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NEW EXACT SOLUTIONS FOR COUPLED
SCHRÖDINGER-BOUSSINESQ EQUATIONS∗
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Abstract Due to the importance of the coupled Schrödinger-Boussinesq equa-
tions (CSBEs) in applied physics, many mathematicians and physicists are
interesting to CSBEs. One of the main tasks of studying CSBEs is to ob-
tain the exact solutions for CSBEs. In this paper, we firstly use the coupled
Riccati equations to change the polynomial expansion method. Secondly, CS-
BEs are changed into coupled ordinary differential equations by the traveling
wave solution transformation. Then, we assume that the solutions for the
coupled ordinary differential equations satisfy the coupled Riccati equations
and substitute the solutions of the coupled Riccati equations into the coupled
ordinary differential equations. By calculating the algebra system, we suc-
cessfully construct more new exact traveling wave solutions for CSBEs with
distinct physical structures. The exact solutions with arbitrary parameters
are expressed by sech, sech2, tanh, sinh, cosh, et al, functions, respectively.
When the parameters are taken as special values, some examples are given to
demonstrate the solutions and their physical meaning.

Keywords Nonlinear evolution equation, coupled Riccati equations, nonlin-
ear partial differential equation, polynomial expansion method, solitary wave
solution.
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1. Introduction
It is well known that most of the phenomena that arise in mathematical physics
and engineering field can be described by partial differential equations (PDEs).
For example,in the fields of applied mathematics, applied physics, fluid dynamics,
quantum mechanics, electricity, plasma physics, ecology, human biology, propaga-
tion of shallow water waves, meteorology, zoology, botany, engineering, oceanogra-
phy, medicine, and computer science, et al, most phenomena and models are well
described by PDEs, see [1, 2, 5, 8, 23,29,30,39,42,44,58] and the references therein.

In 1926, Erwin Schrödinger, based on the three major principles, the de Broglie’s
hypothesis of matter wave, the law of conservation of energy and the classical
plane wave equation, found a new equation which is called the time independent
Schrödinger equation. The equation has sufficiently illuminated atomic phenomena
and dynamical centerpiece of quantum wave mechanics. The Nonlinear Schrödinger
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equation is a prototypical dispersive nonlinear complex partial differential equation
which has been derived and analyzed in many areas of physics and mathematics. For
example, in [43], the authors studied the nonautonomous Schrödinger-Hirota equa-
tion with power-law nonlinearity via the unified method and found different types
of optical wave solutions; in laser and plasma physics, the solution problem under
interaction of a nonlinear complex Schrödinger field and a real Boussinesq field had
been raised in [17] and the references therein; in [12], the authors studied the soli-
tary waves for the generalized nonautonomous dual-power nonlinear Schrödinger
equations. In addition, the approximate and exact solutions and the laws of conser-
vation for the Schrödinger-Boussinesq dynamics system have been studied. Their
applications in phenomenon of self-focusing and conditions under an electromag-
netic beam can propagate without spreading in nonlinear media. In the general
situations, an optical beam is broadened in a dielectric due to the diffraction. How-
ever, in materials whose dielectric constant increases with the field intensity, the
critical angle for internal reflection at the beam’s boundary can become greater
than the angular divergence due to the diffraction and as a consequence the beam
does not spread and can, in some situations, continue to focus into extremely high
intensity spots.

Recently, the coupled nonlinear partial differential equations have often been
proposed to describe the interaction of the long-waves with the short-wave packets
in nonlinear dispersive media. It is well known that a high-frequency wave with a
modulated-amplitude can lead to the excitation of an instability called the ‘modu-
lation instability’ in dispersive media such as plasma. The nonlinear development
of the instability is typically governed by the Schrödinger-like equation having a
‘potential’ which depends on the associated low-frequency perturbations. The lat-
ter is governed by a linear wave equation [45] or, in some cases, by the nonlinear
Boussinesq equation [6], which is driven by the so-called ponderomotive force due
to the high-frequency carrier wave [49]. For example, the nonlinear development
of modulational instabilities associated with Langmuir field amplitude coupled to
intense electromagnetic waves in dispersive media, such as plasmas, is known to be
governed by CSBEs [21]

iut − uxx + uv = 0, x ∈ R, t > 0,

vtt − vxx + α
(
v2
)
xx

+ βvxxxx =
(
|u|2
)
xx
, x ∈ R, t > 0,

(1.1)

where i =
√
−1, u(x, t) represents the complex Schrödinger field, which provides

a canonical description for the envelope dynamics of a quasi-monochromatic plane
wave propagating in weakly nonlinear dispersive medium when dissipative processes
are negligible. On short times and small propagation distances, the dynamics are
linear, but cumulative nonlinear interactions result in a significant modulation of
the wave amplitude on large spatial and temporal scales [50]; v(x, t) represents
the real Boussinesq field, which describes the propagation of long waves in shal-
low water under gravity propagation in both directions, and v(x, t) also arises in
other physical applications such as nonlinear lattice waves, iron sound waves in a
plasma, and vibrations in a nonlinear string. It is used in many physical applica-
tions such as the percolation of water in porous subsurface of a horizontal layer of
material [55]; α and β are real parameters, the subscripts t and x denote the partial
differentiation with respect to time and space, respectively. The coupled equations
(1.1) are considered as a model of the interactions between short and intermediate
long waves, and are originated in describing the diatomic lattice system [57] and
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the dynamics of Langmuir solution formation, the interaction in a plasma [32, 59],
etc. The system (1.1) is known to describe various physical processes in laser and
plasma, such as formation, Langmuir field amplitude and intense electromagnetic
waves and modulational instabilities.

Nowadays, the investigation of the exact solutions, especially the solitary wave
solutions, of the complex nonlinear equations plays a considerable role due to the
expectant effectuation in the real world, for example, in different aspects of mathe-
matical and physical phenomena. Most complex phenomena arising in applied sci-
ence, such as nuclear physics, chemical reactions, signal processing, optical fibers,
fluid mechanics, plasma, nonlinear optics and ecology, etc, can be sometimes mod-
eled and described by these equations. Hereby, a massive number of mathematicians
and physicists have attempted to invent various approaches by which one can obtain
the exact solutions of such equations [41]. The exact solutions include the solitary
wave solutions, the shock wave solutions, the periodic wave solutions, etc. There
exist several direct methods to find those solutions to nonlinear evolution equations,
for example, the Hirota bilinear method [19], the Painlevé expansion method [56],
the tanh-function method [9, 33], the homogeneous balance method [46, 52], the

modified G′

G
-polynomial expansion method by Riccati equation [27, 31], the Jaco-

bian elliptic function expansion method [10, 11, 24, 28], the sub-ODE method [60],
the truncated Painlevé expansion method [35], the F-expansion method [51], the
Sine-Cosine function method [53], the Exp-function method [54], the generalized ex-
ponential rational function method for the extended Zakharov Kuzetsov equation
with conformable derivative [14] and for the Fokas-Lenells equation in presence of
perturbation terms [13], the Darboux transformation method [34], the trial equa-
tion method [18], the modified auxiliary equation method [37]. Seadawy et al. [48]
proposed the sech-tanh method to solve the Olver equation and the fifth-order KdV
equation and obtained traveling wave solutions. In addition, in [22], the authors
combined the unified and the explicit exponential finite difference methods to ob-
tain both analytical and numerical solutions for the Newell-Whitehead-SegelšCtype
equations which are very important in mathematical biology; in [36], the authors
investigated the complex Ginzburg-Landau equation by the generalized exponen-
tial function and the unified methods and obtained a variety of new complex waves
solutions. The unified method is utilized to obtain various solitary wave solutions
for these equations; in [3] and [4], the authors obtained the solitons to a generalized
nonlinear Fokas-Lenells equation and to the generalized nonautonomous nonlin-
ear Schrödinger equations in optical fibers via the Sine-Gordon expansion method,
respectively. Using those methods, many exact solutions to nonlinear evolution
equations are obtained. Those methods are very efficient, reliable, simple in solving
many partial differential equations.

Now, with the development of science and technology, nonlinear partial differ-
ential equations (NLPDEs) are used to describe numerous nonlinear physical phe-
nomena in different branches of applied sciences. One of the most useful strategies
for analyzing such nonlinear physical phenomena is to look for the exact solutions of
NLPDEs [40]. For example, the coupled equation [21] is more and more important
in the laser and plasma physics field, and the exact solutions for CSBEs have been
considered by more and more scientists and engineers. So the study of CSBEs has
been paid more and more attention, especially by mathematicians and physicists.
One of the tasks of the study CSBEs is to find the exact solutions. In [21], the
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authors presented a multi-symplectic Hamiltonian formulation for CSBEs and the
multi-symplectic scheme simulates the solitary waves for a long time was showed
by numerical experiments; in [15], the authors studied the global existence of solu-
tions and long time behavior of the finite dimensional behavior for weakly damped
CSBEs; in [16], the authors proved the existence of the T-periodic solution for
the weakly damped CSBEs; in [25] the authors consider the initial boundary value
problems of dissipative CSBEs and proved the existence of global attractors and the
finiteness of the Hausdorff and the fractal dimensions of the attractors; in [7], the
authors using efficient mass-and energy-preserving schemes obtained the numerical
results; in [62], the authors gave the N-order rogue waves with the determinants
and studied the dynamical property of second-order and third-order rogue waves;
in [20], the authors studied the homoclinic solutions and the analytic expressions
of homoclinic orbits for CSBEs; in [47], the author proposed a new generalized
Jacobian elliptic function expansion method and obtained several families of new
generalized Jacobian double periodic elliptic function wave solutions; in [26], two
orthogonal spline collocation schemes were formulated and got the numerical solu-
tions for CSBEs, at the same time, the authors derived the conservation laws and
investigated the convergence and stability of the nonlinear scheme. In [38], the au-
thors investigated CSBEs with variable-coefficients using the unified method, and
new non-autonomous complex wave solutions were obtained and classified into two
categories, namely polynomial function solutions and rational function solutions. In
this paper, we use the coupled Riccati equations and propose the modified polyno-
mial expansion method, then by the method, we obtain more new exact solutions
for the system (1.1).

The organization of this work is as follows. Section 1 gives an introduction.
Section 2 gives brief description of the algorithm for CSBEs by using the coupled
Riccati equations. Section 3 gives the exact solutions of (1.1). Section 4 gives some
numerical results and their figures to illustrate the solutions, and gives the physical
meaning for the numerical results. Finally, the paper ends with a conclusion and
remark in Section 5.

2. Algorithm of the modified polynomial expansion
method by the coupled Riccati equations

In this section, we describe the algorithm of polynomial expansion method by the
coupled Riccati equations for finding the exact solutions of the coupled nonlinear
evolution equations. Suppose that the coupled nonlinear equations, which have
independent space variable x and time variable t, are given by

P (u, v, ux, vx, ut, vt, uxv, uvx, utv, uvt, uxx, vxx, uxt, vxt, utt, · · · ) = 0,

Q(u, v, ux, vx, ut, vt, uxv, uvx, utv, uvt, uxx, vxx, uxt, vxt, utt, · · · ) = 0,
(2.1)

where u = u(x, t), v = v(x, t) are unknown functions, P,Q are polynomials of
u(x, t), v(x, t) and their partial derivatives in which the highest order partial deriva-
tives and the nonlinear terms are involved and the subscripts stand for the partial
derivatives.

We will describe the leading steps of the algorithm of polynomial expansion
method by the coupled Riccati equations as follows.
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Step-1: Suppose that u(x, t) = ϕ(x − ct) = ϕ(ξ), v(x, t) = φ(x − ct) = φ(ξ),
where ξ = x − ct and c ∈ (R− {0}) is the wave speed. The equations (2.1) can
be reduced to the coupled ordinary differential equations (ODEs) with variables
ϕ(ξ), φ(ξ) and their derivatives

P (ϕ, φ, ϕ′, φ′, ϕ′′, φ′′, · · · , ) = 0,

Q(ϕ, φ, ϕ′, φ′, ϕ′′, φ′′, · · · , ) = 0,
(2.2)

where the prime is the derivative with respect to ξ.
Step-2: Determination of the dominant terms. The positive integer N,M are

usually attained by taking the homogeneous balance between the highest order
nonlinear terms and the derivatives of the highest order appearing in the coupled
equations (2.2).

Step-3: Suppose that the solutions of the coupled equation (2.2) can be ex-
pressed by the polynomials in f(ξ) and g(ξ) as follows,

ψ(ξ) =

N∑
i1=0,j1=0

ai1j1f
i1(ξ)gj1(ξ),

φ(ξ) =

M∑
i2=0,j2=0

bi2j2f
i2(ξ)gj2(ξ),

(2.3)

where ai1j1 and bi2j2 are real constants to be determined, and the coefficients of the
highest order terms of ϕ(ξ) and φ(ξ) are not equal to zero. The functions f(ξ) and
g(ξ) are the solutions to the coupled Riccati equations

f ′(ξ) =− kf(ξ)g(ξ),

g′(ξ) =− k
(
1− g2(ξ)− rf(ξ)

)
,

(2.4)

where k and r are real constants. The coupled Riccati equations (2.4) have two
coupled solutions (which are called basic soliton functions) [61]

f(ξ) = ± 1

cosh[k(ξ + ξ0)] + r
,

g(ξ) =
sinh[k(ξ + ξ0)]

cosh[k(ξ + ξ0)] + r
,

(2.5)

and

f(ξ) = ± 1

sinh[k(ξ + ξ0)] + r
,

g(ξ) =
cosh[k(ξ + ξ0)]

sinh[k(ξ + ξ0)] + r
,

(2.6)

where ξ0 is any constant (generally letting it be zero), k is the numbers of waves.
Because the solutions (2.5) are regular soliton solutions, we suppose that r ̸= ±1.
From (2.5) and (2.6), we easily obtain, respectively, that

g2 = 1− 2rf +
(
r2 − 1

)
f2, (2.7)
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and

g2 = 1− 2rf +
(
r2 + 1

)
f2. (2.8)

Step-4: The positive integer N and M are usually attained by taking the
homogeneous balance between the highest order nonlinear terms and the derivatives
of the highest order appearing in Equation (2.2).

Step-5: Substituting (2.5) into (2.2), collecting all terms with the same powers
of he functions f i1gj1 and f i2gj2 , and finding the algebraic systems of equations for
the coefficients ai1j1 and bi2j2 with the parameters k, r. Solving this system we get
the values of unknown coefficients.

Step-6: Substituting the solutions (2.5) of the Coupled Riccati equations (2.4)
into (2.2), we obtain the exact wave solutions to the coupled partial differential
equations (1.1).

3. The exact wave solutions for CSBEs
We will employ the modified polynomial expansion method for obtaining the exact
solutions for the system (1.1). At first, the traveling wave transformations are
introduced

u(x, t) =u(x− ct)exp

(
− ic

2
(c− µt)

)
= ψ(ξ)exp

(
− ic

2
(c− µt)

)
,

v(x, t) =v(x− ct) = φ(ξ),

(3.1)

where ξ = x− ct and c ∈ (R− {0}) is the wave velocity.
Substituting the transformations (3.1) into (1.1) and integrating twice for the

second equation of (1.1). we obtain the following coupled ordinary differential
equation system

ψ′′ +
c

2

(
µ+

c

2

)
ψ − ψφ = 0,

βφ′′ + αφ2 + (c2 − 1)φ = ψ2,
(3.2)

where the prime is the derivative with respect to ξ and taking the integral constants
are zeroes.

Substituting the solutions (2.5) of the coupled Riccati equation into (3.2), bal-
ancing the highest orders and we obtain that N = 2,M = 2. So

ψ = a00 + a10f + a01g + a20f
2 + a11fg,

φ = b00 + b10f + b01g + b20f
2 + b11fg,

(3.3)

because of f and g satisfying the relation (2.7), the highest order of g in (3.3) is 1.
Substituting (3.3) into (3.2), and according to (2.4), (2.5), and (2.7), we can obtain
the parameters a00, a10, a01, a20, a11, b00, b10, b01, b20, b11, k, r, c and µ, the specific
algorithms can be found in the appendix. There are 19 groups of solutions for all
the parameters.

Now, we use the equations (3.1), (3.3) and the solution sets from 1) to 19) (in
the Appendix) of system (3.2) obtaining the solutions of CSBEs (1.1).
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For solutions 1), we have

ψ = a20f
2 = a20sech

2[k(x− ct) + ξ0],

φ = b20f
2 = −6k2sech2[k(x− ct) + ξ0],

thus, the solution for (1.1) isu1(x, t) = a20sech
2 [k(x− ct) + ξ0] exp

[
− ic

2

(
x+

c2 + 16k2

2c
t

)]
,

v1(x, t) = 6k2sech2 [k(x− ct) + ξ0] ,

(3.4)

where a20, c, k and ξ0 are arbitrary constants.
Similarly, for 2), we have the solution for (1.1)

u2(x, t) =a20sech
2 [k(x− ct) + ξ0]

× exp

[
− ic

2

(
x+

12k2(c2 − 4k2)(c2 − 1) + a220(c
2 + 16k2)

2c(12k2(1− c2) + a220)
t

)]
,

v2(x, t) =
36k4(1− c2)

12k2(1− c2) + a220
− 6k2sech2 [k(x− ct) + ξ0] ,

(3.5)

where a20, c, k and ξ0 are arbitrary constants.
For 3), we have the solution for (1.1)

u3(x, t) =2
√
3(1− c2)ksech2 [k(x− ct) + ξ0]

× exp

[
− ic

2

(
x+

c2 + 16k2

2c
t

)]
,

v3(x, t) =
30k2

7
sech2 [k(x− ct) + ξ0] ,

(3.6)

where |c| ≤ 1, k and ξ0 are arbitrary constants.
For 4), we have the solution for (1.1)

u4(x, t) =

± 3k
√

14(c2 − 1)

7
(
cosh [k(x− ct) + ξ0] +

√
2
7

)+
6k

√
c2 − 1

7

 1

cosh [k(x− ct) + ξ0] +
√

2
7

2


× exp

[
− ic

2

(
x+

7c2 − 272k2

14c
t

)]
,

v4(x, t) =
75k2

7
− 30k2

7

 1

cosh [k(x− ct) + ξ0] +
√

2
7

2

,

(3.7)

where |c| ≥ 1, k and ξ0 are arbitrary constants.
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For 5), we have the solution for (1.1)

u5(x, t) =

± 3k
√
14(1− c2)

7
(
cosh [k(x− ct) + ξ0] +

√
2
7

) +
6k

√
1− c2

7

×

 1

cosh [k(x− ct) + ξ0] +
√

2
7

2
 exp

[
− ic

2

(
x+

c2 + 4k2

2c
t

)]
,

v5(x, t) =− 30k2

7

 1

cosh [k(x− ct) + ξ0] +
√

2
7

2

,

(3.8)
where |c| ≤ 1, k and ξ0 are arbitrary constants.

For 6), we have the solution for (1.1)u6(x, t) =± sech [k(x− ct) + ξ0] exp

[
− ic

2

(
x+

c2 + 4k2

2c
t

)]
,

v6(x, t) =− 2k2sech2 [k(x− ct) + ξ0] ,

(3.9)

where a10, c, k and ξ0 are arbitrary constants.
For 7), we have the solution for (1.1)

u7(x, t) =± sech [k(x− ct) + ξ0]

× exp

[
− ic

2

(
x+

2k2c2(1− c2) + a210(c
2 + 4k2)

2c(2k2(1− c2) + a210)
t

)]
,

v7(x, t) =− 2k4(c2 − 1)

2k2(c2 − 1)k2 + a210
− 2k2sech2 [k(x− ct) + ξ0] ,

(3.10)

where a10, c, k and ξ0 are arbitrary constants.
For 8), we have the solution for (1.1)

u8(x, t) =

± √
6a20

46
(
cosh [k(x− ct) + ξ0]− 17

√
6

3

)
+a20

(
1

cosh [k(x− ct) + ξ0]− 17
√
6

3

)2


× exp

[
− ic

2

(
x+

(10580000k4 + 264500k2 − a220)
√
5

2300k
√

264500k2 − a220
t

)]
,

v8(x, t) =± 40
√
6k2

cosh [k(x− ct) + ξ0]− 17
√
6

3

+ 1150k2

(
1

cosh [k(x− ct) + ξ0]− 17
√
6

3

)2

,

(3.11)

where a20, k, ξ0 are arbitrary constants and c = 1
230k

√
264500k2−a2

20

5 , 264500k2 > a220.



New exact solutions for CSBEs 749

For 9), we have the solution for (1.1)u9(x, t) =± a11sinh [k(x− ct) + ξ0]

cosh2 [k(x− ct) + ξ0]
exp

[
− ic

2

(
x+

c2 + 4k2

2c
t

)]
,

v9(x, t) =− 6k2sech2 [k(x− ct) + ξ0] ,

(3.12)

where a11, c, k and ξ0 are arbitrary constants.
For 10), we have the solution for (1.1)

u10(x, t) =± a11sinh [k(x− ct) + ξ0]

cosh2 [k(x− ct) + ξ0]

× exp

[
− ic

2

(
x+

12k2(c2 − 1)(8k2 − c2) + a211(c
2 + 4k2)

2c(12k2(1− c2) + a211)
t

)]
,

v10(x, t) =
36k4(1− c2)

12k2(1− c2) + a211
− 6k2sech2 [k(x− ct) + ξ0] ,

(3.13)

where a11, c, k and ξ0 are arbitrary constants.
For 11), we have the solution for (1.1)u11(x, t) =±

2
√
3(c2 − 1)ksinh [k(x− ct) + ξ0]

cosh2 [k(x− ct) + ξ0]
exp

[
− ic

2

(
x+

c2 + 4k2

2c
t

)]
,

v11(x, t) =− 6k2sech2 [k(x− ct) + ξ0] ,
(3.14)

where |c| ≥ 1, k and ξ0 are arbitrary constants.
For 12), we have the solution for (1.1)

u12(x, t) =±
√

6(1− r2)(1− c2)ksinh [k(x− ct) + ξ0]

cosh2 [k(x− ct) + ξ0]

× exp

[
− ic

2

(
x+

c2 + 4k2

2c
t

)]
,

v12(x, t) =∓ 6k2rsech [k(x− ct) + ξ0]

+ 6k2(r2 − 1)sech2 [k(x− ct) + ξ0] ,

(3.15)

where c, k, r are arbitrary constants and (1− r2)(1− c2) ≥ 0.
For 13), we have the solution for (1.1)

u13(x, t) =±
√

6(r2 − 1)(1− c2)ksinh [k(x− ct) + ξ0]

cosh2 [k(x− ct) + ξ0]

× exp

[
− ic

2

(
x+

c2 + 4k2

2c
t

)]
,

v13(x, t) =∓ 6k2rsech [k(x− ct) + ξ0]

+ 6k2(r2 − 1)sech2 [k(x− ct) + ξ0] ,

(3.16)

where c, k, r are arbitrary constants and (r2 − 1)(1− c2) ≥ 0.
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For 14), we have the solution for (1.1)

u14(x, t) =±
√

6(r2 − 1)(1− c2)ksinh [k(x− ct) + ξ0]

cosh2 [k(x− ct) + ξ0]

× exp

[
− ic

2

(
x+

c2 − 4k2

2c
t

)]
,

v14(x, t) =2k2 ∓ 6k2rsech [k(x− ct) + ξ0]

+ 6k2(r2 − 1)sech2 [k(x− ct) + ξ0] ,

(3.17)

where c, k, r are arbitrary constants and (r2 − 1)(1− c2) ≥ 0.
For 15), we have the solution for (1.1)

u15(x, t) =±
3
√
2(c2 − 1)ksinh [k(x− ct) + ξ0]

2
(
cosh [k(x− ct) + ξ0] +

1
2

)2
× exp

[
− ic

2

(
x+

c2 + 4k2

2c
t

)]
,

v15(x, t) =∓ 3k2

cosh [k(x− ct) + ξ0] +
1
2

− 9k2

2
(
cosh [k(x− ct) + ξ0] +

1
2

)2 ,
(3.18)

where c, k, ξ0 are arbitrary constants and |c| ≥ 1.
For 16), we have the solution for (1.1)

u16(x, t) =±
3
√
2(1− c2)ksinh [k(x− ct) + ξ0]

2
(
cosh [k(x− ct) + ξ0] +

1
2

)2
× exp

[
− ic

2

(
x+

c2 − 4k2

2c
t

)]
,

v16(x, t) =2k2 ∓ 3k2

cosh [k(x− ct) + ξ0] +
1
2

− 9k2

2
(
cosh [k(x− ct) + ξ0] +

1
2

)2 ,
(3.19)

where c, k, ξ0 are arbitrary constants and |c| ≤ 1.
For 17), we have the solution for (1.1)

u17(x, t) =±
3
√
2(c2 − 1)ksinh [k(x− ct) + ξ0]

2
(
cosh [k(x− ct) + ξ0]− 1

2

)2
× exp

[
− ic

2

(
x+

c2 + 4k2

2c
t

)]
,

v17(x, t) =± 3k2

cosh [k(x− ct) + ξ0]− 1
2

− 9k2

2
(
cosh [k(x− ct) + ξ0]− 1

2

)2 ,
(3.20)
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where c, k, ξ0 are arbitrary constants and |c| ≥ 1.
For 18), we have the solution for (1.1)

u18(x, t) =±
3
√
2(1− c2)ksinh [k(x− ct) + ξ0]

2
(
cosh [k(x− ct) + ξ0]− 1

2

)2
× exp

[
− ic

2

(
x+

c2 − 4k2

2c
t

)]
,

v18(x, t) =2k2 ± 3k2

cosh [k(x− ct) + ξ0]− 1
2

− 9k2

2
(
cosh [k(x− ct) + ξ0]− 1

2

)2 ,
(3.21)

where c, k, ξ0 are arbitrary constants and |c| ≤ 1.
For 19), we have the solution for (1.1)

u19(x, t) =

±
√
6a20

46cosh [k(x−ct)+ξ0]− 17
√
6

3

+
a20(

cosh [k(x− ct)+ξ0]− 17
√
6

3

)2


× exp

[
− ic

2

(
x+

(1851500k2 − 8464000k4 + 7a220)
√
5

16100k
√
a220 + 264500k2

t

)]
,

v19(x, t) =
15k2

7
± 40

√
6k2

cosh [k(x− ct) + ξ0]− 17
√
6

3

− 1150k2(
cosh [k(x− ct) + ξ0]− 17

√
6

3

)2 ,
(3.22)

where a20, k, ξ0 are arbitrary constants and c =

√
a2
20+264500k2

230
√
5k

.

4. Numerical experiments and the physical expla-
nation

In this section, we investigate some of the numerical results for CSBEs and inter-
pret some of the CSBEs model wave solutions in the perspective of their physical
meaning.

4.1. Illustrative examples and their figures
At first, we provide simple numerical examples to confirm our main results and
demonstrate the system (1.1) as follows.

Example 4.1. In this example, for the first solution (3.4), we assume the following
parameters:

a20 = 10, k = 3, c = 2, ξ0 = 0,
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thus, the solution (3.4) becomes

{
u1(x, t) = 10sech2 (3(x− 2t)) exp [−i (x+ 37t)] ,

v1(x, t) = 6sech2 (2(x− 2t)) ,

so the figures of u1(x, t) and v1(x, t) for the system (1.1) are like to the Figure 1.

(a) The real part of the solution u1 (b) The imaginary part of the solution u1

(c) The norm of the solution u1 (d) The solution v1

Figure 1. The real part of the solution u1(x, t) as shown in (a), the imaginary part of the solution
u1(x, t) as shown in (b), the norm of the solution u1(x, t) as shown in (c), and the solution v1(x, t) as
shown in (d).

Example 4.2. In this example, for the fourth solution (3.7), we assume the follow-
ing parameters:

k = 3, c = 2, ξ0 = 0,

and we take the positive sign for the solution u4(x, t), then the solution (3.7) be-
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comes 

u4(x, t) =

[
9
√
42

7cosh(x− 2t) +
√
14

+
63

√
42(

7cosh(x− 2t) +
√
14
)2
]

× exp

[
−i
(
x− 605

7
t

)]
,

v4(x, t) =
605

7
− 1890(

7cosh(x− 2t) +
√
14
)2 ,

so the figures of u4(x, t) and v4(x, t) for the system (1.1) are like to the Figure 2.

(a) The real part of the solution u4 (b) The imaginary part of the solution u4

(c) The norm of the solution u4 (d) The solution v4

Figure 2. The real part of the solution u4(x, t) as shown in (a), the imaginary part of the solution
u4(x, t) as shown in (b), the norm of the solution u4(x, t) as shown in (c), and the solution v4(x, t) as
shown in (d).

Example 4.3. In this example, for the ninth solution (3.12), we assume the fol-
lowing parameters:

a21 = 10, k = 2, c = 2, ξ0 = 0,
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thus, the solution (3.12) becomes{
u9(x, t) = 10sinh (2(x− 2t)) sech2 (2(x− 2t)) exp [−i (x+ 5t)] ,

v9(x, t) = −24sech2 (2(x− 2t)) ,

so the figures of u9(x, t) and v9(x, t) for the system (1.1) are like to the Figure 3.

(a) The real part of the solution u9 (b) The imaginary part of the solution u9

(c) The norm of the solution u9 (d) The solution v9

Figure 3. The real part of the solution u9(x, t) as shown in (a), the imaginary part of the solution
u9(x, t) as shown in (b), the norm of the solution u9(x, t) as shown in (c), and the solution v9(x, t) as
shown in (d).

Unfortunately, it does not seem mathematically tractable to determine the fig-
ures of the other sixteen types solutions to the equations (1.1), however, there
are only tedious algebraic calculation process, thus, we omit the examples and the
figures about them.

4.2. Physical meaning
In this part, we interpret some of the complex wave solutions u(x, t) and real wave
solution v(x, t) to the SCHBs model in the perspective of their physical mean-
ing. CSBEs have often been proposed to describe the interaction of long-waves
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with short-wave packets in nonlinear dispersive media. It is well known that a
high-frequency wave with modulated-amplitude can lead to the excitation of an in-
stability called the ‘modulation instability’ in dispersive media such as plasma. The
nonlinear development of the instability is typically governed by the Schrödinger
equation having a ‘potential’ which depends on the associated low-frequency per-
turbations. The latter is governed by the nonlinear Boussinesq equation [6], which
is driven by the so-called ponderomotive force due to the high-frequency carrier
wave [49]. Figure 1 depicts the 3-dimension solution given by u1(x, t) and v1(x, t)
with the parameters a20 = 10, k = 3, c = 2, and ξ0 = 0. In Figure 1, (a) represents
the real part of the complex wave solution u1(x, t), (b) represents the imaginary
parts of the complex wave solution u1(x, t), (c) represents the norm of the complex
wave solution u1(x, t), and (d) represents the bright soliton wave solution v1(x, t).
Figure 2 depicts the 3-dimension solution given by u4(x, t) and v4(x, t) with the
parameters k = 3, c = 2, and ξ0 = 0. In Figure 2, (a) represents the real part of the
complex wave solution u4(x, t), (b) represents the imaginary parts of the complex
wave solution u4(x, t), (c) represents the norm of the complex wave solution u4(x, t),
and (d) represents the dark soliton wave solution v4(x, t). Figure 3 depicts the 3-
dimension solution given by u9(x, t) and v9(x, t) with the parameters k = 3, c = 2,
and ξ0 = 0. In Figure 3, (a) represents the real part of the complex wave solution
u9(x, t), (b) represents the imaginary parts of the complex wave solution u94(x, t),
(c) represents the norm of the complex wave solution u9(x, t), and (d) represents the
bright solition wave solution v9(x, t). Likely examples 1, examples 2, and examples
3, we can obtain the physical meaning of other solutions and we omit them.

5. Conclusions and remarks
In this work, the coupled Schrödinger-Boussinesq equations were investigated. The
others¡¯ works were focused on the peakons solutions, peaked solitary wave solu-
tions. Here, a solution set of the coupled Riccati equations is introduced to formally
derive abundant solutions for CSBEs with distinct physical structures. All the solu-
tions included one or more sech, sech2, tanh, sinh, cosh, et al, functions, therefore,
the solution are solitons, solitary patterns solutions, periodic solutions, compactons,
and peakons solutions. The obtained results complement the useful works of others
for this important physical model.

We, here, proposed the efficient modified polynomial expansion method by the
coupled Riccati equations and obtained more new exact wave solutions for CSBEs
(1.1). On comparing with the polynomial expansion method and other methods
in handling a huge number of nonlinear dispersive and dissipative equations, the
proposed scheme is more effective, powerful and reliable to be used in identical
nonlinear dispersive models. Moreover, the modified polynomial expansion method
can be used to solve any coupled high-order degree partial differential equations.
Using the modified polynomial expansion method we get a set of nonlinear algebraic
equations that can be solved by the Maple software. Also, the Maple software was
applied over for both the graphical impersonation and the emulation. Finally, we
can say that the method is a very strong scheme to find more new exact solutions
of CSBEs.

In addition, CSBEs plays an important role in applied mathematics and applied
physics, however, we only use the coupled Riccati equations obtaining more new
exact solutions in this paper, and according to some special parameter values, we
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give the images of special solutions and their physical meanings. In the future
research, we will use other methods to study the structure and properties of solutions
for CSBEs and the application of the solutions in practice.

Remark: In this paper, using the solution (2.5) of the coupled Riccati equations
(2.4) and the relation (2.7) between f and g, we obtain all above solutions for
CSBEs (1.1). If using the solutions (2.6) and the relation (2.8), we can obtain
singular soliton solutions for CSBEs (1.1). Unfortunately, all the calculation is
tedious algebraic process and is similar to that of Section 3.2. Thus, we only give one
couple solution for CSBEs (1.1) and omit others solutions and their computation.



u(x, t) =

± 2k
√
14(1 + c2)

5
(
sinh [k(x− ct) + ξ0] +

√
3
5

) +
4k

√
1 + c2

5

×

 1

sinh [k(x− ct) + ξ0] +
√

3
5

2
 exp

[
− ic

2

(
x+

2c2 + 3k2

3c
t

)]
,

v(x, t) =
27k2

5

 1

sinh [k(x− ct) + ξ0] +
√

3
5

2

,

where c, k and ξ0 are arbitrary constants.
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Appendix

A. Analysis to the algorithm of the modified poly-
nomial expansion method

In this section, we will construct the algorithm of polynomial expansion method by
the coupled Riccati equations to obtain the exact solutions for all the parameters.
From the coupled Riccati equation (2.4) and (3.3), we obtain

ψ′ =a10f
′ + a01g

′ + 2a20ff
′ + a11(f

′g + fg′)

=k(a11rf
2 − 2a20f

2g + a01rf + a01g
2 − a10fg − a11f − a01),

φ′ =b10f
′ + b01g

′ + 2b20ff
′ + b11(f

′g + fg′)

=k(b11rf
2 − 2b20f

2g + b01rf + b01g
2 − b10fg − b11f − b01),

(A.1)
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and
ψ′′ =− k

(
2a11rff

′ − 4a20ff
′g − 2a20f

2g′ + a01rf
′

+2a01gg
′ − a10f

′g − a10fg
′ − a11f

′)

=− k2
(
a20f

3 − 2a20f
2g2 + 2a11rf

2g + (a10r − 2a20)f
2

−(a01r − a11)fg − a10f − 2a01g
3 + 2a01g

)
,

φ′′ =− k
(
2b11rff

′ − 4b20ff
′g − 2b20f

2g′ + b01rf
′

+2b01gg
′ − b10f

′g − b10fg
′ − b11f

′)

=− k2
(
b20f

3 − 2b20f
2g2 + 2b11rf

2g + (b10r − 2b20)f
2

−(b01r − b11)fg − b10f − 2b01g
3 + 2b01g

)
.

(A.2)

Substituting (2.4), (3.3), and (A.2) into (3.2), we obtain the polynomials about
f igj . Collecting all the terms with the same power of f igj and equate this expres-
sions to zero, we get the algebraic equation system for a00, a10, a01, a20, a11, b00,
b10, b01, b20, b11, k, r, c, α, β, and µ as follows:

6a20k
2r2 − a11b11r

2 − 6a20k
2 + a11b11 − a20b20 = 0,

6a11k
2r2 − 6a11k

2 − a11b20 − a20b11 = 0,

2a10k
2r2 − a01b11r

2 − a11b01r
2 − 10a20k

2r − 2a10k
2 + 2a11b11r

+ a01b11 − a10b20 + a11b01 − a20b10 = 0,

2a01k
2r2 − 6a11k

2r − 2a01k
2 − a01b20 − a10b11 − a11b10 − a20b01 = 0,

4a20k
2 − 3a10k

2r +
1

2
ca20µ− a00b20 − a20b00 +

1

4
a20c

2 − a10b10

+ a01b01 + 2a11b01r + 2a01b11r − a01b01r
2 − a11b11 = 0,

a11k
2 +

1

4
a11c

2 − a00b11 − b10a01 − a10b01 − a11b00 +
1

2
ca11µ− k2a01r = 0,

a10k
2 +

1

2
ca10µ− a00b10 +

1

4
a10c

2 − a10b00 + 2a01b01r − a01b11 − a11b01 = 0,

1

2
ca01µ+

1

4
a01c

2 − a00b01 − a01b00 = 0,

1

4
a00c

2 − a00b00 +
1

2
ca00µ− a01b01 = 0,

(b211r
2 − b211 + b220)α+ (4b20βk

2 − a211)r
2 − 4b20βk

2 − a220 + a211 = 0,

6b11βk
2r2 − 6b11βk

2 + 2αb11b20 − 2a11a20 = 0,

(2b01b11r
2 − 2b11

2r − 2b01b11 + 2b10b20)α+ (2b10βk
2 − 2a01a11)r

2

+ (−6b20βk
2 + 2a211)r − 2b10βk

2 − 2a10a20 + 2a01a11 = 0,

(2b01b20 + 2b10b11)α+ 2b01βk
2r2 − 6b11βk

2r − 2b01βk
2

− 2a01a20 − 2a10a11 = 0,

(−4b01b11r + 2b00b20 + b210 + b211)α− a201r
2 + (−3b10βk

2 + 4a01a11)r

+ 2b20βk
2 + a201 − a211 + (c2 − 1)b20 − 2a00a20 − a210 = 0,

(2b00b11 + 2b01b10)α− b01βk
2r + (βk2 + c2 − 1)b11 − 2a00a11 − 2a01a10 = 0,

(2b00b10 + 2b01b11)α+ b10βk
2 + b10c

2 + 2a201r − 2a00a10 − 2a01a11 − b10 = 0,

2αb00b01 + b01c
2 − 2a00a01 − b01 = 0,
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αb200 + b00c
2 − a200 − a201 − b00 = 0.

Solving the above algebraic equation system by Maple, we obtained nineteen types
of solutions as follows:

1) a00 = 0, a01 = 0, a10 = 0, a11 = 0, a20 = a20, α =
12k2(c2 − 1) + a220

36k4
,

b00 = 0, b01 = 0, b10 = 0, b11 = 0, b20 = −6k2, β = −c
2 − 1

2k2
, c = c,

k = k, µ = −c
2 + 16k2

2c
, r = 0,

where a20, c and k are arbitrary constants.

2) a00 = 0, a01 = 0, a10 = 0, a11 = 0, a20 = a20, α =
12k2(1− c2) + a220

36k4
,

b00 =
36k4(1− c2)

12k2(1− c2) + a220
, b01 = 0, b10 = 0, b11 = 0, b20 = −6k2, c = c,

β =
c2 − 1

2k2
, k = k, µ = −12k2(c2 − 4k2)(c2 − 1) + a220(c

2 + 16k2)

2c(12k2(1− c2) + a220)
, r = 0,

where a20, c and k are arbitrary constants.

3) a00 = 0, a01 = 0, a10 = 0, a11 = 0, a20 = 2
√
3(1− c2)k, α = 0, b00 = 0,

b01 = 0, b10 = 0, b11 = 0, b20 = −6k2, β =
1− c2

2k2
, c = c, k = k,

µ = −c
2 + 16k2

2c
, r = 0,

where c and k are arbitrary constants.

4) a00 = 0, a01 = 0, a10 =
3k
√

14(c2 − 1)

7
, a11 = 0, a20 =

6k
√
c2 − 1

7
,

α = −7(c2 − 1)

75k2
, b00 =

75k2

7
, b01 = 0, b10 = 0, b11 = 0, b20 = −30k2

7
,

β =
c2 − 1

5k2
, c = c, k = k, µ = −7c2 − 272k2

14c
, r =

√
2

7
,

where c and k are arbitrary constants.

5) a00 = 0, a01 = 0, a10 =
3k
√

14(1− c2)

7
, a11 = 0, a20 =

6k
√
1− c2

7
,

α =
7(c2 − 1)

75k2
, b00 = 0, b01 = 0, b10 = 0, b11 = 0, b20 = −30k2

7
,

β =
1− c2

5k2
, c = c, k = k, µ = −c

2 + 4k2

2c
, r =

√
2

7
,

where c and k are arbitrary constants.

6) a00 = 0, a01 = 0, a10 = a10, a11 = 0, a20 = 0, α =
2k2(c2 − 1) + a210

2k4
,

b00 = 0, b01 = 0, b10 = 0, b11 = 0, b20 = −2k2, β = −2k2(c2 − 1) + a210
4k4

,

c = c, k = k, µ = −c
2 + 4k2

2c
, r = 0,
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where a10, c and k are arbitrary constants.

7) a00 = 0, a01 = 0, a10 = a10, a11 = 0, a20 = 0, α =
2k2(1− c2) + a210

2k4
,

b00 = − 2k4(c2 − 1)

2k2(c2 − 1)k2 + a210
, b01 = 0, b10 = 0, b11 = 0, b20 = −2k2,

β = −2k2(1− c2) + a210
4k4

, c = c, µ = −2k2c2(1− c2) + a210(c
2 + 4k2)

2c(2k2(1− c2) + a210)
,

k = k, r = 0,

where a10, c and k are arbitrary constants.

8) a00 = 0, a01 = 0, a10 =

√
6a20
46

, a11 = 0, a20 = a20, α = − 7a220
3967500k4

,

b00 = 0, b01 = 0, b10 = 40
√
6k2, b11 = 0, b20 = 1150k2, β =

a220
264500k4

,

c =
1

230k

√
264500k2 − a220

5
, µ = − (10580000k4 + 264500k2 − a220)

√
5

2300k
√

264500k2 − a220
,

k = k, r = −17
√
6

3
,

where a20 and k are arbitrary constants.

9) a00 = 0, a01 = 0, a10 = 0, a11 = a11, a20 = 0, α =
12k2(c2 − 1) + a211

36k4
,

b00 = 0, b01 = 0, b10 = 0, b11 = 0, b20 = −6k2, β = −6k2(c2 − 1) + a211
12k4

,

c = c, k = k, µ = −c
2 + 4k2

2c
, r = 0,

where a11, c and k are arbitrary constants.

10) a00 = 0, a01 = 0, a10 = 0, a11 = a11, a20 = 0, α =
12k2(1− c2) + a211

36k4
,

b00 =
36k4(1− c2)

12k2(1− c2) + a211
, b01 = 0, b10 = 0, b11 = 0, b20 = −6k2,

β = −6k2(1− c2) + a211
12k4

, µ = −12k2(c2 − 1)(8k2 − c2) + a211(c
2 + 4k2)

2c(12k2(1− c2) + a211)
,

c = c, k = k, r = 0,

where a11, c and k are arbitrary constants.

11) a00 = 0, a01 = 0, a10 = 0, a11 = 2
√

3(c2 − 1)k, a20 = 0, α = 0,

b00 = 0, b01 = 0, b10 = 0, b11 = 0, b20 = −6k2, β =
c2 − 1

2k2
,

c = c, k = k, µ = −c
2 + 4k2

2c
, r = 0,
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where c and k are arbitrary constants.

12) a00 = 0, a01 = 0, a10 = 0, a11 =
√

6(1− r2)(1− c2)k, a20 = 0,

α =
c2 − 1

2k2
, b00 = 0, b01 = 0, b10 = −6k2r, b11 = 0, b20 = 6k2(r2 − 1),

β =
1− c2

k2
, c = c, k = k, µ = −c

2 + 4k2

2c
, r = r,

where c, k and r are arbitrary constants.

13) a00 = 0, a01 = 0, 10 = 0, a11 =
√

6(r2 − 1)(1− c2)k, a20 = 0,

α =
1− c2

2k2
, b00 = 0, b01 = 0, b10 = −6k2r, b11 = 0, b20 = 6k2(r2 − 1),

β =
1− c2

k2
, c = c, k = k, µ = −c

2 + 4k2

2c
, r = r,

where c, k and r are arbitrary constants.

14) a00 = 0, a01 = 0, a10 = 0, a11 =
√

6(r2 − 1)(c2 − 1)k, a20 = 0,

α =
1− c2

2k2
, b00 = 2k2, b01 = 0, b10 = −6k2r, b11 = 0,

b20 = 6k2(r2 − 1), β =
c2 − 1

k2
, c = c, k = k, µ = −c

2 − 4k2

2c
, r = r,

where c, k and r are arbitrary constants.

15) a00 = 0, a01 = 0, a10 = 0, a11 =
3
√
2(c2 − 1)k

2
, a20 = 0,

α =
c2 − 1

2k2
, b00 = 0, b01 = 0, b10 = −3k2, b11 = 0, b20 = −9k2

2
,

β = −c
2 − 1

k2
, c = c, k = k, µ = −c

2 + 4k2

2c
, r =

1

2
,

where c and k are arbitrary constants.

16) a00 = 0, a01 = 0, a10 = 0, a11 =
3
√
2(1− c2)k

2
, a20 = 0,

α =
1− c2

2k2
, b00 = 2k2, b01 = 0, b10 = −3k2, b11 = 0, b20 = −9k2

2
,

β =
c2 − 1

k2
, c = c, k = k, µ = −c

2 − 4k2

2c
, r =

1

2
,

where c and k are arbitrary constants.

17) a00 = 0, a01 = 0, a10 = 0, a11 =
3
√
2(c2 − 1)k

2
, a20 = 0,

α =
c2 − 1

2k2
, b00 = 0, b01 = 0, b10 = 3k2, b11 = 0, b20 = −9k2

2
,

β =
1− c2

k2
, c = c, k = k, µ = −c

2 + 4k2

2c
, r = −1

2
,



New exact solutions for CSBEs 761

where c and k are arbitrary constants.

18) a00 = 0, a01 = 0, a10 = 0, a11 =
3
√

2(1− c2)k

2
, a20 = 0,

α =
1− c2

2k2
, b00 = 2k2, b01 = 0, b10 = 3k2, b11 = 0, b20 = −9k2

2
,

β =
c2 − 1

k2
, c = c, k = k, µ = −c

2 − 4k2

2c
, r = −1

2
,

where c and k are arbitrary constants.

19) a00 = 0, a01 = 0, a10 =

√
6a20
46

, a11 = 0, a20 = a20, α = − 7a220
3967500k4

,

b00 =
15k2

7
, b01 = 0, b10 = 40

√
6k2, b11 = 0, b20 = 1150k2, β =

a220
264500k4

,

c =

√
a220 + 264500k2

230
√
5k

, k = k, r = −17
√
6

3
,

µ = − (−8464000k4 + 7a220 + 1851500k2)
√
5

16100k
√
a220 + 264500k2

,

where a20 and k are arbitrary constants.
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