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1. Introduction
In this paper, we consider the discrete elliptic boundary value problem with a weight

−∆1(p(i− 1, j)∆1u(i− 1, j))−∆2(p(i, j − 1)∆2u(i, j − 1)) = λf((i, j), u(i, j)),

∀(i, j) ∈ [1,m]Z × [1, n]Z,

u(0, j) = u(m+ 1, j) = 0, ∀j ∈ [1, n]Z,

u(i, 0) = u(i, n+ 1) = 0, ∀i ∈ [1,m]Z,

(1.1)
where [1,m]Z = {1, . . . ,m}, [1, n]Z = {1, . . . , n}, ∆1u(i, j) = u(i+1, j)− u(i, j) and
∆2u(i, j) = u(i, j + 1) − u(i, j) are the forward difference operators, f : [1,m]Z ×
[1, n]Z ×R → R is a continuous function subject to some suitable assumptions, λ is
a positive parameter, and p : [0,m]Z × [0, n]Z → (0,+∞) is a given function such
that

p(0, j) = 0, ∀j ∈ [1, n]Z, and p(i, 0) = 0, ∀i ∈ [1,m]Z. (1.2)

The problem (1.1) can be regarded as the discrete counterpart of the elliptic
partial differential equation

∂

∂x

(
g(x, y)

∂u

∂x

)
+

∂

∂y

(
g(x, y)

∂u

∂y

)
+ λf((x, y), u(x, y)) = 0, ∀(x, y) ∈ Ω,

u(x, y) = 0, ∀(x, y) ∈ ∂Ω.

As is well known, the study of nonlinear algebraic systems arise in a large variety
of applications such as in reaction-diffusion equations, neural networks, compart-
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mental systems, and population models. Nonlinear algebraic systems can be ob-
tained from several Dirichlet problems of differential and difference equations, three
point boundary value problems, and steady states of complex dynamical networks.
We refer the reader to [11] and the references therein for more information.

Discrete elliptic problems involving functions with two or more discrete variables
appear frequently in applications and are investigated in the literature. Recently,
several works studied the existence and multiplicity of solutions for such problems.
See, for example, [10, 13, 15]. The progress of modern digital computing devices
contributes greatly to the increasing interest in discrete problems. In fact, because
these problems can be simulated in a simple way by means of these devices and
the simulations often reveal important information about the behavior of complex
systems, many recent studies related to image processing, population models, neural
networks, social behaviors, and digital control systems, are described in terms of
such functional relations as observed in [20]. We also mention the papers [5,6,21,22]
for some interesting contributions related to some existence results for nonlinear
algebraic systems, as well as the monographs [1,14] as general references for discrete
problems.

The variational techniques employed in the discrete problems are the same tech-
niques already known for continuous problems with the necessary modifications. In
order to establish existence and multiplicity of solutions for discrete problems, sev-
eral authors exploited various methods such as fixed point theorems, critical point
theory, and Brouwer degree, see for example [2, 4, 10,12].

In 2008, Yang and Ji [18] studied the structure of the spectrum of the problem
u(i, i) + u(j, j) + λa(i, j)u(i, j) = 0, ∀(i, j) ∈ [1,m]Z × [1, n]Z,

u(i, 0) = u(i, n+ 1) = 0, ∀i ∈ [1,m]Z,

u(0, j) = u(m+ 1, j) = 0, ∀j ∈ [1, n]Z,

and they found the existence of a positive eigenvector corresponding to the smallest
eigenvalue.

In 2010, Galewski and Orpel [9], using variational methods and some mono-
tonicity results, considered the problem (1.1) without a weight, i.e., the problem

∆1(∆1u(i− 1, j)) + ∆2(∆2u(i, j − 1)) + λf((i, j), u(i, j)) = 0,

∀(i, j) ∈ [1,m]Z × [1, n]Z,

u(i, 0) = u(i, n+ 1) = 0, ∀i ∈ [1,m]Z,

u(0, j) = u(m+ 1, j) = 0, ∀j ∈ [1, n]Z,

(1.3)

and they established the existence of one solution. Other works on the problem
(1.3) can be found in [7, 8] where the authors, using variational methods and max-
imum principle, proved the existence of infinitely many solutions and determined
unbounded intervals of parameters such that (1.3) admits an unbounded sequence
of solutions.

In this paper, motivated by this large interest, we study the existence of at least
one nontrivial solution of the problem (1.1) under some conditions on the nonlin-
earity function f and for suitable values of the parameter λ. The tools employed
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include the theory of variational methods, the mountain pass theorem, and linking
arguments.

The rest of this paper is organized as follows. In Section 2, we present some
preliminaries that will be used in Section 4. In Section 3, we introduce some corre-
sponding variational framework and define some functionals for the transformation
of the problem (1.1). In the last section, we give the main results and their proofs.

2. Preliminaries
In this section, we present some definitions and theorems that will be used in the
sequel. We refer the reader to [3, 16,17,19] for more details.

Definition 2.1. Let E be a real Banach space, D an open subset of E. Suppose
that a functional φ : D → R is Fréchet differentiable on D. If u0 ∈ D and the
Fréchet derivative of φ satisfies φ′(u0) = 0, then we say that u0 is a critical point
of φ and φ(u0) is a critical value of φ.

Let C1(E,R) denote the set of functionals that are Fréchet differentiable in E
and their Fréchet derivatives are continuous in E.

Definition 2.2. Let E be a real Banach space and φ ∈ C1(E,R). We say that φ
satisfies the Palais-Smale condition ((PS) condition for short) if for every sequence
(un) ∈ E such that φ(un) is bounded and φ′(un) → 0 as n → ∞, there exists a
subsequence of (un) which is convergent in E.

Theorem 2.1 ( [17]). Let E be a real Banach space and φ : E → R is weakly lower
semi-continuous function and coercive, i.e., lim

∥x∥→+∞
φ(x) = +∞, then there exists

x0 ∈ E such that
inf
x∈E

φ(x) = φ(x0).

Furthermore, if φ ∈ C1(E,R), then x0 is also a critical point of φ, i.e., φ′(x0) = 0.

Theorem 2.2 (Mountain Pass Lemma, [3]). Let E be a real Banach space and
φ ∈ C1(E,R) satisfying the (PS) condition with φ(0) = 0. Suppose that

(i) There exists ρ > 0 and α > 0 such that φ(u) ≥ α for all u ∈ E, with ∥u∥ = ρ.
(ii) There exists u0 ∈ E with ∥u∥ ≥ ρ such that φ(u0) < 0.

Then φ has a critical value c ≥ α and c = inf
h∈Γ

max
s∈[0,1]

φ(h(s)), where

Γ = {h ∈ C([0, 1], E) : h(0) = 0, h(1) = u0}.

Theorem 2.3 ( [16]). Let X be a reflexive real Banach space and let Φ,Ψ : X →
R be two Gâteaux differentiable functionals such that Φ is strongly continuous,
sequentially weakly lower semicontinuous and coercive in X and Ψ is sequentially
weakly upper semicontinuous in X. Let Jλ be the functional defined as Jλ := Φ−λΨ,
λ ∈ R, and for any r > inf

X
Φ let φ be the function defined by

φ(r) = inf
u∈Φ−1((−∞,r))

sup
v∈Φ−1((−∞,r))

Ψ(v)−Ψ(u)

r − Φ(u)
.
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Then, for any r > inf
X

Φ and any λ ∈
(
0,

1

φ(r)

)
, the restriction of the functional

Jλ to Φ−1((−∞, r)) admits a global minimum, which is a critical point (precisely a
local minimum) of Jλ in X.

3. Variational framework
In this section, we introduce the corresponding variational framework for the prob-
lem (1.1). Let E be the mn dimensional space Rm × Rn endowed by the norm

∥u∥ =

 m∑
i=1

n∑
j=1

u2(i, j)

 1
2

.

For all (i, j) ∈ [1,m]Z × [1, n]Z, the problem (1.1) can be rewritten as follows

− p(i−1, j)u(i−1, j) + (p(i−1, j) + 2p(i, j) + p(i, j − 1))u(i, j)− p(i, j)u(i+ 1, j)

− p(i, j − 1)u(i, j − 1)− p(i, j)u(i, j + 1) = λf((i, j), u(i, j)),
(3.1)

with the same boundary conditions as for the problem (1.1).
For j ∈ [1, n]Z, we let

Uj = (u(1, j), u(2, j), . . . , u(m, j))T and U = (U1, U2, . . . , Un)
T ,

and for U ∈ E, we define

H(U) = (f((1, 1), u(1, 1)), f((2, 1), u(2, 1)), . . . , f((m, 1), u(m, 1)),

f((1, 2), u(1, 2)), . . . , f((m, 2), u(m, 2)), . . . ,

f((1, n), u(1, n)), . . . , f((m,n), u(m,n)))T .

Then, the problem (1.1) can be formulated as the nonlinear algebraic system

MU = λH(U), (3.2)

where M is an mn×mn matrix given by

L1 −P1 0 0 . . . 0 0 0 0

−P1 L2 −P2 0 . . . 0 0 0 0

0 −P2 L3 −P3 . . . 0 0 0 0

0 0 −P3 L4 . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . Ln−3 −Pn−3 0 0

0 0 0 0 . . . −Pn−3 Ln−2 −Pn−2 0

0 0 0 0 . . . 0 −Pn−2 Ln−1 −Pn−1

0 0 0 0 . . . 0 0 −Pn−1 Ln



, (3.3)



732 M. Ousbika, Z. El Allali & L. Kong

with, for all j ∈ [1, n]Z, Lj = (ljkl)m×m being an m × m symmetric tridiagonal
matrix defined by

ljkl =


p(k − 1, j) + 2p(k, j) + p(k, j − 1), if k = l,

ljk,k−1 = −p(k, j) = ljk,k+1,

0, elsewhere,

(3.4)

and, for all j ∈ [1, n− 1]Z, Pj being an m×m diagonal matrix given by

Pj =



p(1, j) 0 . . . . . . . . . . . . . . . . . .

0 p(2, j) 0 . . . . . . . . . . . . . . .

. . . 0 p(3, j) 0 . . . . . . . . . . . .

. . . . . . 0 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . 0 . . .

. . . . . . . . . . . . . . . 0 p(m− 1, j) 0

. . . . . . . . . . . . . . . . . . 0 p(m, j)


. (3.5)

For all λ > 0, we let Iλ : E → R be the functional defined by

Iλ(U) =
1

2
UT MU − λ

m∑
i=1

n∑
j=1

F ((i, j), u(i, j)), (3.6)

where
F ((i, j), x) =

∫ x

0

f((i, j), t)dt. (3.7)

For U ∈ E, we define two reals functionals ϕ and ψ by

ϕ(U) =
1

2
UT MU, (3.8)

and
ψ(U) =

m∑
i=1

n∑
j=1

F ((i, j), u(i, j)). (3.9)

Then, the functional Iλ can be rewritten as follows

Iλ(U) = ϕ(U)− λψ(U), ∀U ∈ E. (3.10)

Standard argument assures that, with any fixed λ > 0, the functional Iλ is Gâteaux
differentiable with

I
′

λ(U) = MU − λH(U), ∀U ∈ E. (3.11)

It is clear that U is a solution of (1.1), if and only if U is a critical point of the
functional Iλ. Thus, the search of solutions of the problem (1.1) reduces to finding
the critical points U ∈ E of the functional Iλ.

Now, we prove the following lemma.
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Lemma 3.1. M is a positive definite matrix.

Proof. For j ∈ [1, n]Z, we let XT
j = (x1,j , x2,j , x3,j , ..., xm,j) ∈ Rm. For each

j ∈ [1, n]Z, Lj is a real symmetric matrix, then

XT
j LjXj =

m∑
i=1

(p(i− 1, j) + 2p(i, j) + p(i, j − 1))x2i,j − 2

m−1∑
i=1

p(i, j)xi,jxi+1,j

=

m∑
i=1

p(i− 1, j)x2i,j + 2

m∑
i=1

p(i, j)x2i,j +

m∑
i=1

p(i, j − 1)x2i,j

− 2

m−1∑
i=1

p(i, j)xi,jxi+1,j

=

m−1∑
i=0

p(i, j)xi+1,j − 2

m−1∑
i=1

p(i, j)xi,jxi+1,j +

m∑
i=1

p(i, j)x2i,j

+

m∑
i=1

p(i, j)x2i,j +

m∑
i=1

p(i, j − 1)x2i,j

=

m−1∑
i=1

p(i, j)(xi+1,j − xi,j)
2 + p(0, j)x21,j + p(m, j)x2m,j +

m∑
i=1

p(i, j)x2i,j

+

m∑
i=1

p(i, j − 1)x2i,j .

Thus,

XT
j LjXj ≥

m∑
i=1

(p(i, j) + p(i, j − 1))x2i,j . (3.12)

On the other hand, for any X = (X1, X2, ..., Xn) ∈ Rmn, we have

XT MX =

n∑
j=1

XT
j LjXj − 2

n−1∑
j=1

m∑
i=1

p(i, j)xi,jxi,j+1.

In view of (3.12), we deduce that

XT MX ≥
n∑

j=1

m∑
i=1

(p(i, j) + p(i, j − 1))x2i,j − 2

n−1∑
j=1

m∑
i=1

p(i, j)xi,jxi,j+1

≥
n∑

j=1

m∑
i=1

p(i, j)x2i,j +

n∑
j=1

m∑
i=1

p(i, j − 1)x2i,j

− 2

n−1∑
j=1

m∑
i=1

p(i, j)xi,jxi,j+1

≥
n−1∑
j=1

m∑
i=1

p(i, j)x2i,j +

m∑
i=1

p(i, n)x2i,n +

n−1∑
j=0

m∑
i=1

p(i, j)x2i,j+1

− 2

n−1∑
j=1

m∑
i=1

p(i, j)xi,jxi,j+1
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≥
n−1∑
j=1

m∑
i=1

p(i, j)(x2i,j + x2i,j+1 − 2xi,jxi,j+1) +

m∑
i=1

p(i, n)x2i,n

+

m∑
i=1

p(i, 0)x2i,1.

Then, taking into account that p(i, 0) = 0 for all i ∈ [1,m]Z, we obtain that

XT MX ≥
n−1∑
j=1

m∑
i=1

p(i, j)(xi,j − xi,j+1)
2 +

m∑
i=1

p(i, n)x2i,n. (3.13)

Therefore, for any X ∈ Rmn, we get that XT MX ≥ 0, and if XT MX = 0, the
inequality (3.13) indicates that Xj = Xj+1 for all j ∈ [1, n − 1]Z and Xn = 0, so
X = 0E . Hence, we deduce that XT MX > 0 for all X ∈ Rmn with X ̸= 0E , so M
is a positive definite matrix.

We let, λ1, λ2, λ3, . . ., and λmn be the eigenvalues of the positive definite matrix
M ordered as follows

0 < λ1 ≤ λ2 ≤ . . . ≤ λmn.

It is easy to show that, for every U ∈ E, we have
1

2
λ1∥U∥2 ≤ ϕ(U) ≤ 1

2
λmn∥U∥2, (3.14)

and
∥U∥2∞ ≤ 2

λ1
ϕ(U), (3.15)

where ∥U∥∞ = max{|u(i, j)| , (i, j) ∈ [1,m]Z × [1, n]Z}.

4. Existence results and their proofs
In this section, we use the variational techniques mentioned in section 2 to show
the existence of solutions of the problem (1.1).

Theorem 4.1. Assume that the following condition holds

(H1) lim
t→0

F ((i, j), t)

t2
= +∞, ∀(i, j) ∈ [1,m]Z × [1, n]Z.

Then there exists λ⋆ > 0 such that, for each λ ∈ (0, λ⋆), the problem (1.1) has at
least one nontrivial solution.

Proof. We will use the version of Ricceri’s variational principle given in Theo-
rem 2.3. Firstly, the functionals ϕ and ψ defined in (3.8) and (3.9) are Gâteaux
differentiable, and since E is a finite dimensional space, they satisfy all regularity
assumptions of Theorem 2.3. The inequality (3.14) yields that ϕ is coercive.

Secondly, let α > 0 and put r = λ1
2
α2, then for all U ∈ E such that ϕ(U) < r,

taking (3.15) into account, we get that ∥U∥∞ < α.
For all U ∈ E such that ϕ(U) < r, by (3.9), we have

ψ(U) ≤
m∑
i=1

n∑
j=1

max
|t|≤α

F ((i, j), t),
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which yields that

sup
ϕ(U)<r

ψ(U) ≤
m∑
i=1

n∑
j=1

max
|t|≤α

F ((i, j), t). (4.1)

On the other hand, we let

λ⋆ =
λ1α

2

2

m∑
i=1

n∑
j=1

max
|t|≤α

F ((i, j), t)

> 0 (4.2)

and

φ(r) = inf
u∈ϕ−1((−∞,r))

sup
v∈ϕ−1((−∞,r))

ψ(v)− ψ(u)

r − ϕ(u)
. (4.3)

One has

φ(r) ≤
sup

v∈ϕ−1((−∞,r))

ψ(v)− ψ(u)

r − ϕ(u)
≤

sup
v∈ϕ−1((−∞,r))

ψ(v)

r
,

then using (4.1), we have

φ(r) ≤ 1

r

m∑
i=1

n∑
j=1

max
|t|≤α

F ((i, j), t),

therefore,
λ⋆ ≤ 1

φ(r)
.

By Theorem 2.3, we see that, for every λ ∈ (0, λ⋆), the functional Iλ admits at least
one critical point Uλ ∈ ϕ−1((−∞, r)).

Next, it remains to show that Uλ ̸= 0E . If f((i, j), 0) ̸= 0 for some (i, j) ∈
[1,m]Z× [1, n]Z, then since the trivial vector 0E does not solve problem (1.1), there-
fore Uλ ̸= 0E .

For the other case when f((i, j), 0) = 0 for every (i, j) ∈ [1,m]Z × [1, n]Z, by the
condition (H1), we can fix a sequence {up} ⊂ R+ converging to zero and one has

lim
p→+∞

F ((i, j), up)

u2p
= +∞, ∀(i, j) ∈ [1,m]Z × [1, n]Z,

then for a fixed constant a > 0, there exists ρ > 0 such that, F ((i, j), t) > at2 for
all (i, j) ∈ [1,m]Z × [1, n]Z and |t| ≤ ρ.

Let V ∈ E with v(i, j) = 1 for all (i, j) ∈ [1,m]Z × [1, n]Z, and set wp = upV for
any p ∈ N.

It is clear that wp ∈ E and ∥wp∥ = |up|∥V ∥ → 0 as p→ +∞. Then, for p large

enough, we have ∥wp∥ <
√

λ1
λmn

α, furthermore ϕ(wp) < r, so wp ∈ ϕ−1((−∞, r).
Therefore,

ψ(wp)

ϕ(wp)
=

m∑
i=1

n∑
j=1

F ((i, j), upv(i, j))

u2pϕ(V )
≥

au2p

m∑
i=1

n∑
j=1

v(i, j)2

u2pϕ(V )
=
amn

ϕ(V )
,
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for p sufficiently large.
Let A > 0 arbitrary large enough, and choose a such that A <

amn

ϕ(V )
, then for

p large enough, one has
ψ(wp)

ϕ(wp)
> A.

Then, lim sup
p→+∞

ψ(wp)

ϕ(wp)
= +∞. Hence, for p sufficiently large and λ > 0, we deduce

that Iλ(wp) = ϕ(wp)− λψ(wp) < 0. Since Uλ is a global minimum of the function
Iλ in ϕ−1((−∞, r)) and wp ∈ ϕ−1((−∞, r)), we get that

Iλ(Uλ) ≤ Iλ(wp) < 0 = Iλ(0E),

so Uλ ̸= 0E . The proof is complete.

Theorem 4.2. Assume that the following assumptions holds

(H2) there exist two real constants c > 0 and η > 0, such that

F ((i, j), t) > ct2, ∀(i, j) ∈ [1,m]Z × [1, n]Z and |t| < η,

(H3) there exist real constants a, b, T, α such that a > 0, T > 0, and 1 < α < 2
such that

F ((i, j), t) < a|t|α + b, ∀(i, j) ∈ [1,m]Z × [1, n]Z and |t| ≥ T.

Then, for any parameter λ ∈
(
λmn

2c
,+∞

)
, the problem (1.1) has at least one

nontrivial solution.

Proof. Let U ∈ E such that ∥U∥ is large enough. From (3.9) and according to
the conditions (H3), we have

ψ(U) ≤ a

m∑
i=1

n∑
j=1

|u(i, j)|α +mnb.

By the Hölder inequality, we get that

ψ(U) ≤ an
2−α
2

m∑
i=1

 n∑
j=1

|u(i, j)|2
α

2

+mnb.

≤ a(mn)
2−α
2

 m∑
i=1

n∑
j=1

|u(i, j)|2
α

2

+mnb

≤ a(mn)
2−α
2 ∥U∥α +mnb.

Then, owing to (3.10) and from (3.14), one immediately has

Iλ(U) ≥ λ1
2
∥U∥2 − a(mn)

2−α
2 λ∥U∥α −mnbλ,

for any U ∈ E with ∥U∥ is large enough.
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Since 1 < α < 2, Iλ(U) → +∞ as ∥U∥ → +∞, which implies that the functional
Iλ is coercive. Since f((i, j), .) is continuous for all (i, j) ∈ [1,m]Z × [1, n]Z, then Iλ
is continuous and bounded from below. Therefore, by Theorem 2.1, we deduce that
Iλ attains its minimum at some point Ũλ ∈ E which is also the critical point of Iλ.

On the other hand, we will show that Ũλ ̸= 0E . Let λ ∈
(
λmn

2c
,+∞

)
and

U ∈ E such that |u(i, j)| < η, ∀(i, j) ∈ [1,m]Z× [1, n]Z. According to (H2), we have

F ((i, j), u(i, j)) > c|u(i, j)|2, ∀(i, j) ∈ [1,m]Z × [1, n]Z.

Then, for one U ∈ E such that ∥U∥ = η′, where η′ = η
√
mn, the relations (3.9) and

(3.10) give
ψ(U) > c∥U∥2

and

Iλ(U) ≤
(
λmn

2
− λc

)
∥U∥2.

Then by the definition of Ũλ, we prove that Iλ(Ũλ) ≤
(
λmn

2
− λc

)
η′ < 0, which

implies that Ũλ ̸= 0E . The proof is complete.

Theorem 4.3. Suppose that the condition (H2) is satisfied and suppose additionally
that

(H4) there exist A > 0 such that

lim
|t|→∞

sup
F ((i, j), t)

t2
< A, ∀(i, j) ∈ [1,m]Z × [1, n]Z.

Then, for each λ ∈
(
0,
λ1
2A

)
the problem (1.1) has at least one nontrivial solution.

Proof. Firstly, we show that the functional Iλ is coercive. The assumption (H4)
yields the existence of a constant C > 0 such that

F ((i, j), t) < At2, ∀|t| > C and ∀(i, j) ∈ [1,m]Z × [1, n]Z.

For U ∈ E sufficiently large (taking |u(i, j)| > C), from (3.10) and (3.14), it follows
that

Iλ(U) ≥
(
λ1
2

− λA

)
∥U∥2.

Then, for all λ < λ1
2A

, we obtain Iλ(U) → +∞ as ∥U∥ → +∞, so Iλ is coercive.
Since f((i, j), .) is continuous, then Iλ is weakly continuous and Gâteaux differen-
tiable, therefore according to Theorem 2.1, we deduce that the functional Iλ admits
a critical point Ũ .

Arguing as in the proof of Theorem 4.2, we get that Ũ ̸= 0E . The proof is
complete.

Theorem 4.4. Assume that the following assumptions holds
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(H5) there exist two functions α : [1,m]Z× [1, n]Z → (0,+∞), β : [1,m]Z× [1, n]Z →
R and a constant M > 0 such that

F ((i, j), t) ≥ α(i, j)t2 + β(i, j), ∀(i, j) ∈ [1,m]Z × [1, n]Z, |t| > M,

(H6) lim
|t|→0

F ((i, j), t)

t2
= 0, ∀(i, j) ∈ [1,m]Z × [1, n]Z.

Then, for each λ >
λmn

2α− , the problem (1.1) has at least one nontrivial solution,
where

α− = min{α(i, j) : (i, j) ∈ [1,m]Z × [1, n]Z}.

Proof. Fix λ >
λmn

2α− . Firstly, we will check that Iλ satisfies the PS condition.
Let {un} ⊂ E be a sequence such Iλ(un) is bounded and I ′λ(un) → 0 as n → +∞,
then there exists a constant B > 0 such that |Iλ(un)| ≤ B. By (3.9), and from
condition (H5), we infer that

ψ(un) ≥ α−∥un∥2 +mnβ−. (4.4)

Therefore, by (3.10)-(3.14) and from (4.4), it follows that

−B ≤ Iλ(un) ≤
(
λmn

2
− λα−

)
∥un∥2 −mnλβ−, ∀n ∈ N, (4.5)

so, for any n ∈ N, (
λα− − λmn

2

)
∥un∥2 ≤ B −mnλβ−.

Since λ > λmn

2α− then {un} is a bounded sequence in E, which is a mn-dimensional
space, thus {un} possesses a convergent subsequence, this prove that Iλ satisfies the
PS condition.

Next, we need to prove the assumption (i) of Theorem 2.2. In fact, from (H6)
there exists a constant µ > 0 such that

|F ((i, j), t)| ≤ λ1
4
t2, ∀|t| ≤ µ and ∀(i, j) ∈ [1,m]Z × [1, n]Z.

Then, for any U ∈ E, with ∥U∥ ≤ µ and from (3.9)-(3.14), we have

Iλ(U) ≥ λ1
2
∥U∥2 − λ1

4
∥U∥2 =

λ1
4
∥U∥2. (4.6)

Let Bµ = {U ∈ E : ∥U∥ ≤ µ} and take δ = λ1
4
µ2, then one has

Iλ(U) ≥ δ > 0, ∀U ∈ ∂Bµ.

Thus, the assumption (i) of Theorem 2.2 is satisfied. It remains to show the as-
sumption (ii) of Theorem 2.2. For this, let U∗ be such that ∥U∗∥ = 1 and a large
enough real t. By (4.5), one has

Iλ(tU
∗) ≤ (

λmn

2
− λα−)∥tU∗∥2 −mnλβ− = (

λmn

2
− λα−)t2 −mnλβ−.
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Since λ >
λmn

2α− , we have Iλ(tU
∗) → −∞ as t → +∞, so for t0 > µ, we have

Û = t0U
∗ ∈ E \Bµ and Iλ(Û) < 0, which yield our conclusion.

Finally, our aim is to apply the Theorem 2.2. Then, there exists at least one
critical value C ≥ δ > 0 to Iλ. If we note that Uλ is the critical point associated
with the value C, we have Iλ(Uλ) = C, so Uλ is a solution to the problem (1.1).
Since Iλ(0E) = 0 and C > 0 then Uλ ̸= 0E . The proof is complete.
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