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Abstract By using the first-order differential subordination, a new class
Mn(α) of multivalent analytic functions associated with the lemniscate of
Bernoulli is introduced. Several geometric properties of this class are given.
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1. Introduction
Let An(p) denote the class of functions of the form:

f(z) = zp +

∞∑
k=n

ap+kz
p+k (n, p ∈ N) (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. For n = p = 1, we write
A := A1(1).

For functions f(z) and g(z) analytic in U, we say that f(z) is subordinate to
g(z) and write f(z) ≺ g(z) (z ∈ U), if there exists an analytic function w(z) in U
such that

|w(z)| ≤ |z| and f(z) = g(w(z)) (z ∈ U).

If the function g(z) is univalent in U, then

f(z) ≺ g(z) (z ∈ U) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

For functions fj(z) ∈ An(p) (j = 1, 2) given by

fj(z) = zp +

∞∑
k=n

ak+p,jz
k+p,
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we define the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2) (z) = zp +

∞∑
k=n

ak+p,1ak+p,2z
k+p.

A function f(z) ∈ An(p) is said to be convex of order β (0 ≤ β < p) if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> β (z ∈ U).

Let SL be the class of functions defined by

SL :=

{
f(z) ∈ A :

∣∣∣∣∣
(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ < 1

}
.

A function f(z) ∈ SL if zf ′(z)/f(z) lies in the region bounded by the right-half
of the lemniscate of Bernoulli given by |w2 − 1| < 1. In terms of differential sub-
ordination, the class SL consists of normalized analytic functions f(z) ∈ A sat-
isfying zf ′(z)/f(z) ≺

√
1 + z. The class SL was first introduced by Sokól and

Stankiewicz [10]. Recently, the SL-radii for certain well-known classes of functions
including the Janowski starlike functions were obtained in [1, 9].

Motivated by the above and some recent works [2–7,11,12], we now introduce a
new subclass of An(p).

Definition 1.1. A function f(z) ∈ An(p) (p ≥ 2) is said to be in the class Mn(α)
if it satisfies the second-order differential subordination:

1− α

p
z1−pf ′(z) +

α

p(p− 1)
z2−pf ′′(z) ≺

√
1 + z (α ≥ 0; z ∈ U). (1.2)

In this note we obtain inclusion relation and coefficient estimate for functions
f(z) belonging to the class Mn(α). Furthermore, we discuss the radius of convex
for functions in Mn(0).

2. Geometric properties of functions in the class
Mn(α)

In order to derive Theorem 1 below, we need the following lemma.

Lemma 2.1. Let g(z) be analytic in U and h(z) be analytic and convex univalent
in U with h(0) = g(0). If

g(z) +
1

µ
zg′(z) ≺ h(z),

where Reµ ≥ 0 and µ ̸= 0, then g(z) ≺ h(z).

Theorem 2.1. Let 0 ≤ α1 < α2. Then Mn(α2) ⊂ Mn(α1).

Proof. Suppose that

g(z) =
f ′(z)

pzp−1
(2.1)
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for f(z) ∈ Mn(α2). Then g(z) is analytic in U and g(0) = 1. By using (1.2) and
(2.1), we have

1− α2

p
z1−pf ′(z) +

α2

p(p− 1)
z2−pf ′′(z) = g(z) +

α2

p− 1
zg′(z)

≺
√
1 + z. (2.2)

An application of Lemma yields

g(z) ≺
√
1 + z. (2.3)

Noting that 0 ≤ α1

α2
< 1 and that the function

√
1 + z is convex univalent in U,

it follows from (2.1), (2.2) and (2.3) that
1− α1

p
z1−pf ′(z) +

α1

p(p− 1)
z2−pf ′′(z)

=
α1

α2

(
1− α2

p
z1−pf ′(z) +

α2

p(p− 1)
z2−pf ′′(z)

)
+

(
1− α1

α2

)
g(z)

≺
√
1 + z.

This shows that f(z) ∈ Mn(α1). The proof of Theorem 1 is completed.

Theorem 2.2. Let f(z) ∈ Mn(α), g(z) ∈ An(p) and

Re
(
z−pg(z)

)
>

1

2
(z ∈ U). (2.4)

Then (f ∗ g)(z) ∈ Mn(α).

Proof. For f(z) ∈ Mn(α) and g(z) ∈ An(p), we have
1− α

p
z1−p(f ∗ g)′(z) + α

p(p− 1)
z2−p(f ∗ g)′′(z)

=
1− α

p

(
z1−pf ′(z)

)
∗
(
z−pg(z)

)
+

α

p(p− 1)

(
z2−pf ′′(z)

)
∗
(
z−pg(z)

)
= h(z) ∗

(
z−pg(z)

)
, (2.5)

where

h(z) =
1− α

p
z1−pf ′(z) +

α

p(p− 1)
z2−pf ′′(z) ≺

√
1 + z (z ∈ U). (2.6)

From (2.4), we can see that the function z−pg(z) has Herglotz representation:

z−pg(z) =

∫
|x|=1

dµ(x)

1− xz
(z ∈ U), (2.7)

where µ(x) is a probability measure on the unit circle |x| = 1 and
∫
|x|=1

dµ(x) = 1.
In view of the function

√
1 + z is convex univalent in U, it follows from (2.5),

(2.6) and (2.7) that
1− α

p
z1−p(f ∗ g)′(z) + α

p(p− 1)
z2−p(f ∗ g)′′(z)

=

∫
|x|=1

h(xz)dµ(x) ≺
√
1 + z (z ∈ U).

This shows that (f ∗ g)(z) ∈ Mn(α). The proof of Theorem 2 is completed.
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Theorem 2.3. Let

f(z) = zp +

∞∑
k=n

ap+kz
p+k ∈ Mn(α). (2.8)

Then
|ap+k| ≤

p(p− 1)

2(p+ k)(αk + p− 1)
(k ≥ n). (2.9)

The result is sharp for each k ≥ n.

Proof. It is known that, if

φ(z) =

∞∑
j=1

bjz
j ≺ ψ(z) (z ∈ U),

where φ(z) is analytic in U and ψ(z) = z + · · · is analytic and convex univalent in
U, then |bj | ≤ 1 (j ∈ N).

By (2.8) we have

2

(
1− α

p
z1−pf ′(z) +

α

p(p− 1)
z2−pf ′′(z)− 1

)
=

2

p(p− 1)

∞∑
k=n

(p+ k)(αk + p− 1)ap+kz
k

≺ 2(
√
1 + z − 1) (z ∈ U). (2.10)

In view of the function ψ(z) = 2(
√
1 + z − 1) = z + · · · is analytic and convex

univalent in U, it follows from (2.10) that

2(p+ k)(αk + p− 1)

p(p− 1)
|ap+k| ≤ 1 (k ≥ n),

which gives (2.9).
Next we consider the function fk(z) given by

fk(z) = zp +

∞∑
m=1

p(p− 1)

 1
2

m


(km+ p)(αkm+ p− 1)

zkm+p (k ≥ n; z ∈ U),

where  γ

m

 =
γ(γ − 1) · · · (γ −m+ 1)

m!
.

Since
1− α

p
z1−pf ′k(z) +

α

p(p− 1)
z2−pf ′′k (z) =

√
1 + zk ≺

√
1 + z (z ∈ U)

and
fk(z) = zp +

p(p− 1)

2(k + p)(αk + p− 1)
zp+k + · · ·

for each k ≥ n, the proof of Theorem 3 is completed.
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Theorem 2.4. Let 0 ≤ ρ < p and ρ
p < δ ≤ 1. If f(z) ∈ Mn(0), then

Re

{
(1− δ)

(
f ′(z)

pzp−1

)2

+ δ

(
1 +

zf ′′(z)

f ′(z)

)}
> ρ (|z| < r0), (2.11)

where r0 is the smallest root in (0, 1) of the equation

(1− δ)r2n −
(
2− ρ+ δ

(n
2
+ p− 2

))
rn + 1− ρ+ δ(p− 1) = 0.

The result is sharp.

Proof. For f(z) ∈ Mn(0) we can write(
f ′(z)

pzp−1

)2

= 1 + znφ(z), (2.12)

where φ(z) is analytic and |φ(z)| ≤ 1 in U. Differentiating both sides of (2.12)
logarithmically, we have

1 +
zf ′′(z)

f ′(z)
= p+

nznφ(z) + zn+1φ′(z)

2(1 + znφ(z))
(z ∈ U). (2.13)

Put |z| = r < 1 and
(

f ′(z)
pzp−1

)2

= u+ iv (u, v ∈ R). Then (2.12) implies that

znφ(z) = u− 1 + iv (2.14)

and
1− rn ≤ u ≤ 1 + rn. (2.15)

With the help of the Carathéodory inequality:

|φ′(z)| ≤ 1− |φ(z)|2

1− r2
,

it follows from (2.14) and (2.15) that

Re

{
(1− δ)

(
f ′(z)

pzp−1

)2

+ δ

(
1 +

zf ′′(z)

f ′(z)

)}

≥ (1− δ)u+ pδ +
nδ

2
Re

{
znφ(z)

1 + znφ(z)

}
− δ

2

∣∣∣∣ zn+1φ′(z)

1 + znφ(z)

∣∣∣∣
≥ (1− δ)u+ pδ +

nδ

2

(
1− u

u2 + v2

)
+
δ

2

(u− 1)2 + v2 − r2n

rn−1(1− r2)(u2 + v2)
1
2

=: Hn(u, v)

and
∂Hn(u, v)

∂v
=
δv

2
Pn(u, v), (2.16)

where

Pn(u, v) :=
2nu

(u2 + v2)2
+

2

rn−1(1− r2)(u2 + v2)
1
2
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+
r2n − ((u− 1)2 + v2)

rn−1(1− r2)(u2 + v2)
3
2

> 0 (2.17)

because of (2.14), (2.15) and |φ(z)| ≤ 1 (z ∈ U). In view of (2.16) and (2.17) we
see that

Hn(u, v) ≥ Hn(u, 0)

= (1− δ)u+ pδ +
nδ

2

(
1− 1

u

)
+
δ((u− 1)2 − r2n)

2rn−1(1− r2)u
. (2.18)

Next we calculate the minimum value of Hn(u, 0) on the closed interval [1 −
rn, 1 + rn]. From (2.18) we deduce that

d

du
Hn(u, 0) = 1− δ +

δ

2u2

(
n+

r2n + u2 − 1

rn−1(1− r2)

)
≥ 1− δ +

δ

2(1 + rn)2

(
n− 2r(1− rn)

1− r2

)
= 1− δ +

δ

2(1 + rn)2
In(r), (2.19)

where
In(r) := n− 2r(1− rn)

1− r2
.

Note that I1(r) = 1−r
1+r > 0. Suppose that In(r) > 0. Then

In+1(r) = n+ 1− 2r(1− rn+1)

1− r2

= In(r) +
1− rn+1 + r(1− rn)

1 + r
> 0.

Hence, by virtue of the mathematical induction, we have In(r) > 0 for all n ∈ N
and 0 ≤ r < 1. This implies that

d

du
Hn(u, 0) > 0 (1− rn ≤ u ≤ 1 + rn). (2.20)

Further, it follows from (2.18) and (2.20) that

Re

{
(1− δ)

(
f ′(z)

pzp−1

)2

+ δ

(
1 +

zf ′′(z)

f ′(z)

)}
− ρ

≥ Hn(1− rn, 0)− ρ

= (1− δ)(1− rn) + pδ − nδrn

2(1− rn)
− ρ

=
(1− δ)r2n −

(
2− ρ+ δ

(
n
2 + p− 2

))
rn + 1− ρ+ δ(p− 1)

1− rn

=:
Jn(r)

1− rn
. (2.21)

From the hypotheses of the theorem we can see that Jn(0) = 1 − ρ + δ(p − 1) > 0
and Jn(1) = −nδ

2 < 0. If we let r0 denote the smallest root in (0, 1) of the equation
Jn(r) = 0, then (2.21) yields the desired result (2.11).
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To see that the bound r0 is the best possible, we consider the function

f(z) = p

∫ z

0

tp−1(1− tn)
1
2 dt ∈ Mn(0). (2.22)

It is clear that for z = r ∈ (r0, 1),

(1− δ)

(
f ′(r)

prp−1

)2

+ δ

(
1 +

rf ′′(r)

f ′(r)

)
− ρ =

Jn(r)

1− rn
< 0,

which shows that r0 can not be increased. The proof of Theorem 4 is completed.
Setting δ = 1, Theorem 4 reduces to the following result.

Corollary 2.1. Let f(z) ∈ Mn(0) and 0 ≤ ρ < p. Then f(z) is convex of order ρ
in

|z| <
(

p− ρ

p+ n
2 − ρ

) 1
n

.

The result is sharp.
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