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MODELING THE WITHIN-HOST DYNAMICS
OF CHOLERA: BACTERIAL-VIRAL-IMMUNE

INTERACTION

Jie Bai1, Chayu Yang2, Xueying Wang3 and Jin Wang4,†

Abstract We present a mathematical model to investigate the within-host
dynamics of cholera. We formulate a system of nonlinear differential equations
to describe the evolution and interplay of the pathogenic bacteria at different
stages, the viruses, and the immune response inside the human body. Our
analysis shows that the basic reproduction number of this model is determined
collectively by the bacterial, viral and immune reproduction numbers, and that
the bacterial-viral-immune interaction shapes the complex dynamics of cholera
infection within a human host.
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1. Introduction
Mathematical modeling is an effective theoretical tool to study infectious diseases,
and has long provided useful insight into the transmission and spread of diseases
and the design of control strategies [15]. Traditional mathematical epidemic mod-
els are focused on population-level dynamics, typically using theory of differential
equations and dynamical systems to investigate the persistence and extinction of
an infection. In recent years, there has been increasing interest in understanding
pathogen evolution and interaction within a human body and their connection to
the population-level disease transmission and spread (see [3, 7, 10, 18] and refer-
ences therein). In particular, the authors in [6, 8, 9] coupled the between-host and
within-host dynamics of an environmentally-driven infectious disease and conducted
mathematical analysis based on the separation of scales. Meanwhile, a nested mod-
eling approach has been applied to link the between-host/within-host dynamics of
several diseases [11,12,16,17,22].

The present paper is concerned with the within-host modeling of cholera, which
is a severe waterborne infection caused by the bacterium Vibrio cholerae. An ancient
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disease, cholera has re-emerged as a major health threat to a number of developing
countries and caused several major outbreaks in recent years, including those in
Zimbabwe from 2008 to 2009 [19], in Haiti from 2010 to 2012 [27] and in Yemen
from 2016 to 2017 [14], with wide-spread infections and high morbidity and mortal-
ity levels. Cholera can be transmitted through both the indirect, environment-to-
human route and the direct, human-to-human route. Populations lacking sufficient
sanitation, hygiene and medical resources especially suffer from cholera [1, 20].

Numerous mathematical models have been published for the investigation of
cholera dynamics [4, 13, 14, 19, 21, 23, 25, 26, 30–32], most of which are focused on
the population level between-host transmission. On the other hand, cholera infec-
tion involves complicated within-host dynamics that are distinct from many other
infectious diseases. In particular, the authors in [29] found that a virus played an
essential role in the pathogenesis of the vibrios within the human body. This virus,
referred to as the cholera toxin phage (CTXϕ), induces a horizontal gene transfer
of the bacteria that leads to an infectivity several hundreds of times higher than
that of the vibrios ingested from the environment.

Following the notion in [33, 34], we use the term ‘environmental vibrios’ for
those pathogenic bacteria originated from the environment which usually have a low
infectivity, and ‘human vibrios’ for those bacteria generated within the human body
(for example, through the bacterial-viral interaction) which have a much higher
infectivity. Human cholera, with the major symptom of severe diarrhea, is a direct
consequence of the highly infective human vibrios. At the same time, the host
immune system is inevitably involved in the interaction with the bacteria and viruses
as an important means to protect the human body.

The within-host dynamics of cholera may constitute an important step in the
development of a cholera epidemic and could impact the transmission and spread of
the disease at the population level. Particularly, when the highly infective vibrios
are shed out of the human body, they remain active for a period of several hours
during which time these vibrios can be transmitted directly through the human-
to-human pathway [13, 19, 26]. For example, in places where basic hygiene and
sanitation are not available (or otherwise not paid attention to), a person who is
infected with cholera may use dirty hands to prepare food for family members, or
shake hands with other people, so that the infection risk of those people who are in
direct contact with this person would be significantly increased.

There have been a few efforts to mathematically quantify the within-host dy-
namics of cholera. A model that links the between-host and within-host dynamics
of cholera was proposed in [33], which was then analyzed by the separation of two
time scales: the fast scale for the pathogen dynamics inside the human body, and
the slow scale for the disease transmission among human hosts and the environ-
mental evolution of the vibrios. The model in [33] was extended to incorporate
some heterogeneities of the individual hosts [35]. The within-host dynamics in both
studies, however, take a very simple form, represented by a single differential equa-
tions describing the increased toxicity of the pathogen inside the human body. In
another recent study [34], the within-host dynamics of cholera was investigated in
more detail, where the vibrios ingested from the environment (with lower infec-
tivity) and those transformed inside the human body (with higher infectivity) are
distinguished, and their interaction with the virus (CTXϕ) is taken into account.
The model, however, does not involve the host immune response.

We aim to conduct a deeper investigation of the cholera within-host dynamics



692 J. Bai, C. Yang, X. Wang & J. Wang

in the present work, by describing and analyzing the nontrivial interaction among
different stages of the pathogen, the virus, and the immune response inside the hu-
man body. Specifically, in our model, environmental vibrios are infected by viruses
(CTXϕ) and are transformed into highly toxic human vibrios; new viruses are gen-
erated consequently. Meanwhile, the host immune system responds to the invasion
by trying to eliminate the pathogenic vibrios and viruses so as to protect the human
body. As such, by modeling the interaction among environmental vibrios, human
vibrios, viruses, and host immunity, we hope to gain improved understanding of the
complex within-host dynamics of cholera.

We organize the remainder of the paper as follows. In Section 2, we describe the
within-host cholera model based on a system of nonlinear differential equations and
introduce necessary assumptions. In Section 3, we conduct a careful equilibrium
analysis for both the trivial and non-trivial equilibria of the system. In Section 4,
we present some numerical simulation results to verify our main analytical findings.
Finally, we conclude the paper in Section 5 with some discussion.

2. Model formulation
We use the following system of differential equations to describe the within-host
dynamics of cholera:

dB

dt
= Λ− α

B

κ+B
V − δ1B − γ1

B

κB +B
T,

dZ

dt
= g(Z) + θ1α

B

κ+B
V − δ2Z − γ2

Z

κZ + Z
T, (2.1)

dV

dt
= θ2α

B

κ+B
V − δ3V − γ3V T,

dT

dt
= q(T ) + θ3γ1

B

κB +B
T + θ4γ2

Z

κZ + Z
T + θ5γ3V T − δ4T,

where B and Z represent the concentrations of the environmental vibrios and hu-
man vibrios, respectively, V denotes the concentration of the virus (CTXϕ), and
T is the concentration of the immune cells (e.g., natural killer cells and T cells),
inside the human body. The bacteria (i.e., the environmental and human vibrios)
are subject to saturation effects [13,19,34] in their interactions with the viruses and
immune cells, with associated half-saturation rates κ, κB and κZ ; the viral-immune
interaction, instead, is modeled by a bilinear form [2, 24]. The parameter Λ de-
notes the ingestion rate of the environmental vibrios, α is the contact rate between
environmental vibrios and viruses, γi (i = 1, 2, 3) represents the contact rate of
immune cells with environmental vibrios, human vibrios, and viruses, respectively,
and δi (i = 1, 2, 3, 4) denotes the natural death rate in each compartment. New
human vibrios are generated through the interaction between the environmental
vibrios and viruses, which at the same time produces new viruses. We let θ1 and
θ2 be the rescaled coefficients that capture the generation rates of Z and V , re-
spectively, through the bacterial-viral interaction. We also let θ3, θ4 and θ5 be
the rescaled coefficients to depict the production rates of the immune cells through
their interactions with the environmental vibrios, human vibrios and viruses, re-
spectively.
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Meanwhile, we introduce two general functions g(Z) and q(T ) to account for the
intrinsic growth of human vibrios Z and immune cells T , respectively. We make the
following assumptions
(H1) g(0) = 0, g′(Zg) < δ2 for some Zg ≥ 0, and g′′(Z) ≤ 0 on [0,∞).
(H2) q(0) = 0, q′(Tq) < δ4 for some Tq ≥ 0, and q′′(T ) ≤ 0 on [0,∞).
Biologically, the assumption (H1) states that in the absence of the bacterial-viral
interaction, the human vibrios cannot grow with zero initial concentration, that
their intrinsic growth will be outcompeted by the natural death at some point, and
that their intrinsic growth is subject to a saturation effect. Similar interpretation
holds for the assumption (H2) with respect to the intrinsic growth of the immune
cells. It can be easily verified that several common growth forms, such as the linear
growth and logistic growth, satisfy these assumptions. We additionally remark
that since viruses do not multiply by themselves and their replication relies on
interactions with other microorganisms (e.g., bacteria), we do not consider the
intrinsic growth of viruses in our model.

It is clear that R4
+ is positively invariant for system (2.1). Denote

G(Z) = g(Z)− δ2Z (2.2)
and

Q(T ) = q(T )− δ4T. (2.3)
Assumptions (H1) and (H2) imply that G(0) = 0, G′(Z) < 0, for Z ≥ Zg

and Q(0) = 0, Q′(T ) < 0, for T ≥ Tq. Since dB
dt ≤ Λ − δ1B and d(θ2B+V )

dt ≤

θ2Λ−min{δ1, δ3}(θ2B + V ), then lim sup
t→+∞

B(t) ≤ Λ

δ1
and lim sup

t→+∞
(θ2B(t) + V (t)) ≤

θ2Λ

min{δ1, δ3}
. Hence, V has an upper bound Vmax > 0. In fact, one can verify the

following inequality
d(θ3B + θ4Z + θ5V + T )

dt
≤A−min{δ1, δ3,−G′(Zg),−Q′(Tq)}

(θ3B + θ4Z + θ3V + T )

for Z > Zg and T > Tq, where
A =θ3Λ + αVmax|θ4θ1 + θ5θ2 − θ3|+ θ4(G(Zg)− ZgG

′(Zg)) +Q(Tq)− TqQ
′(Tq)

>0.

Thus, Z and T have upper bounds Zmax > 0 and Tmax > 0, respectively. Therefore,
we have the following biologically feasible domain for system (2.1):

Γ =

{
(B,Z, V, T ) ∈ R4

+ : B ≤ Λ

δ1
, Z ≤ Zmax, V ≤ Vmax, T ≤ Tmax

}
.

3. Equilibrium analysis
3.1. Trivial equilibrium
It is clear to observe that system (2.1) has a unique trivial equilibrium at

x0 = (B0, 0, 0, 0) = (
Λ

δ1
, 0, 0, 0). (3.1)
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Using the notations in [28], the new infection matrix F and the transition matrix
V are given by

F =


g′(0) θ1αB0

κ+B0
0

0 θ2αB0

κ+B0
0

0 0 q′(0) + θ3γ1B0

κB+B0

 and V =


δ2 0 0

0 δ3 0

0 0 δ4

 . (3.2)

It follows that the next-generation matrix is given by

FV−1 =


g′(0)
δ2

θ1αB0

δ3(κ+B0)
0

0 θ2αB0

δ3(κ+B0)
0

0 0 1
δ4

(
q′(0) + θ3γ1B0

κB+B0

)
 . (3.3)

The basic reproduction number of model (2.1) is then defined as the spectral
radius of the matrix FV−1; i.e.,

R0 = ρ(FV−1) = max{R1, R2, R3}, (3.4)

where

R1 =
g′(0)

δ2
, R2 =

θ2αB0

δ3(κ+B0)
, R3 =

1

δ4

(
q′(0) +

θ3γ1B0

κB +B0

)
.

Here R1 is referred to as the bacterial reproduction number, which measures
the ratio of the initial intrinsic growth rate of the human vibrios and their natural
death rate; R2 is referred to as the viral reproduction number, which characterizes
the relative strength between the generation rate and the natural death rate of the
viruses; R3 is referred to as the immune reproduction number, which characterizes
the generation rate of the immune cells (from both the intrinsic growth and stimu-
lated growth) in comparison with their natural death rate. Thus, the risk of cholera
infection inside the human body is determined collectively by the bacterial, viral
and immune reproduction numbers, representing the interplay among these three
critical components in the within-host dynamics of cholera.

Based on this definition of the basic reproduction number R0, we have the
following property for the trivial equilibrium x0.

Theorem 3.1. If R0 ≤ 1, then system (2.1) has a unique equilibrium; i.e., the
trivial equilibrium x0, and it is globally asymptotically stable in Γ. If R0 > 1, x0
attracts all the points on the B-axis but becomes unstable in Γ.

In order to prove Theorem 3.1, we first consider the following subsystem of (2.1)
which represents a virus-free state:

Ḃ = Λ− δ1B − γ1
B

κB +B
T,

Ż = g(Z)− δ2Z − γ2
Z

κZ + Z
T, (3.5)

Ṫ = q(T ) +

(
θ3γ1

B

κB +B
+ θ4γ2

Z

κZ + Z
− δ4

)
T,
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where, and in what follows, we use the dot notation ẋ interchangeably with dx
dt . It

is clear that

Ω = {(B,Z, T ) ∈ R3
+ : B ≤ B0, Z ≤ Zmax, T ≤ Tmax}

is a biologically meaningful and positively invariant domain for the subsystem (3.5).

Lemma 3.1. If R1 ≤ 1 and R3 ≤ 1, the virus-free subsystem (3.5) has a unique
equilibrium s0 = (B0, 0, 0), and it is globally asymptotically stable in Ω.

Proof. It is clear that L = Z is a Lyapunov function on Ω for subsystem (3.5)
since R1 ≤ 1 and Ż = 0 implies Z = 0. Since q′′(T ) ≤ 0 and q(0) = 0, we have(

q(T )

T

)′

=
1

T

(
q′(T )− q(T )

T

)
≤ 0. (3.6)

When Z = 0, one can choose ϕ(B, T ) = 1
T such that

div
(
ϕḂ, ϕṪ

)
=
∂(ϕḂ)

∂B
+
∂(ϕṪ )

∂T
= −δ1

T
− γ1κB

(κB +B)2
+

(
q(T )

T

)′

< 0

in R2
+. Hence, the planar subsystem {Ḃ, Ṫ}|Z=0 of system (3.5) has no non-constant

periodic solution in R2
+ by the Bendixson-Dulac theorem. Since R3 ≤ 1, there is a

unique equilibrium (B0, 0) for the planar subsystem {Ḃ, Ṫ}|Z=0 and it is globally
asymptotically stable in R2

+. Hence, by LaSalle’s invariance principle, s0 is globally
asymptotically stable in Ω.
Based on Lemma 3.1, we proceed to prove Theorem 3.1.
Proof of Theorem 3.1. Assume (B,Z, V, T ) is an equilibrium of system (2.1),
then the first equation of system (2.1) implies B ≤ B0. Accordingly, we obtain
V = 0, Z = 0 and T = 0 one after another by the third, the second, and the fourth
equations of system (2.1) since R2 ≤ 1, R1 ≤ 1 and R3 ≤ 1, respectively. Thus, the
trivial equilibrium x0 is the unique equilibrium of system (2.1) if R0 ≤ 1.

Consider a Lyapunov function L = V and differentiate L along the solutions of
system (2.1), we have

L̇ = V̇ = θ2α
B

κ+B
V − δ3V − γ3TV ≤ δ3(R2 − 1)V − γ3TV ≤ 0.

Hence, L̇ = 0 implies V = 0, or R2 = 1, B = B0, T = 0. Note that the largest
invariant sets on {x ∈ Γ : V = 0} and {x ∈ Γ : B = B0, T = 0} are {x ∈ Γ : V = 0}
and {x0}, respectively. Hence, the largest invariant set on {x ∈ Γ : L̇ = 0} is
{x ∈ Γ : V = 0}. By LaSalle’s invariance principle and Lemma 3.1, the trivial
equilibrium x0 is globally asymptotically stable in Γ.

In contrast, if R0 > 1, x0 attracts all the points on the B-axis since B0 is globally
asymptotically stable on the one-dimensional subsystem Ḃ = Λ − δ1B. Consider
the Jacobian matrix of system (2.1) at x0, which is given by

J0 =


−δ1 0 − αB0

κ+B0
− γ1B0

κB+B0

0 δ2(R1 − 1) θ1αB0

κ+B0
0

0 0 δ3(R2 − 1) 0

0 0 0 δ4(R3 − 1)

 .
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Obviously, J0 has at least one positive eigenvalue, hence the trivial equilibrium
x0 is unstable.

3.2. Non-trivial equilibria
We already know that there is only one equilibrium x0 for system (2.1) when R0 ≤ 1.
Next, we investigate the equilibria of system (2.1) when R0 > 1, which is equivalent
to that at least one of the following three inequalities holds: (i) R1 > 1; (ii) R2 > 1;
(iii) R3 > 1. We discuss these three cases separately.

Case (i): R1 > 1. Then there exists a unique Z∗ ∈ (0, Zg) satisfying
G′(Z∗) = 0, where the function G is defined in equation (2.2). Hence, we have
a nonzero solution Z0 > Z∗ such that G(Z0) = 0 and G(Z) > 0 for Z ∈ (0, Z0),
G(Z) < 0 for Z > Z0. Moreover, V = 0 is always a solution of the equation

θ2α
B

κ+B
V − δ3V − γ3V T = 0, (3.7)

and the solution for V > 0 is dependent on R2 > 1, which we will discuss later in
case (ii). Here we examine the equilibrium just for V = 0. Apparently,

x01 = (B0, Z0, 0, 0)

is an equilibrium of system (2.1) representing a virus-free, immunity-free state. For
T > 0, solve the virus-free subsystem (3.5) at an equilibrium; i.e., the following
equations

Λ− δ1B − γ1
B

κB +B
T = 0,

G(Z)− γ2
Z

κZ + Z
T = 0, (3.8)

q(T )

T
+ θ3γ1

B

κB +B
+ θ4γ2

Z

κZ + Z
− δ4 = 0,

and one obtains T (B) = δ1(B0−B)(κB+B)
γ1B

∈ (0,+∞), B ∈ (0, B0) from the first
equation of (3.8). Since T ′(B) < 0, B ∈ (0, B0), T (B) is invertible on (0, B0).
Hence, it follows from the second equation of (3.8) that

B(Z) = T−1

(
(κZ + Z)G(Z)

γ2Z

)
∈ (0, B0), Z ∈ (0, Z0).

Note that T = (κZ+Z)G(Z)
γ2Z

:= T̃ (Z) from the second equation of (3.8). We introduce

F (Z) =
q(T̃ (Z))

T̃ (Z)
+

θ3γ1B(Z)

κB +B(Z)
+

θ4γ2Z

κZ + Z
− δ4, Z ∈ (0, Z0). (3.9)

If F (0+)F (Z0−) < 0, then there exists at least a Z1 ∈ (0, Z0) such that F (Z1) = 0.
Since

F (0+) =
q(T̃ (0+))

T̃ (0+)
+
θ3γ1B(0+)

κB +B(0+)
−δ4 < q′(0)+

θ3γ1B0

κB +B0
+
θ4γ2Z0

κZ + Z0
−δ4 = F (Z0−),

where T̃ (0+) = κZG′(0)
γ2

and B(0+) = T−1(T̃ (0+)), we obtain that F (0+)F (Z0−) <
0 is equivalent to the following condition
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(C1) 1
δ4

(
q(T̃ (0+))

T̃ (0+)
+ θ3γ1B(0+)

κB+B(0+)

)
< 1 < R3 +

θ4γ2Z0

δ4(κZ+Z0)
.

Thus, we have at least one virus-free equilibrium

x1 = (B1, Z1, 0, T1) =

(
T−1

(
(κZ + Z1)G(Z1)

γ2Z1

)
, Z1, 0,

(κZ + Z1)G(Z1)

γ2Z1

)
for system (2.1) if condition (C1) holds. Moreover, the Jacobian matrices of system
(2.1) at x01 and x1 are given by

J01 =


−δ1 0 − αB0

κ+B0
− γ1B0

κB+B0

0 G′(Z0)
θ1αB0

κ+B0
− γ2Z0

κZ+Z0

0 0 δ3(R2 − 1) 0

0 0 0 F (Z0−)


and

J1 =


−δ1 − γ1κBT1

(κB+B1)2
0 − αB1

κ+B1
− γ1B1

κB+B1

0 G′(Z1)− κZG(Z1)
Z1(κZ+Z1)

θ1αB1

κ+B1
− γ2Z1

κZ+Z1

0 0 θ2αB1

κ+B1
− δ3 − γ3T1 0

θ3γ1κBT1

(κB+B1)2
θ4γ2κZT1

(κZ+Z1)2
θ5γ3T1 q′(T1)− q(T1)

T1

 ,

respectively. The characteristic polynomial of J1 is given by

det(λI − J1) =

(
λ− θ2αB1

κ+B1
+ δ3 + γ3T1

)
(λ3 + a1λ

2 + b1λ+ c1),

where one can verify that if G′(Z1) ≤ κZG(Z1)
Z1(κZ+Z1)

, then a1 > 0, b1 > 0, c1 > 0, and
a1b1 > c1. Hence, if G′(Z1) ≤ κZG(Z1)

Z1(κZ+Z1)
and θ2αB1

κ+B1
− δ3 − γ3T1 < 0, by Routh-

Hurwitz criterion, all eigenvalues of J1 have negative real parts. Thus, x1 is locally
asymptotically stable. Obviously, x01 is locally asymptotically stable if R2 < 1 and
F (Z0−) < 0 based on the matrix J01. In fact, when R2 ≤ 1 and R1 > 1, one can
verify that

Γ1 = {(B,Z, V, T ) ∈ R4
+ : B ≤ B0, Z ≤ Z0, V ≤ Vmax, T ≤ Tmax}

is a biologically feasible domain for system (2.1). We will show in Theorem 3.2 that
x01 is globally asymptotically stable in Γ̊1 provided that R2 ≤ 1 and F (Z0−) ≤ 0.

Case (ii): R2 > 1. This implies B0 >
δ3κ

θ2α−δ3
> 0. When Z ≥ Z0, G(Z) is

invertible and G(Z) ≤ 0, hence we can easily obtain an immunity-free equilibrium
of system (2.1):

x2 = (B2, Z2, V2, 0) =

(
δ3κ

θ2α− δ3
, G−1

(
−θ1αB2V2
κ+B2

)
,
δ1(κ+B2)(B0 −B2)

αB2
, 0

)
.

Now we consider a possible interior equilibrium of system (2.1) by solving the fol-
lowing equations

Λ− α
B

κ+B
V − δ1B − γ1

B

κB +B
T = 0, (3.10)
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g(Z) + θ1α
B

κ+B
V − δ2Z − γ2

Z

κZ + Z
T = 0, (3.11)

θ2α
B

κ+B
− δ3 − γ3T = 0, (3.12)

q(T )

T
+ θ3γ1

B

κB +B
+ θ4γ2

Z

κZ + Z
+ θ5γ3V − δ4 = 0. (3.13)

The equation (3.12) yields

T (B) =
θ2αB

γ3(κ+B)
− δ3
γ3

=
δ3κ(B −B2)

γ3B2(κ+B)
(3.14)

and thereby T ′(B) > 0. Substituting equation (3.14) into equation (3.10), we obtain

V (B) =
δ1(κ+B)(B0 −B)

αB
− γ1δ3κ(B −B2)

αγ3B2(κB +B)
. (3.15)

One can verify that V ′(B) < 0 and V (B2) > 0 > V (B0). Then there exists a
B̃ ∈ (B2, B0) such that V (B̃) = 0 and hence we only need to focus on the interval
(B2, B̃). By computing θ4 × (3.11) + T × (3.13), one can obtain

G(Z) = −θ1αBV (B)

κ+B
−
(
q(T (B))

T (B)
+

θ3γ1B

κB +B
+ θ5γ3V (B)− δ4

)
T (B)

θ4
. (3.16)

Denote

h(B) =
q(T (B))

T (B)
+

θ3γ1B

κB +B
+ θ5γ3V (B)− δ4, ϕ(B) = −θ1αBV (B)

κ+B
− h(B)T (B)

θ4
.

Assume the following condition holds:

(C2) αθ3κBB2 ≤ θ5δ3κ(κB +B2).

Then

h′(B) =

(
q(T (B))

T (B)

)′

− θ5γ3δ1
α

(
1 +

κB0

B2

)
+ γ1 ·

αθ3κBB2 − θ5δ3κ(κB +B2)

αB2(κB +B)2
< 0.

If we further assume h(B2+) ≤ 0, then h(B) < 0 on (B2, B̃). It follows from (3.10)
that (

αBV (B)

κ+B

)′

= −δ1 − γ1

(
κBT (B) + (κB +B)BT ′(B)

(κB +B)2

)
< 0.

Hence,

ϕ′(B) = −
(
θ1αBV (B)

κ+B

)′

− h′(B)T (B) + h(B)T ′(B)

θ4
> 0.

Since ϕ(B2+) = − θ1αB2V2

κ+B2
< 0 < −h(B̃)T (B̃)

θ4
= ϕ(B̃−), there exists a B∗ ∈ (B2, B̃)

such that ϕ(B∗) = 0 and ϕ(B) < 0, B ∈ (B2, B
∗). Hence, we could define

ψ1(B) := G−1(ϕ(B)), B ∈ (B2, B
∗), (3.17)

which is a decreasing function since

ψ′
1(B) = (G−1)′(ϕ(B))ϕ′(B) < 0, B ∈ (B2, B

∗).
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Notice that G(Z) < 0 for all Z > 0 if and only if R1 ≤ 1. Hence, (B2, B
∗) is

the maximum interval of existence for the interior solution if R1 ≤ 1. Meanwhile,
solving equation (3.13), we obtain

Z =
−κZh(B)

θ4γ2 + h(B)
:= ψ2(B), B ∈ (B2, B

∗) (3.18)

and
ψ′
2(B) =

−κZθ4γ2h′(B)

(θ4γ2 + h(B))2
> 0, B ∈ (B2, B

∗).

Obviously, the intersection of the two curves Z = ψ1(B) and Z = ψ2(B), B ∈
(B2, B

∗), in R2
+ determines the interior equilibrium of system (2.1). Since ψ1(B)

is a strictly decreasing function with ψ1(B2) = Z2 > 0 = ψ1(B
∗) and ψ2(B) is a

strictly increasing function with ψ2(B) ̸= 0 on (B2, B
∗). Thus, the two curves has

an intersection if and only if 0 ≤ ψ2(B2+) < ψ1(B2) = Z2, which is equivalent to
the following condition

(C3) −θ4γ2Z2

κZ+Z2
< h(B2+) ≤ 0.

Therefore, system (2.1) has a positive interior equilibrium, denoted by

x∗ = (B∗, Z∗, V∗, T∗),

if conditions (C2) and (C3) hold, and x∗ is unique if additionally R1 ≤ 1. The
Jacobian matrices of system (2.1) at x2 and x∗ are given by

J2 =


− ακV2

(κ+B2)2
− δ1 0 − αB2

κ+B2
− γ1B2

κB+B2

θ1ακV2

(κ+B2)2
G′(Z2)

θ1αB2

κ+B2
− γ2Z2

κZ+Z2

θ2ακV2

(κ+B2)2
0 θ2αB2

κ+B2
− δ3 −γ3V2

0 0 0 h(B2+) + θ4γ2Z2

κZ+Z2


and

J∗ =


− ακV∗

(κ+B∗)2
− δ1 − γ1κBT∗

(κB+B∗)2
0 − αB∗

κ+B∗
− γ1B∗

κB+B∗

θ1ακV∗
(κ+B∗)2

G′(Z∗)− γ2κZT∗
(κZ+Z∗)2

θ1αB∗
κ+B∗

− γ2Z∗
κZ+Z∗

θ2ακV∗
(κ+B∗)2

0 0 −γ3V∗
θ3γ1κBT∗
(κB+B∗)2

θ4γ2κZT∗
(κZ+Z∗)2

θ5γ3T∗ q
′(T∗)− q(T∗)

T∗

 ,

respectively. It is easy to find that the characteristic polynomial of J2 is

det(λI − J2) = (λ−G′(Z2))(λ− a2)(λ
2 + b2λ+ c2),

where a2 = h(B2+) + θ4γ2Z2

κZ+Z2
, b2 = ακV2

(κ+B2)2
+ δ1 > 0, c2 = θ1α

2κB2V2

(κ+B2)3
> 0. Note

that G′(Z2) < 0 since G(Z2) < 0. Therefore, x2 is locally asymptotically stable
if a2 < 0, and unstable if a2 > 0. On the other hand, the stability analysis of x∗
involves tedious algebraic manipulations and is not presented here. We, instead,
conduct a bifurcation analysis of x∗ which clarifies the stability property of x∗ near
the bifurcation point R0 = 1. The details are provided in the Appendix.
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Case (iii): R3 > 1. Based on our previous discussion, now we only need to
focus on this case with R1 ≤ 1, R2 ≤ 1 and T > 0. Consider the following equations

Λ− δ1B − γ1
B

κB +B
T = 0, (3.19)

q(T )

T
+ θ3γ1

B

κB +B
− δ4 = 0. (3.20)

Since T ′(B) < 0 and T (B) > 0 for B ∈ (0, B0) from equation (3.19), then H ′(B) >
0, where

H(B) =
q(T (B))

T (B)
+ θ3γ1

B

κB +B
− δ4, B ∈ (0, B0). (3.21)

Note that

lim
B→0+

q(T (B))

T (B)
= lim

T→+∞

q(T )

T
= lim

T→+∞

q(T )− q(Tq)

T − Tq
< q′(Tq).

Hence, H(0+) < 0 and H(B0−) = δ4(R3 − 1) > 0. Thus, there exists a unique
B3 ∈ (0, B0) such that H(B3) = 0. Therefore, we obtain another equilibrium

x3 = (B3, 0, 0, T3)

for system (2.1) that represents a human vibrio-free, virus-free state, where T3 =
δ1(B0−B3)(κB+B3)

γ1B3
. The Jacobian matrix of system (2.1) at x3 is

J3 =


−δ1 − γ1κBT3

(κB+B3)2
0 − αB3

κ+B3
− γ1B3

κB+B3

0 G′(0)− γ2T3

κZ

θ1αB3

κ+B3
0

0 0 θ2αB3

κ+B3
− δ3 − γ3T3 0

θ3γ1κBT3

(κB+B3)2
θ4γ2T3

κZ
θ5γ3T3 q′(T3)− q(T3)

T3

 ,

for which the characteristic polynomial is

det(λI − J3) =

(
λ− θ2αB3

κ+B3
+ δ3 + γ3T3

)(
λ−G′(0) +

γ2T3
κZ

)
(λ2 + b3λ+ c3),

where

b3 = δ1 +
γ1κBT3

(κB +B3)2
+
q(T3)

T3
− q′(T3) > 0,

c3 =
θ3γ

2
1κBB3T3

(κB +B3)3
+

(
δ1 +

γ1κBT3
(κB +B3)2

)(
q(T3)

T3
− q′(T3)

)
> 0.

Hence, x3 is locally asymptotically stable if G′(0) < γ2T3

κZ
and θ2αB3

κ+B3
−δ3−γ3T3 < 0,

or equivalently, R1 < 1 + γ2T3

δ2κZ
and R2 <

(
1 + κ(B0−B3)

B3(κ+B0)

)(
1 + γ3T3

δ3

)
. In fact, we

will show in Theorem 3.2 that x3 is globally asymptotically stable in Γ̊ if R1 ≤ 1
and R2 ≤ 1.

Remark 3.1. Clearly, if R1 ≤ 1 (resp. R2 ≤ 1, R3 ≤ 1), then x01 and x1 (resp. x2
and x∗, x3) will vanish.
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Before summarizing the results above, we revisit the virus-free subsystem (3.5)
and prove the lemma below.

Lemma 3.2. Let r = 1− θ4γ2Z0

δ4(κZ+Z0)
when R1 > 1. We have the following statements

for the virus-free subsystem (3.5).

(a) If R1 ≤ 1 and R3 > 1, the ω-limit set w(s) ∈ {s0, s3} for all s ∈ Ω, where
s0 = (B0, 0, 0) and s3 = (B3, 0, T3). Particularly, the trajectories on the B-
axis approach s0 along this axis, and s3 is globally asymptotically stable in
Ω\{B-axis}.

(b) If R1 > 1 and R3 ≤ r, we have w(s) ∈ {s0, s01} for all s ∈ Ω, where
s01 = (B0, Z0, 0). Specifically, s0 attracts all points on the B-axis and s01 is
globally asymptotically stable in Ω\{B-axis}.

Proof. (a) Similar to the proof of Lemma 3.1, since R1 ≤ 1, by choosing a
Lyapunov function L = Z, it is clear that w(s) ∈ {(B,Z, T ) ∈ Ω : Z = 0}
for all s ∈ Ω and the two-dimensional subsystem {Ḃ, Ṫ}|Z=0 has two equilibria
{(B0, 0), (B3, T3)} and no closed orbit. Hence, w(s) ∈ {s0, s3} for all s ∈ Ω. It is
obvious that the trajectories on the B-axis approach s0 since B0 is globally asymp-
totically stable on the B-axis for the one-dimensional system Ḃ = Λ−δ1B. Assume
that there is a point (B(0), Z(0), T (0)) ∈ Ω\{B-axis} such that

lim
t→+∞

||(B(t), Z(t), T (t))− s0|| = 0. (3.22)

Then lim
t→+∞

T (t) = 0 and for any ε ∈ (0, δ4(R3 − 1)), there is a t1 such that
q(T )
T > q′(0)− ε

2 and θ3γ1B
κB+B > θ3γ1B0

κB+B0
− ε

2 for all t > t1. Thus,

Ṫ ≥ T (δ4(R3 − 1)− ε) > 0, (3.23)

for all t > t1. This leads to a contradiction with lim
t→+∞

T (t) = 0, which indicates that
all points on Ω\{B-axis} approach s3 as t→ +∞; i.e., s3 is globally asymptotically
stable in Ω\{B-axis}.

(b) Since R3 ≤ r, one can verify that L = T is a Lyapunov function of subsystem
(3.5) on Ω and w(s) ∈ {(B,Z, T ) ∈ Ω : Ṫ = 0} = {(B,Z, T ) ∈ Ω : T = 0} for all
s ∈ Ω. It is obvious that w(s) ∈ {s0, s01} for all s ∈ Ω since the two-dimensional
subsystem {Ḃ, Ż}|T=0 can be decoupled as two one-dimensional subsystems Ḃ|T=0

and Ż|T=0. Assume there is a point (B(0), Z(0), T (0)) ∈ Ω̊ such that equation
(3.22) holds. Then, lim

t→+∞
Z(t) = 0 and for any ε ∈ (0, δ2(R1 − 1)), there exsits a t2

such that G(Z)
Z > G′(0)− ε

2 = δ2(R1 − 1)− ε
2 and γ2T

κZ
< ε

2 for all t > t2. Note that
Z(0) > 0 implies Z(t) > 0 for all t ≥ 0. We have

Ż ≥ Z

(
G(Z)

Z
− γ2T

κZ

)
> Z(δ2(R1 − 1)− ε) > 0 (3.24)

for all t > t2, which contradicts with lim
t→+∞

Z(t) = 0 and thereby s01 is globally
asymptotically stable in Ω\{B-axis}.

We now state our main result regarding the system dynamics when R0 > 1.

Theorem 3.2. If R0 > 1, in addition to the trivial equilibirum x0, the system (2.1)
has multiple non-trivial equilibria described by the following:
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(i) If R1 > 1, system (2.1) has a boundary equilibrium x01 = (B0, Z0, 0, 0), which
is unique and globally asymptotically stable in Γ1\{B-axis} if R2 ≤ 1 and
R3 ≤ r. System (2.1) has another boundary equilibrium x1 = (B1, Z1, 0, T1)
provided that condition (C1) holds, and it is locally asymptotically stable if
G′(Z1) ≤ κZG(Z1)

Z1(κZ+Z1)
and θ2αB1

κ+B1
− δ3 − γ3T1 < 0.

(ii) If R2 > 1, system (2.1) has a boundary equilibrium x2 = (B2, Z2, V2, 0),
which is locally asymptotically stable if h(B2) +

θ4γ2Z2

κZ+Z2
< 0 and unstable if

h(B2)+
θ4γ2Z2

κZ+Z2
> 0. Moreover, system (2.1) has a positive interior equilibrium

x∗ = (B∗, Z∗, V∗, T∗) provided that conditions (C2) and (C3) hold, and x∗ is
unique and locally asymptotically stable if additionally R1 ≤ 1 and R3 ≤ 1.

(iii) If R3 > 1, system (2.1) has a boundary equilibrium x3 = (B3, 0, 0, T3), which is
locally asymptotically stable if R1<1+γ2T3

δ2κZ
and R2<

(
1 + κ(B0−B3)

B3(κ+B0)

)(
1+ γ3T3

δ3

)
.

In addition, x3 is unique and globally asymptotically stable in Γ\{B-axis} if
R1 ≤ 1 and R2 ≤ 1.

Proof. According to the discussion above, it is only necessary to prove the unique-
nesses and global stabilities of x01 in (i) and x3 in (iii). Since they have a condition
R2 ≤ 1 in common, we consider L = V as a Lyapunov function on Ω̃, where Ω̃ = Γ
or Γ1. Then the largest invariant set on {x ∈ Ω̃ : V̇ = 0} is {x ∈ Ω1 : V = 0}.

(i) The uniqueness of x01 follows from equation (3.9), where we have the fact

F (Z) < q′(0) +
θ3γ1B0

κB +B0
+

θ4γ2Z0

κZ + Z0
− δ4.

So, δ4(R3 − 1) + θ4γ2Z0

κZ+Z0
≤ 0 implies R3 ≤ 1 and F (Z) < 0. Consequently, there is

no solution for F (Z) = 0 and thereby x01 is the only equilibrium for system (2.1).
By Lemma 3.2(b), we have w(s) ∈ {s0, s01} for all s ∈ Ω. Thus, w(x) ∈ {x0, x01}

for all x ∈ Γ1. If there exists a point (B(0), Z(0), V (0), T (0)) ∈ Γ1\{B-axis} such
that

lim
t→+∞

||(B(t), Z(t), V (t), T (t))− x0|| = 0, (3.25)

then lim
t→+∞

Z(t) = 0. Similar to the proof of Lemma 3.2(b), we still have (3.24) holds
for sufficiently large t. Thus, lim

t→+∞
Z(t) ̸= 0 and this proves the global asymptotic

stability of x01 in Γ1\{B-axis}.
(iii) The uniqueness of x3 is obvious since R1 ≤ 1 and R2 ≤ 1. Similarly, it

follows from Lemma 3.2(a) that w(x) ∈ {x0, x3} for all x ∈ Γ. In addition, by the
same proof of Lemma 3.2(a), one can easily obtain that any trajectory in Γ\{B-
axis} cannot approach to x0 and thereby x3 is globally asymptotically stable in
Γ\{B-axis}.

4. Numerical results
In this section, we conduct numerical simulation to verify the main analytical re-
sults, summarized in Theorems 3.1 and 3.2, associated with our within-host cholera
model (2.1). For illustration, we assume that the intrinsic growth functions for the
human vibrios and immune cells both take the logistic form: g(Z) = g0Z

(
1− Z

KZ

)
and q(T ) = q0T

(
1− T

KT

)
, with positive constants g0, KZ and q0, KT .
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Theorem 3.1 states that when R0 ≤ 1, there exists a unique trivial equilibrium
x0 that is globally asymptotically stable. A numerical evidence is provided in Figure
1, where R1 = 0.64, R2 = 0.9, R3 = 0.81, R0 = max

{
R1, R2, R3

}
= 0.9, and the

orbit of the solution approaches the trivial equilibrium x0 over time.
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Figure 1. A typical scenario showing that solutions of system (2.1) converge to the trivial equilibrium
x0 when R0 < 1. In this particular case R0 = 0.9 and x0 = (428571, 0, 0, 0).

When R0 > 1, there could be multiple non-trivial equilibria depending on the
values of R1, R2 and R3, as predicted by Theorem 3.2. Figure 2 shows two typical
scenarios when R0 = R1 > 1, where the model parameters are chosen such that
r = 1− θ4γ2Z0

δ4(κZ+Z0)
= 0.9. In Figure 2(a), R3 = 0.44 < r, and the solution converges

to the virus-free, immunity-free equilibrium x01. In Figure 2(b), R3 = 0.91 > r,
and the solution converges to the virus-free equilibrium x1. These observations are
consistent with the analytical prediction in Theorem 3.2(i).

0 20 40 60 80 100 120 140 160 180 200

t (hours)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
×105 R

1
=1.29     R

2
=0.9     R

3
=0.44

B

Z

V

T

(a)

0 50 100 150 200 250 300 350 400 450 500

t (hours)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
×105 R

1
=1.29     R

2
=0.90     R

3
=0.91

B

Z

V

T

(b)

Figure 2. Two typical scenarios for the solutions of system (2.1) when R0 = R1 > 1: (a) Solutions con-
verge to the virus-free, immunity-free equilibrium x01, where x01 = (428571, 444444, 0, 0) in this partic-
ular case; (b) Solutions converge to the virus-free equilibrium x1, where x1 = (423353, 342820, 0, 40939)
in this particular case.
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Figure 3 illustrates the typical solution behaviors when R0 = R2 > 1, as de-
scribed in Theorem 3.2(ii). In Figure 3(a), the parameter values are selected to
satisfy the condition h(B2+) + θ4γ2Z2

κZ+Z2
= −0.28 < 0, and the solution orbit ap-

proaches the immunity-free equilibrium x2. In Figure 3(b), the parameter values
are such that h(B2+) = −0.017 < 0 < h(B2+) + θ4γ2Z2

κZ+Z2
= 0.016, and the solution

converges to the positive interior equilibrium x∗ .
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Figure 3. Two typical scenarios for the solutions of system (2.1) when R0 = R2 > 1: (a)
Solutions converge to the immunity-free equilibrium x2, where x2 = (250000, 500000, 208333, 0) in
this particular case; (b) Solutions converge to the positive interior equilibrium x∗, where x∗ =
(255392, 457221, 196223, 24052) in this particular case.

Finally, Figure 4 displays a typical case for R0 = R3 > 1, where the solution
converges to the equilibrium x3 which is free of human vibrios and viruses. This
pattern is consistent with the statement in Theorem 3.2(iii).
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Figure 4. A typical scenario showing that solutions of system (2.1) converge to the equilibrium x3 free
of human vibrios and viruses, when R0 = R3 > 1. In this particular case x3 = (333819, 0, 0, 883388).
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5. Discussion
We have proposed a new deterministic model for the within-host dynamics of
cholera. Our focus is the interaction among the environmental vibrios (with low
infectivity), the human vibrios (with high infectivity), the viruses (which transduce
environmental vibrios into human vibrios), and the immune response (which at-
tempts to eliminate the pathogenic vibrios and viruses) within a human host. Such
an interaction is critical in shaping the evolution of the pathogen within the human
body and could directly contribute to the epidemiology of cholera at the population
level.

The basic reproduction number R0 of this model is determined collectively by
the intrinsic growth dynamics of the human vibrios (measured by the bacterial re-
production number R1), the generation of new viruses through the bacterial-viral
interaction (measured by the viral reproduction number R2), and the intrinsic and
stimulated dynamics of the host immune response (measured by the immune re-
production number R3). A unique trivial equilibrium occurs when R0 ≤ 1; equiv-
alently, when Rj ≤ 1 for 1 ≤ j ≤ 3. In contrast, when R0 > 1, multiple and
non-trivial equilibria occur depending on the values of Rj (1 ≤ j ≤ 3). We have
established the existence, uniqueness and stability for the trivial equilibrium and
for each non-trivial boundary equilibrium, including the virus-free and immunity-
free equilibria in particular. For the positive interior equilibrium, we are able to
clarify the existence, uniqueness and its bifurcation behavior at the threshold point
R0 = 1.

Our main finding is that the within-host dynamics of cholera are shaped by the
interplay of the bacteria, viruses, and host immune response. Specifically, when
the bacterial reproduction number is high; i.e., R1 > 1, there exists a virus-free
equilibrium x1 and a virus-free, immunity-free equilibrium x01 which are stable
under additional assumptions. These two equilibria represent the scenario where
the viral effects are not present and where the intrinsic growth of the human vibrios
sustains the state of the infection inside the human body. From the disease control
point of view, in order to eliminate these two infectious states we will need to better
understand such intrinsic bacterial growth mechanism so that we will be able to find
effective means to suppress or weaken the bacterial growth and reduce R1 below
unity.

When the viral reproduction number is high; i.e., R2 > 1, there exists an
immunity-free equilibrium x2 which represents the scenario that in the absence
of the host immunity, the infectious state is determined by the bacterial-viral in-
teraction. Under additional conditions, a unique positive interior equilibrium x∗
occurs which indicates an ’endemic’ state of the within-host cholera dynamics, rep-
resenting a balance of the contributions from the bacteria, the viruses and the host
immune response. These two equilibria highlight the important role played by the
virus CTXϕ and indicate that control measures targeting the reduction of the vi-
ral generation rate so that R2 < 1, could effectively eliminate these two infectious
states.

When the immune reproduction number is high; i.e., R3 > 1, there exists an
equilibrium x3 which represents a state free of human vibrios and viruses. This
is perhaps the ’best’ scenario among all the nontrivial equilibria since the human
vibrios are not present (and will not be refueled by the viruses) in this case. An
implication is that if we can boost the host immune response to cholera, which
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would lead to R3 > 1, then that would significantly reduce the severity of the
infection. Furthermore, if we can combine the immunity boosting strategy with
the suppression of human vibrio growth and viral generation such that R3 > 1 and
R1, R2 ≤ 1, then the equilibrium x3 is globally asymptotically stable (see Theorem
3.2(iii) ), indicating that the individual host would not generate the highly infectious
human vibrios and thus would not transmit human vibrios to other hosts, which
consequently reduces the overall transmission risk of cholera at the population level.

The present study is focused solely on the within-host dynamics of cholera.
Though our findings could provide some useful insight toward cholera transmission,
in order to gain more detailed information on the population-level transmission
and spread of cholera it will be necessary to connect the within-host model with a
between-host cholera model. In all the numerical results presented in this paper,
we observe that the convergence to an equilibrium is typically fast, ranging from
several hours to a few days. Hence, compared to the typical time frame of the
between-host cholera transmission and spread (where a cholera epidemic usually
lasts several months), the within-host dynamics of cholera is a fast-scale process
[20, 33]. Consequently, coupling the within- and between-host cholera dynamics
will involve both fast and slow time scales, and multi-scale modeling, analysis and
computation techniques will be particularly useful. The work in [33] makes an
initial effort for such coupled dynamics of cholera, though the within-host model
takes a very simple form with a single equation describing the increased toxicity
of the vibrios inside the human body. Based on the improved within-host model
proposed in this paper, we will further explore the multi-scale modeling and analysis
of cholera in our future work.

Another limitation in our current model is that we have actually only considered
the effects of the innate host immunity, which makes instantaneous responses to
invading pathogens. On the other hand, the adaptive immunity, which kicks in
with delayed responses but often leads to more sustained protection of the human
body, also plays an important role in the human immunity system. The adaptive
immune response can be mathematically represented by adding a time delay into
the differential equations, and this can be an interesting topic to explore in our
future efforts.

Appendix: Bifurcation of the interior equilibrium

Let us consider the system ẏ = f(y,R0), where y =


y1

y2

y3

y4

 =


B

Z

V

T

 , f =


f1

f2

f3

f4

 with

f1 = Ḃ, f2 = Ż, f3 = V̇ , f4 = Ṫ , and f is at least twice continuously differentiable
on both y and R0. Note that at the equilibrium x0,

F − V =


δ2(R1 − 1) θ1αB0

κ+B0
0

0 δ3(R2 − 1) 0

0 0 δ4(R3 − 1)

 .
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Without loss of generality, we assume that R1, R2 and R3 are distinct so that they
do not take on the value of unity at the same time. This implies that the zero
eigenvalue of F −V is simple when R0 = 1, and then the existence and stability of
the positive interior equilibrium near the threshold point could be established by
the center manifold theory [5, 28]. We may calculate

a =
v

2
Dyyf(x0, 1)w

2 =
1

2

4∑
i,j,k=1

viwjwk
∂2fi
∂yj∂yk

(x0, 1),

b = vDyR0
f(x0, 1)w =

4∑
i,j=1

viwj
∂2fi

∂yj∂R0
(x0, 1),

where v and w are the left and right nullvectors of Dyf(x0, 1), which is the lin-
earization matrix of system (2.1) at (x0, 1), given by

Dyf(x0, 1) =


−δ1 0 − αB0

κ+B0
− γ1B0

κB+B0

0 δ2(R1 − 1) θ1αB0

κ+B0
0

0 0 δ3(R2 − 1) 0

0 0 0 δ4(R3 − 1)

 .

An application of the center manifold theory shows that the sign of a and b can
determine the nature of the positive interior equilibrium near the bifurcation point
(x0, 1) [5].

If R0 = R1 > max{R2, R3}, then there exists v3 = θ1αB0

δ3(1−R2)(κ+B0)
such that

v = (0, 1, v3, 0), w =


0

1

0

0

 . Suppose that g′′(0) ̸= 0, we have

a =
1

2

∂2f2
∂y22

(x0, 1) =
g′′(0)

2
< 0, b =

∂2f2
∂y2∂R0

(x0, 1) = δ2 > 0.

If R0 = R2 > max{R1, R3}, then there exists w1 = − αB0

δ1(κ+B0)
< 0, w2 =

θ1αB0

δ2(1−R1)(κ+B0)
such that v = (0, 0, 1, 0), w =


w1

w2

1

0

 . Hence,

a = w1
∂2f3
∂y1∂y3

(x0, 1) =
w1θ2ακ

(κ+B0)2
< 0, b =

∂2f3
∂y3∂R0

(x0, 1) = δ3 > 0.

If R0 = R3 > max{R1, R2}, then there exists w1 = −γ1B0

δ1(κB+B0)
< 0 such that
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v = (0, 0, 0, 1), w =


w1

0

0

1

 . Hence,

a =
q′′(0)

2
+

w1θ3γ1κB
(κB +B0)2

< 0, b = δ4 > 0.

Thus, we have a < 0, and b > 0 in each of these cases, and thereby when R0 −
1 changes from negative to positive, x = x0 changes its stability from stable to
unstable. Correspondingly, a negative unstable equilibrium becomes a positive and
locally asymptotically stable equilibrium x∗ .
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