss of generality, if species 2 does not have the
stage structure, that is, τ2 = 0, then system (3.1) is converted into the following
system 

ẋ1(t) = b1e
−d1τ1x1(t− τ1)− a11x

1+θ1
1 (t)− a12x1(t)x2(t),

ẋ2(t) = b2x2(t)− a22x
1+θ2
2 (t)− a21x1(t)x2(t),

x1(t) = φ1(t) > 0, −τ1 ≤ t ≤ 0;x2(0) > 0.

(5.1)

By Lemma 3.2 and Theorem 4.1, for system (5.1), we have

Corollary 5.1. Given system (5.1), then:

(i) If b1
a12
e−d1τ1 < ( b2a22 )

1
θ2 and b2

a21
> ( b1a11 e

−d1τ1)
1
θ1 , then species 1 wins the

competition.

(ii) If b1
a12
e−d1τ1 > ( b2a22 )

1
θ2 and b2

a21
< ( b1a11 e

−d1τ1)
1
θ1 , then species 2 wins the

competition.

(iii) If b1
a12
e−d1τ1 > ( b2a22 )

1
θ2 and b2

a21
> ( b1a11 e

−d1τ1)
1
θ1 , then two species coexist at a

stable equilibrium.

(iv) If b1
a12
e−d1τ1 < ( b2a22 )

1
θ2 and b2

a21
< ( b1a11 e

−d1τ1)
1
θ1 , then the bistability occurs for

two species.

Let
b2
a21

< (
b1
a11

e−d1τ1)
1
θ1 ,

b1
a12

e−d1τ1 < (
b2
a22

)
1
θ2 . (H′)
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Comparing the conditions of (D) to (H ′), since e−d1τ1 < 1, it follows that b1
a12

<

( b2a22 )
1
θ2 implies that b1

a12
e−d1τ1 < ( b2a22 )

1
θ2 holds. In view of ( b1a11 e

−d1τ1)
1
θ1 < ( b1a11 )

1
θ1 ,

there are two possible cases: b2
a21

< ( b1a11 e
−d1τ1)

1
θ1 and b2

a21
> ( b1a11 e

−d1τ1)
1
θ1 . There-

fore, under the conditions of (D) and the introduction of stage structure of species
1, the dynamical behaviors of system (5.1) will exhibit competitive exclusion or
bistability, which depends on the value of d1τ1. Consequently, we have

Corollary 5.2. Assume that b2
a21

< ( b1a11 )
1
θ1 and b1

a12
< ( b2a22 )

1
θ2 holds. Define

τ̃1 = 1
d1
(θ1 ln

a21
b2

+ ln b1
a11

). Then, for system (5.1), the following statements are
valid:

(i) If τ1 ∈ (0, τ̃1), then the bistability occurs for two species.
(ii) If τ1 ∈ (τ̃1,+∞) , then species 2 wins the competition.

Proof. Since b2
a21

< ( b1a11 )
1
θ1 , it follows that τ̃1 > 0. If 0 < τ1 < τ̃1, then b2

a21
<

( b1a11 e
−d1τ1)

1
θ1 . On the other hand, b1

a12
< ( b2a22 )

1
θ2 implies that b1

a12
e−d1τ1 < ( b2a22 )

1
θ2

holds. By Corollary 5.1(iv), the bistability occurs for two species. If τ1 > τ̃1, then
b2
a21

> ( b1a11 e
−d1τ1)

1
θ1 . Together with b1

a12
e−d1τ1 < ( b2a22 )

1
θ2 , by Corollary 5.1(ii), the

species 2 wins the competition.
In the biological context, traditionally the birth rate b1 of species 1 is replaced

by b1e
−d1τ1 . Obviously, b1e−d1τ1 < b1. Notice that b1

a12
e−d1τ1 < ( b2a22 )

1
θ2 , the small

birth rate of species 1 is required than that in (D) in the sense that with the
introduction of stage structure, it is advantageous for the permanence of species 2.
From b2

a21
< ( b1a11 e

−d1τ1)
1
θ1 , we can see that the small birth rate is disadvantageous

for the permanence of species 1 in the competition. Further, species 1 may loss the
competition and go extinction. This implies that it is easier for species 2 to drive
species 1 into extinction by introducing the stage structure of species 1. So, stage
structure brings negative effect on the permanence of one species, and positive effect
on its competitor in two-species competitive models with stage structure.

In the following, we give some numerical examples to illustrate the effectiveness
of above analysis. First, we take θ1 = 1

2 , θ2 = 1
4 , b1 = 0.22, b2 = 0.2, a11 = 0.16,

a12 = 0.14, a21 = 0.18, a22 = 0.1 in the model (1.1), which satisfies the conditions
of (D). When taking initial values x1(0) = 8 and x2(0) = 2, species 1 wins the
competition as shown in Fig 5. By taking initial values x1(0) = 2 and x2(0) =

19, species 2 wins the competition as shown in Fig 6. Clearly, the numerically
superior species will wipe out the inferior one, and the superior species will win the
competition. This implies that the bistability occurs for two species in model (1.1).

For the same parameters θ1 = 1
2 , θ2 = 1

4 , b1 = 0.22, b2 = 0.2, a11 = 0.16,
a12 = 0.14, a21 = 0.18, a22 = 0.1, then τ̃1 = 2.6577. We add the parameters of the
stage structure τ1 = 4 > τ̃1 and d1 = 0.1. By selecting the initial values, x1(t) ≡ 8,
t ∈ [−4, 0] and x2(0) = 2, species 2 wins the competition in system (5.1) as shown
in Fig 7.

For the above parameters θ1 = 1
2 , θ2 = 1

4 , b1 = 0.22, b2 = 0.2, a11 = 0.16,
a12 = 0.14, a21 = 0.18, a22 = 0.1, we take τ1 = 1 such that τ1 < τ̃1 = 2.6577. By
selecting different initial values, one can see that the bistability of system (5.1) will
occur.
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Figure 7. The small graph is a detail view when x1 ∈ [0.5, 4].

When taking initial values x1(t) ≡ 8, t ∈ [−1, 0] and x2(0) = 2, species 1 wins
the competition as shown in Fig 8. Observe that the initial values are the same
as those of Fig 7, however, the different delay τ1 results in different competition
outcomes. When taking initial values x1(t) ≡ 8, t ∈ [−1, 0] and x2(0) = 12, species
2 wins the competition as shown in Fig 9.

For other cases (A) − (C), one can also make the same analysis to obtain the
similar results of stability change.

6. Discussion
In this paper, we focus on the dynamic behavior of bistability of a two-species Gilpin-
Ayala competitive model with two delays. By the generalized saddle-point behavior
for monotone semiflows, Theorem 4.1 gives a sufficient condition (H), which guar-
antees the existence of bistability of system (3.1). Together with Proposition 3.1, we
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present a complete classification for global dynamics of system (3.1): competitive
exclusion, competitive coexistence and bistability. In addition, there does not exist
stability switching for the positive equilibria E as the delay τi, i = 1, 2 varies in its
existence region. By comparing the classical Gilpin-Ayala competitive model, the
species may drive itself into extinction and contribute positively its competitor with
the introduction of stage structure. Taking the bistability in (D) as an example,
there exists a critical value τ̃1. When τ1 ∈ (0, τ̃1), then the bistability occurs for
two species in system (5.1) and which species will become extinct crucially depends
on the initial data. When τ1 ∈ (τ̃1,+∞) , then species 2 wins the competition and
species 1 goes extinction.

However, for higher dimensional case, it does not generate a monotone dynam-
ical system. What are the complete classification for global dynamics? Can the
delay deduce the stability switches? Another question is to consider time-periodic
environments, or more general dependence on time case. We leave them for future
research.
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