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Abstract In this paper, we study an optimal control problem for a space-
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for the optimal control problem.
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1. Introduction

There exist several phenomena that cannot be modeled by partial differential equa-
tions based on ordinary calculus, since they depend on the so called memory effect.
In order to take account of this dependence, we may use fractional differential cal-
culus. Fractional differential equation have gained considerable importance due to
their application in various sciences, such as physics, mechanics, chemistry, engi-
neering and so on. In recent years, there has been a significant development in
fractional differential equations which may be ordinary or partial, see for exam-
ple [4,6-8,10,11,13-15,20] and the references therein.

The space-fractional wave equation is obtained from the classical wave equation,
in which the Laplacian operator is replacing by the fractional Laplacian operator,
see for examples [2,5,17]. Until now, the understanding of the dynamics of space-
fractional wave equations is rather limited.

In this paper, we are concerned with an optimal control problem for the following
space-fractional wave equation:

U + (*A)Su = f(x,t), S Q,t > 0,
u(z,0) = ¢(x), u(z,0) =v(z), z€Q, (1.1)
u(xz,t) =0, r e RN\ Q,t>0,

where Q@ C RY is a bounded domain, ¢ € Xy(Q), v € L?(Q). For any T > 0,
Qr = (O,T) xQand f € L2(QT)

Motivated by [1,3,12,16,19], we intend to study optimal control problems for
(1.1) due to the theory of Lions [9] in which the optimal control problems are
surveyed on many types of linear partial differential equations. Let Xo(Q2) be a
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Hilbert space and let % be another Hilbert space of control variables, and B be
a bounded linear operator from % into L?*(Qr), which is called a controller. We
formulate our optimal control problems as follows:

ug + (—A)°u = f(z,t) + Bv,z € Q,t > 0,

where v € % is a control. As we know, there are almost no research works in this
direction.

The structure of this paper is as follows. In Section 2, the definition of weak
solutions besides notations and assumptions are stated.. In section 3, we first show
the Galérkin approximate solution along with A priori estimates of {um, }n. Then,
we prove the existence and uniqueness of weak solution. In section 4, we characterize
the existence of an optimal control v € % which minimizes the quadratic cost
function.

2. Preliminaries

Let s € (0,1) and 2s < N. The fractional Laplace operator for a function
© € C°(RY) is defined pointwise by

C(N,s) / p(z) —plz+y) —plz—y) ,
RN

(—A)p(z) = 9 |y N+2s ’

for all z € RY, where
1 1
o~ L e
C(N,s)  Jen [E[NF20
The fractional Sobolev space H*(RY) is
H¥RN) = ue L2RY): M e L? (RN x RY)
@ —y| 5t

endowed with the norm

1
_ u(y)|? ?
HUHHS(RN) B < ‘UHLz @)+ //]RleRN |z — 3/|NJr2s oy W)

Xo(Q)={ue H*RY):u=0ae. in RV\Q}.

In the sequel we take

uwl? o\
— " dxd
|UHXO <//]RN><]RN ‘.13 _y|N+25 y)

as norm on Xo(€2). It is easily seen that Xo(Q2) = (Xo(Q), || - || xo()) is a Hilbert
space with inner product

For u € Xo(f2), we know that the norm and inner product can be extended to all
RN x RV,

Let
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Definition 2.1. A function u(z,t) is a weak solution of problem (1.1) if for every
T > 0, u satisfies ue L (0, T; Xo()), 2% € L>(0,T; L2()), 2% € L2(0,T; Xo(12))
and for any ¢ € L?(0,T; Xo(2)), a.e. t € [0,T],

//372 o(z, 7)dzdr

(u(z,7) —uly, 7)) (p(x,7) — 0y, 7))
+C(N,S)/0 //]RNXRN dxdydr

|IL‘ _ y|N+25

:/t flz,m)p(z, 7)dxdr
0 Jo

and for a.e. z € €,

u(z,0) = ¢(x), ue(x,0) = p(x).

3. The existence and uniqueness of weak solution
for (1.1)

In this section, we study the existence and uniqueness of weak solution for prob-
lem (1.1). First, via the results on eigenfunctions of fractional Laplace operators
established in [18], we are able to apply the Galérkin method and construct finite-
dimensional Galérkin approximations for (1.1). Then, we present a priori estimates,
which allow us to pass to the limit and to obtain the desired weak solution u of
(1.1).

Step 1. The existence of Galérkin approximate solutions of (1.1). As
Cs°(Qr) is dense in L%(Qr), for f € L?(Qr), there exist {fn}m C C5°(Qr) such
that f,, — f in L?(Qr), as m — oo. Similarly, we take {¢m }m, {¥m}m C C5(Q)
such that ¢, — ¢ in Xo(Q) and ,,, — 1 in L?(2), as m — oc.

Let {e}r be the eigenfunctions corresponding to the sequence {A}x of eigen-
values of the fractional Laplace operator (—A)®. {ex}r is an orthonormal basis of
L?(Q2) and an orthogonal basis of X ().

Define I,, : R™ — R™ as follows:

(In(n))i = C(N, 5) //RNXRN 2= 15 - (¢5(@) — e;(y)) (ei(x) — ei(y))dxd%

‘x _ y|N+2s

where i = 1,2,--- ,m. In the following, denote

Z/Qfm(x,t)ei(x)da:
(UOm)i:/Q¢m(x)ei(.T)d$7 (um)i:/ﬂwm(x)e x)dz

Next, we consider the following Cauchy problem

0" () + Im(n(t)) = Fin(t),
17(0) = uom, 7'(0) = urm.
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Denote X () = 7'(2), Y'(t) = (n(t),n'(t)) and Jim (£, Y (t)) = (X (2), F(t) = Im(n(1))).
Then, the Cauchy problem (3.1) is equivalent to the following problem

V(1) = Tt Y (1)),
{ Y(0) = (tom,tim). 32

Multiplying (3.2) by Y'(¢), we have
Y)Y (t) = n(t)n'(t) + (Fin(t) — I (n(t))) ' (2). (3-3)

Since

L (n () (t) =C(N, s)

//RNXRN ( Ixfle.“S
(t) = / fon(,1) ant)exx)dx

from (3.3) we get

uMs
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<

LAY (le 1;(t)(e; ()~ ej(y))> (Ji”ﬁ'(t)(ej(x)—ej(y))>
2 dt //RNX]RN |z — y|N+2s dxdy

+ / fm<z,t>2n;<t>ei<z>dx
<O + I (¢ /Zm es()Pdat [ ety

() + 2l (¢ |2+/le 2, 8)da
Q
§2|Y|2+/f,2n(x,t)dac. (3.4)
Q

Note that

1 (t)(e;(x) — ej(y))> (i 15(t)(e;(x) —e; (y))>

dxd
// [ — N2 e

1 ] (; ni(0)(es(@) e <y>>>
o i

m

Zm‘(o)@j (@) =D (uom)je;(x) = dm(x),

j=1

T

and
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m

ZW(O) (U1m); = m (),

j=1 j=1

integrating (3.4) with respect to t, we have

1 cos ( tﬂ%()—eﬂy»)
S OF - gop <G ] dedy

2 IwA*mN+%

<2/ Y (7 |dT+//f2dede+O(Ns // 537:2@)) dzdy.
RN xRN |$_ y|NH2e

As fo — fin L2(Q1), ¢m — ¢ in Xo(Q) and 1, — v in L*(Q), by Gronwall
Inequality, for any ¢ € [0,T],

[Y(t)| < C(T).
From Peano Theorem, for any m € N, there exists Y,,, € C*([0, 7)) satisfying

{Y/n(ﬂ = Jon(t, Yo (1)),
Ym(o) = (U()m,yulm)a

which implies that there exists n,,, € C%([0,T]) satisfying

{n;u>+f (T () = Fin(t),

) =
1 (0) = ttoms 71 (0) = . (3:5)

Denote

=3 (m(®), e5(a), m =12,

J=1

then {um, }nm are the Galérkin approximate solutions of (1.1).
Step 2. A priori estimates of {u, }m,.
Multiplying (3.5) by 7., (t), we have

Mon ()10 (&) + Lo (M (£)) 11 (£) = Fo (8), (1),

which implies
0?up, 8um N s U (2, 1) — U (y,1))?
dxd
]Q g o ot b[éNxRth z — y|[N+2s ey

/fmact—d

Note that

(3.6)

0% Uy, Oy, 1 0 ,0Um o
Loz o T e )

Oy,

W(%O) Z(’?m(o)) ej(z) = Z(Ulm)jej(x) = Y (),
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then, integrating (3.6) with respect to ¢, we have

1 O, N s U (2, 7) — U (), 7))
,/( ot (z, )) de + ———= //]RNXRN o — g dzdy
2 N s — dm(y))? t ou,,
_i/ﬂil)m(x)dw //RNXRN |$7y|N+23 d;rdy+/0 /Qfm(x,r)dedT
! NS (6 () = D (1))
gf/ U (x)d + //szxw |x_y|N+23 ddy

//fma:dedT—l— //8um
8um m
/km:” @<//’ ))2dadr + C(T).
Q

By Gronwall Inequality, for any ¢ € [0, T,

(3.7)
Thus

Ou,
/Q(W(:r,t))%lx < C(T).

It follows from (3.7) that for any ¢t € [0, T,

|um X t) um(yat)|2
dxdy < C(T).
oo et e < 0

Then {wy, }m is bounded in L (0,T; Xo(2)) and {2%=},, is bounded in
L (0,T; L3(92)).
For any ¢ € N, from (3.5) we have

Oy, — Um (Y, t)
0 atQ 1( diC-‘r—C N S /~/]RN><RN |$— |N_;'_2g (61(1') _ez(y))dmdy

= / fm(z,t)e;(x)dx
Q

Denote
V., = span{e,ea, -+ ,en}.

o0
For any ¢ € | Vy,

n=1

82Uy,

et o f[| Sl et — sy

- / fonl V) p()da

Then, for any ¢ € L?(0,T; Xo(9)),

// 52 " pdxdr+C(N, s) ///RN o |x— &Tﬁl’ )(go(ac,T)—go(y,T))dxdydT
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_ /0 t /Q ol 7)o, 7)dadr,

which implies

[ [ St padr < 04,8) [l ol + Uimlienlieliser)

1

<C(N,s)-T= Sup lumllxo@) 19l 2 0.7:x0(2)) + I fmllL2 (@ 1€l 22 ()
<C(N, s, T)¢ll20,1:x0(02))-

Thus, {2 4}, is bounded in (L2(0, T3 (Xo(22))*))" = L2(0,T; Xo(2)).

Step 3. The existence of weak solution for (1.1).
Let

U, — u weakly—x in L™ (0,T; Xo(Q))

and
ou,

ot
We have w = %“;. In fact, for any ¢ € C5°(Qr),

8um O

ag;n pdxdt — wapdmdt,

— w weakly— x in L™ (O T, LQ(Q))

and

Qr

/ da:dt — / dmdt.

/ wpdxdt = / 4 —dxdt,
- o

which implies w = %1; Then,

Thus,

ou,,  Ou . o o
2t ot weakly—* in L%(0,T; L=(2)).

Similarly, we could get that

?u,, O*u

oz o

Let m — oo, from (3.8) we have

//872%””0]\7 s ///RN . ‘x_ |Niy2’s UM T) (7)ol
:/o /ﬂf(x,r)cp(m,T)dxdT,

for any ¢ € L2(0,T; Xo(Q2)).

weakly in L2(0,T; Xo(9)).

(3.9)

(3.10)

(3.11)

7))dzdydr

(3.12)
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In the following, we will verify that u(z,0) = ¢(r) and %(m, 0) = ¢(z) a.e. in
Q.
In fact, for any ¢ € C5°(2),

/(um(x, 0) — u(z,0))p(z)dx = / (U (z,t) — u(z, t))p(z)dz
Q Q

- [ ]G - Ghetedaar
which implies

T/Q(um(:c,()) —u(x,0))p(x)dx

:/OT/Q(um(x,t)—u(xt dxdt—/ / % —7 () dadrdt.

(3.13)

From (3.10) and (3.11),
T
/ / (um (z,t) — u(z, t))p(z)dzdt — 0
0 Q
and for any ¢ € [0, 7],
/ au—m — —)e(x)dzdr — 0.

In addition,

/ au—m—— (x)dxdrg/ot

By using Lebesgue Dominated Convergence Theorem, we obtain

/ / 8“—’" - a%) (z)dadrdt — 0.

From (3.13), for any ¢ € L*(Q),

ou,, Ou

9 o7 el z2@ydr < C(T).

L3(Q)

/Q(um(x, 0) — u(z, 0))p(x)dz — 0.

As up(x,0) = dm(z) = ¢ in Xo(Q), we get
u(z,0) = ¢(z) a.e. in Q.

Similarly, we could verifty that

ou

(’%( ,0) =¢(z) a.e. in L

Then u is a weak solution of (1.1).
Step 4. The uniqueness of weak solution for (1.1).
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In this part, we denote

Uz, t) = /0 )

2 2
Then, 57 =u, 5% = 5, U(fc 0) =0, 3 (,0) = ¢(x), G (,0) = ¥(x).

From (3.12), for any ¢ € U Vi,

n=1

82
8t2 x)dx — / P(x

FOW,s / / - MNU;@’;M@ ~ p(y))dady

_ /Q ( /0 f (@, 7)dr) () de. (3.14)

Next, we denote F'(x,t) fo x,7)dr. Then, for any ¢ € L?(0,T; Xo(£2)),

/ / ) (z,7)p(x, T dxdT—/ Y(x)e(x, 7)dxdr
Q

e / //MN = y|g+(2yi 2 (ol ) — oty 7))oy

:/O /QF(Q;,T)QD(:E,T)dxdT. (3.15)

Assume that u; (¢ = 1,2) are weak solutions of

T+ (—A)u; = fi(w,t), reQ,t>0,
ui(2,0) = ¢i(x), 9 (2,0) =Pi(z), z€Q,
ul-(x,t):(), I'GRN\Q,t>(),

We denote
t t
Fi(m,t):/ filx,7)dT, Ui(x,t)z/ w;(x, 7)dT,
0 0

then, for U; (i = 1,2) we have (3.15).
Denote W = Uy — Us. For any ¢ € L2(0,T; Xo(Q)),

/ a;vg(% T)e(x,T) dde_/ / (1 (2 o))o(a, r)dadr
HOW / //]RNX]RN |x— |K§§/ )(W(x’T)—@(y,r))dxdydT
:/o /Q(Fl(x’T) — Fa(z,7))p(z, 7)dxdr.
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oUu oU.
Take ¢ = 55 — G52,

%// 4 6W dde—/ / P1(x )7d$d7
e ///a* ﬁ;ﬁ;%’i’ o
/Ot/Q(Fl(x,T)Fg(x,T))égj_/d:ch,
which implies
%Aég@ﬁf NS/LWM M|Kgﬂfm@
=3 [ (01(@) = éa(a)Po + / / () — () oy
//WEIT B@Tngme
g//< Ydwdr + /<¢1<> oa() P
//¢1 (2))2dwdr + // (Fi(z,7) — Fa(z, 7)) dedr.

From Gronwall Inequality, for any ¢ € [0, T,
o, [OUL U, [ OW.,
/Q(ul—uQ) dx—/ﬁ(a—tl—a—;) dx—/ﬂ(ﬁ) dx
T
<c)( [ (@) - n@Par+ [ [ (R - e, n)dods
+ [ ) = vl 2 ). (3.16)

From the above inequality, we could get the uniqueness of weak solution for (1.1).

4. The existence of an optimal control

We consider the following nonlinear control problem:

ZH + (-A)u= (Sct)Jer zEQt>0,
u(v;z,0) = ¢(z), (va) Y(z), x€Q, (4.1)
u(v;z,t) =0, 2 €RN\Q,t >0,

where ¢ € Xo(Q), v € L*(Q), f € L*(Q7), v € % is a control. From Section 3, we
can define uniquely the solution map for (4.1):

U — Loo(ovTa XO(Q))a

v u(vym,t) 2 u(v).
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We call the solution u(v; x,t) the state of the control system (4.1). The observation
of the state is given by

2(v) = Cu(v),

where C € Z(L*(Qr), M) is called the observer and M is a Hilbert space of obser-
vation variables.
For v € %, the quadratic cost function associated with (4.1) is given by

J(v) = [|Cu(v) — zall§s + (Rv,v)a,

where 24 € M is a desired value of u(v) and R € L(%,%) is symmetric and
positive, i.e.,
(Rv,v)a = (v, Rv)q, > d|jv||%,

for some d > 0. Let Uyq be an admissible set (a closed convex subset of ). An
element vy € U,q is called an optimal control for the cost function J(v) if

J(vg) = min J(v).

v€EU.q

Theorem 4.1. There exists at least one optimal control vy for the control problem
(4.1).

Proof. For any v € Ugyg, J(v) > 0. There exists {v, }n, C Uuq such that

J(vp) — inf J(v) & J >0,

v€Ua
which implies that {J(v,)}, is bounded. As
J(vn) 2 (Rvn,vn)ar 2 dl|vnll?,,
{vn}n is bounded in %. We assume that
v, = v weakly in % .

In the following, let w, := u(vy;x,t) € L>(0,T; Xo(£2)) be the solution for

a;;n + (=A)u, = f(z,t) + Bv,, x€Q,t>0,
un(2,0) = ¢(x), Bgtn (z,0) = (x), =€,
up(z,t) =0, r € RN\ Q,t>0.

Next, we denote
t
U, (x,t) = / Up (2, 7)dT.
0

Then, for any ¢ € L*(0,T; Xo(12)),

// 872 (z,7) a:dedT—//w o(x, 7)dxdr

(z,7) — Unly,
+C(N,s) / / /R o ) |N+2(Sy ) (o, 7) — oy, ))dadydr  (4.2)

/ / (/ (z,5) +B“n)d8> oz, 7)dxdr.
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As the operator B is bounded,
[ Bunllr2(@r) < [IBllllvnllz < C.

From (3.16),
OU z,t) = Un(y:t))’
/< ot d$+//nwxw Iw—yIN“S ey

<c</¢2 dx+/1/12 dx+/ / (/ (z,s +an)ds>2dxd7>.

As
t
(/ ands)
0
t 2 t
/ < / ands> dxdt < / t / (Bvy,)*dsdxdt < C.
T 0 T 0

Then, {fot Bu,ds} is bounded in L?(Q7). Thus {U,}, is bounded in L>(0, T; X (2))
and {22}, is bounded in L>(0,T; L*(Q)).
From (3.14), for any ¢ € Xo(€2),

2

t
St/ (Bu,)?ds,
0

we have

OUn (1 by} da — [ oy

+C(N,s //RN . |x_ |]$]+2(Sy’ )(w(x)*w(y))dwdy
:/Q (/0 (f(2,7) + Bon)dr)p(z)de. (43)

Similarly to the discussion of (3.9), we could verify that {8;g’L }n is bounded in

L (0,75 (Xo(€))).
In the following, we assume that

t
/ Bu,ds — w weakly in L*(Qr).
0

For any ¢ € C§°(Qr),

t
/ </ ands> a—gpd:cdt = —/ Bu, - pdzdt
T 0 ot T
t
/ (/ ands> ——dxdt — / da:dt
r \JO

Note that Bv, — Bvg weakly in L?(Qr), we have

and

/ Bu,, - pdzdt — Buyg - pdzdt.
Qr Qr
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Then,
0
—/ w dadt = Buyg - pdzdt,
T 9 Qr

which implies

Thus w = fg Bugds. We obtain

t t
/ Bu,ds — / Bugds weakly in L?(Qr).
0 0

we assume that
U, — U weakly—x in L* (0,T; Xo(Q)).

ou, oU i T
5 — e weakly— * in L (07T; LQ(Q)) .

Then, similar to the discussion in Section 3, we could verify that

aait](xvo) = u(z,0) = ¢(x) a.e. in Q
and ,
ou 02U ,
a(x,O) Frel (z,0) = ¢(z) a.e. in Q.
Let n — oo, from (4.3) we get that for any ¢ € Xo(Q),
82
o o dm_/w
- Uy,t)
+C N S // - 7 = 7 x) — dZCd
N |x - y|N+25 (p(x) — ¢(y))drdy
:/ (/ (f($,3)+BUO)dS> o(z)dz.
a \Jo
Thus,

gt totanis = [ vto
FOWs) / /[ NXNNWW)—M)MMWT

A / (7o) + Bun)ds ) ola)d

Differentiating the above equality with respect to t, we get

0*u u(y, t)
| Gate@de o [[ - Mgl o) - p)dsdy
= [ ((@5)+ Bropp(a)da.
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Then, for any ¢ € L?(0,T; Xo(f2)), we have

//87'2 o(z, 7)dzdr
u(y, 7)

+C(N,s / //]RN x W((p(xﬂ') — o(y, 7))dxdydr
X

_ /O /Q(f(x,f)+Bv0)<p(x,7')dxd7'.

For any ¢ € C§°(Q),

ou, oU,,
/ / 57’2 B ) du dT_/Q( or or Jpdz.

Thus {aU" }, is a Cauchy sequence in the weak topology of L?(£2), for any ¢ € [0, 7.
For any ¢ € C§°(Qr),

9 T
/ //RN RN BT x—) |N+2Z (y, ))(<P($,T)—<p(y,7'))da:dydr

=[], e G0 D o5y - 2 oty

which implies that {aU" }n is a Cauchy sequence in the weak topology of
L2(0,T; XO(Q)). Then, {aU” }n is bounded in L2?(0,7T; Xo(£2)). We could verify

that dU” — m in L?(Qr) (see Appendix), i.e. u, — u in L*(Qr).
As C’ € Z(L*(Qr), M), we have Cu,, — Cu. Then,

lim ||Cuy, — 24|l > ||Cu — zalla-
n—oo

As lim (Ruy,vn)2 > (Rvg,vo)a,

n—oo

J = lim J(v,) > J(vo).

n—oo

Then, by the definition of J,

J=J(w) = inf J(v).

v€EUq

Appendix

Theorem 4.2. Let {u,}, be a bounded sequence in L?(0,T; Xo()) and
L>(0,T; LY (), un(z,t) — u(z,t) weakly in L'(Q) for a.e. t € [0,T], then u, — u
m LQ(QT)

Proof. In the following, we denote

us(e.t) = [ oo = y)utu )y,
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wns(e.8) = [ st =)o)y

where § > 0 and ps(z) = p(§) is the mollifier.
As uy(z,t) — u(z,t) weakly in L1(Q) for a.e. t € [0,7] and ps € L>(£), we
have u,5(x,t) — us(x,t) a.e. in Qr, as n — oco. By Holder inequality,

Uns(T,1) — un(z,t)

:/ Un (y,t) — un(x,t)|
RN

ﬂ—i—s
z—y[> P ps(z —y)dy
|z —y| e | ( )

< (/RN (“”(ﬁ’;tl;%i(i’ 0 dy) : (/RN |z — y| N5 (2 — y)dy) é :

Note that

/RN |z —y|N o3 (w — y)dy = / 522N p(2)dz < 6%,

|z|<1

which implies

/RN (Uns(x,t) — un(x,t))2 dx
g2 //R ) (un(@,t) = un(, )" )

o=y

<0%||un [ %y -

Thus,
1Uns — unll£2(0) < 0°[|un |l xo(0)-

For any £ > 0, we have

luns — UmslL2()

< ¢lluns — Um6||L2:(Q) + Clltns — tumsllz1 ()

< & (llwnsll 22 0y + lims 22 ) ) + Clltns = msllzsco
< Ce (Jlunll 22 gy + Numll 22 g ) + Clttns = tmsllz oy
< Ce ([lunllxo@) + lumll xo ) + Clltins — wms |l L1 ()

which implies
t
/0 [uns — um5||%2(ﬂ)d7—

t t
< 052/0 (||Un||§(0(ﬂ) + ||um||§<o(9)) dt + C/o [tins — tms |71 () d7-

As
Uns(x,t) = ug(x,t) a.e. in Qp, as n — o0,

for fixed § > 0,

/Q|“n5($vt)|d1‘ = /Q | /RN un(y, t)ps(z — y)|de < C.
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Then, from Lebesgue Dominated Convergence Theorem,

t

as m,n — oco. Note that

t
/0 et — w22y 7

t t t
< / ltn = tns |2y 7 + / ltng — thma |2y + / lttms — ttm |2y

t
< 06 4+ Ce® + / l|tns — Um5||2L1(Q)dT-
0

As ¢ and § are arbitrary, we could verify that {u, }, is a Cauchy sequence in L?(Q7).

O
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