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Abstract By using the Krasnoselskii fixed point theorem, sufficient condi-
tions are obtained for the existence and multiplicity of positive periodic solu-
tions for a class of second order damped functional differential equations with
multiple delays. Our results are a further expansion of the previous research
results.
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1. Introduction
For the following equation
2 = f(t,z(t)), teR,

where f € C(R/TZ, (0,+00)), there are many results [3,18] on the periodic solution
of this equation.

However, the systems controlled by feedback loops in engineering, predator-prey
models in ecosystems [8,12], and value laws in economics in real life all have the
influence of delay factors, so the research on functional differential equations has
already stepped into a climax period [1,15,17]. At the same time, many research
methods have been considered, such as the upper and lower solutions method and
monotone iterative technique [10, 16], fixed point theorems [11,13,21] and so on
[5,9,14,19,20].

Jiang et al. [10] studied the following periodic problem

—a = f(Le(t)alt - T(t),  teR,

where f € C(R3, R), 7 € C(R,[0,+00)), and they are T-periodic functions. They
established the existence results of T-periodic solutions by using monotone iterative
technique.
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However, for many problems in real life, we only need to consider the properties
of its positive periodic solution. In [21], Wu obtained the existence and multiplicity
of the solutions to the following equation

2 +alt)r = Nf(t,x(t — 1o(t)), 2(t — 71(2)), ..., x(t — o (2))), t R,

where a € C(R/TZ, (0,400)), f € C((R/TZ) x [0, +00)" ", [0, +00)),
7:(t) € C(R/TZ,R), and a(t) satisfies the condition that 0 < a(t) < %2 for every
teR.

Li et al. studied the following equation in [13]

' +alt)r = ft,xt),x(t — 71 (1)), ..., x(t — T (t))), t € R,

where a € C(R/TZ, (0,+00)), f € C((R/TZ) x [0, +00)" ", [0, +00)),
7:(t) € C(R/TZ, [0, +00)), they obtained the existence of positive periodic solution
by using the first eigenvalue corresponding to the relevant linear operator and fixed-
point index theory in cones.

In [11], Kang et al. considered the following equation with damped term

" + h(t)z" + a(t)e = Ag(t) f(t,z(t — (1)), teR,

where h € C(R/TZ,[0,+00)), a € C(R/TZ, [0, +0)), f € C((R/TZ) x R, [0, +00)),
7:(t) € CR/TZ,R), g € C(R/TZ,[0,4+0)). They obtained the existence and multi-
plicity of positive periodic solutions when the coefficients h(t), a(t) and g(t) satisfy
fOT h(&)d¢ > 0, fOT a(€)dé > 0 and fOTg(f)dg > 0, respectively, moveover, f is
nondecreasing in the second variable.

Motivated by the above papers, in this paper, we study the existence, multiplic-
ity of positive periodic solutions for the following equation

2+ h(t)a +alt)r = Ag(t)f(t,z(t —10(t)), x(t — 71(2)), ..., x(t — T (t))), (1.1)

where h € C(R/TZ,R), a € C(R/TZ,R), f € C((R/TZ) x [0, +00)™*1 [0, +oo))
and f(t,zo,Z1,...,2n) > 0 for (z; > 0,0 < ¢ < n,(xg,21,...,2,) # (0,0,...,0)),
7,(t) € C(R/TZ,R), g € C(R/TZ, [0, +00)) and [, g(€)dé > 0, A > 0 is a parame-
ter.

Three highlights should be pointed out. Firstly, compared with the equation
studied in [13,21], we add the damping term h(¢)z’. Secondly, different from [11],
the equation we studied has multiple delays. Thirdly, we relax the restrictions for
the coefficients h(t) and a(t) in [11].

2. Preliminaries
If the unique solution of linear equation
" +h(t)x' 4+ a(t)r =0, (2.1)

associated to periodic boundary conditions



800 P. Liu, Y. Fan & L. Wang

is trivial, then it is nonresonant. By Fredholm’s alternative theorem, we know that
when (2.1)-(2.2) is nonresonant,

o’ +h(t) 2 + a(t)z = I(t) (2.3)

has a unique solution and it can be expressed as

£(t) = /0 G(t, £)I(€)de,

where G(t,€) is the Green’s function of (2.1)-(2.2).

Next we assume that:

(A0) The Green’s function G (¢, &) of system (2.1)-(2.2), is positive for all (¢,¢) €
[0,T] x [0, 7).

In general, condition (A0) is difficult to establish. However, through the anti-
maximum principle established by Hakl and Torres (see [7]), Chu, Fan and Torres
obtained that (A0) is true in [2]. Describe the above criterion by defining the
following function

o (h)(t) = exp( / hE)de),

and
T

o1 (h)(t) = o()(T) / o (h)(€)dé + / o (h)(€)de.

¢
Lemma 2.1 (Corollary 2.6, [7]). If a(t) # 0 and the following two inequalities

T
/0 a(€)o () ()01 (—h)(€)de > 0, (H1)
and

sw { [ ot-mi@ue [ w@lomiee} <4 (12

0<t<T
are satisfied, where [a(§)]+ = max{a(§),0}. Then (A0) holds.

When (A0) holds, we always denote

A= OSI?}I%TG(L 5)7 B= OSHQ%)S{TG(YS, f), g = A/B (24)

Obviously B>A>0and 0 <o < 1.

Then, let X = C(R/TZ,R), || = ||= max{|z(t)||z(t) € X, t € [0,T]}, and
P={z(t)e X:z(t) >0 x|, t €[0,T]}. Moreover, for r > 0, let Q, = {x € X, ||
z ||< r} and

m(r) = min{ f (¢, xo, 21, ..., xn) : 0<t<T, or <a; <r, 0<i<n}
M(T) :maX{f(t,Jfo,l‘l,...,J}n) : 0 <t< T7 0 < Zq < r, 0

Define operator:

T
Qaz(t) = /\/O G(t,8)g(8) f(& x(€§ = 70(£)), 2(§ = 11(8)), o (€ = Ta(§)))dE.

Therefore, the fixed point of the operator equation z = Q)x is the T-periodic
solution of (1.1).
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Lemma 2.2. Q, : P — P is completely continuous and Q(P) C P.

Proof. Since

Qa(t) > AA / 9(E) 1, 2(E — 10()), (€ — T1(E))s oo (€ — T2 (£)))de,

and

T

| @Qxz(t) [|< AB/ 9() (& z(§ —10(8)), z(§ — T1(§)), -, 2(§ — Tn(€)))dE,

0

therefore
z(t
Qua(t) > 2l DI oy g a1
AB
Then, according to the Arscoli-Arzele theorem, @) is completely continuous.

The proof is completed. O

Lemma 2.3. If:z: € PNOQ, for r > 0, then AMAm(r) [, g(€)dé <|| Qra(t) ||<
ABM(r) [ g

Proof. Since x € PN JQ,, it is clear that or < x(t) < r, that is
T
Qua(t) 2 M [ g(©mr)de
0
T
—xmr) [ gleyd,
0

hence || Qaz(t) > AAm(r) [} g(€)d¢. And

T
Qaa(t) < AB / g(€) M (r)de
0
T
— ABM(r) /O g(E)d,

thus || Qxz(t) ||< ABM(r fo £)d¢. The proof is finished. O

Lemma 2.4 ( [4,6]). Let X be a Banach space and P be a close convez cone in X .
01, Qo are bounded open subsets of X, 0 € Q1, Q1 C Q2. Q: PN (Q2\ Q) — P
is a completely continuous operator. Assume that QQ satisfies one of the following
conditions:

(@) || Qe ||| = || for z € PN, || Qu ||<[| z || for x € PN OQ;
(i) || Qz ||<|| z || forz € PNOQy, || Qr || =] x || for x € PN ONy.

Then Q has at least one fized point in PN (g \ Q).

3. Main results

Let © = (20,21, ..., %p) € [0, +00)" L T & max{Lg, L1, ..., Tp }-
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Next, make the following assumptions about f:

t,x .. . t,x
f° = lim sup max M, foo = lim inf min (7 ),
z—0+ t€0,T] T T—+ootel0,7] T
t,x t,x
fo = lim inf min f(; ), £°° = lim sup max —— )
T—0t t€[0,T] @ T—+oo tE[0,T] T

Assume that:

jo = the number of zeros in set {f°, f*°};  joo = the number of infinities in set
{0 %

Jo = the number of zeros in set {fo, foo };  Jji, = the number of infinities in set

{anfoo}~
Theorem 3.1. Suppose that (A0) holds.
(1) If jo = 1 or 2, when \ >

positive T-periodic solution(s).

LT S —
(2) If 50 =1 or 2, when 0 < X\ < BM(1) [T g(£)de”’

1 . .
() T 9(©)dE > 0, equation (1.1) has at least jo

equation (1.1) has at least j.

positive T-periodic solution(s).
(8) If jo = 0 or joo = 0, there is no positive T-periodic solution to equation (1.1)
for sufficiently large or sufficiently small X > 0, respectively.

Proof. For ¢ € PN O, define
() = (ot = 70(1), @t = 71(2)), ., Bt — Ta(t)))

and ®(t) = max {¢(t — 7:(¢))}.
0<i<n
(1) Let r1 =1, by Lemma 2.3, we can obtain that there exists A\g=
0, such that

1
Am(1) [ g(¢)de =

T
||QA¢||2AAm<1>/O g&)de > 61, 6ePNOL, A> .

If fO =0, then we have f(t,z) < eZ for 0 < T < ry and t € [0, 7], where ¢ > 0
satisfies \e B fOT g(&)d¢ < 1, and 0 < r9 < 11 = 1, obviously, ,, C Q.

Then 0 < org =0c | ¢ ||< O(t) <|| ¢ ||= 172, for all ¢ € PN IN,.,, t € [0,T], thus

[t @(t) < e®(t).

From the definition of @, for ¢ € P N 0S),,, we can obtain

T —
1 Qx| < AeB / 9(€)D(€)de
0 (3.1)

T
<XB 6| / g(€)de <I| 6 1.

Thus, by Lemma 2.4(ii), the operator Q, has at least one fixed point in PN(21\£,.,).
If f*° = 0, then there exists H > 0, such that f(t,z) < ez for T > H and

t € [0,T], where ¢ > 0 still satisfies A\eB fOTg(§)d§ < 1. Moreover, select r3 =
max{2, £}, obviously, Q C Q,,.
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Then ®(t) > o || ¢ ||=0ors > H, for all € PN I, t € [0,T], thus

f(t, ®(t)) <ed(t).

Then for ¢ € PN 0S,,, we can obtain

T
1 Qs < B | 6| / g(€)de <|| 6 1.

Thus, by Lemma 2.4(i), the operator @ has at least one fixed point in PN (Q,.,\Q1).
Above all, if f© =0 and f> = 0, the operator @y has at least two fixed points
in PN (Q, \ Q,), that is, (1.1) has at least two positive T-periodic solutions for
A > Ag.
(2) Let r1 = 1, by Lemma 2.3, we can obtain that there exists A\g =

> 0, such that

1
BM(1) [ g(&)ds

T
HQ@HSABM(n/O g&)de < 61, $€PNIU, 0<A< Ao

If fo = oo, then we have f(t,z) > 0T for 0 < T < rg and t € [0,T], where n > 0
satisfies Ano A fOTg(f)df > 1, and 0 < 7o < 1, = 1, obviously, Q,, C .

Then 0 < org =0 || ¢ ||< ®(t) <|| ¢ ||=ro, for all $ € PN ON,.,, t € [0,T], thus

[t @(t) = n®(t).

From the definition of @y, for ¢ € PN 01,,, we can obtain

T P
1Qré | > MA / o(6)B(E)de
0 (3.2)

T
> oA | 6| / g(E)de > 6.

Thus, by Lemma 2.4(i), the operator Q has at least one fixed point in PN (Q1\ Q).
If foo = o0, then there exists H' > 0, such that f(¢t,x) > nz for T > H'
and ¢t € [0,T], where n > 0 still satisfies Ao A fOT g(&)d¢ > 1. Moreover, select
r3 = max{2, H%}, obviously, & C Q.
Then ®(t) > o || ¢ ||=or3 > H', for all $ € PN I, t € [0,T], thus

[t (1) = n®(t).

Then for ¢ € PN 0S,,, we can obtain

T
| @xé 1= MoA | 6 | / g(©)de 1| 6 1.

Thus, by Lemma 2.4(ii), the operator Q has at least one fixed point in PN(€2,.,\ ;).

Above all, if fo = oo and foo = 00, the operator @), has at least two fixed
points P N (Q, \ Q,), that is, (1.1) has at least two positive T-periodic solutions
for 0 < A < Ap.
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(3) If j;, = 0, then fo > 0 and f > 0, that is, there exist positive constants wy,
wa, T1, T9, where r1 < ro, such that
ft,z) >wiz, T€[0,r], te][0,T];
f(t,l‘) Z w2, TE [7‘2, +OO), te [O7T]

Select ¢; = min {wl,wg,min{@ :t€[0,T],T € [rl,rg]}}. Thus ¢; > 0, and

f(t,x) > 1T, Vo €[0,4+00)" T t€0,T].

Assume () is the fixed point of the operator Q,, then Q\p(¢) = p(t), t € [0, T].

Moreover, define ¢’ = (p(t—T10(t)), p(t—71(¢)), ..., p(t—Tn(t))), thus f(¢,¢') > c1¢’.
On the other hand, there exists \g = m, such that
0

T
e lI=ll Qg 2 Acro A @ || /O 9(©)de > ¢ I,

for A > Ag. This is contradictory.
If joo =0, then f9 < co and f™ < oo, that is, there exist positive constants (i,
(2, 71, T2, Where r1 < 73, such that

f(t,.’L') S le’
f(th) S C2§7

ze0,m], tel0,T7];

T € [rg, +00), te€0,T].

Select co = max{@l,cg,max{@ 1t €[0,T],T € [r1,72]}}. Thus ¢z > 0, and
f(t,x) < e, V€ [0,4+00)" T t€0,T].

Assume 1(¢) is the fixed point of the operator @y, then Q1 (t) = ¥(¢), t € [0,T].

Moreover, define ' = (t(t—7o(t)), $(t—71 (1)), .., p(t—7n (1)), thus F(t, 1) < o
On the other hand, there exists \g = m, such that
2B [}

T
1% 1= Qav 1< AexB [ 9 | / g(E)de <) ¢ |,

for 0 < A < Ap. This is also contradictory.
This proves the theorem. O

Corollary 3.1. Suppose that (A0) holds.

(1) If there exists a c1 > 0 such that f(t,x) > 1T for t € [0,T], = € [0, +00)" !,
1 . . _ .. L

when \ > oA T g equation (1.1) has no positive T-periodic solution.

(2) If there exists a ca > 0 such that f(t,x) < coT fort € [0,T], = € [0, +00)"H1,

1 . .. . g, .
—_— 1.1 T- .
when 0 < A < B 7 (e’ equation (1.1) has no positive T-periodic solution

Theorem 3.2. Suppose that (A0) holds and jo = j) = joo = joo = 0.
(1) If f°B < fooo A, when ————— < A < equation (1.1) has at
fooUAfo g(§)dg

least a positive T-periodic solution.

0o 1
(2) If food A > f>B, when oo A T 9@ <
least a positive T-periodic solution.

R DR
fOB [ g(¢)de’

1

A< =BT a0

equation (1.1) has at
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Proof. Still define
®(t) = (¢(t — 70(1)), Bt — 71(1)), ... 9(t — Tn(1)))
and ®(t) = Jnax {o(t — 7:(¢t))}, for ¢ € PN IQ,.

(1) Assume fOB< foooA, then f0< fo, when
then there exists 0 < € < f, such that

1 1
fooo A [ g(&)deE <A< fOB [ g(&)de’

. = <A< ! 7 ,
(foo =)o A [ 9(§)d€ (fO+e)B [y 9(&)ds

for the above ¢, choose r; > 0, such that f(¢,z) < (fO+¢)z for T € [0,7], t € [0,T].
Thus, for all ¢ € PN 0OKY,,, we have 0 < &(¢) < rq, that is

F(&,2(1) < (f° +e)@(1).

Thus, we have

T
@ ISAfP+e)B o /0 9(&)ds <[l oI, (3-3)

for all ¢ € PN ONQ,.,.
On the other hand, there exists H; > 0, such that f(¢,2) > (foo —€)Z for T > H;
and t € [0, T]. Moreover, select 72 = max{2ry, Z1}, obviously, Q,, C Q,, .

Then ®(t) > o || ¢ ||= ora > Hy, for all ¢ € PN IQ,.,, t € [0,T]. Thus

[, @(1) = (foo —€)R(1).

Then, for ¢ € PN 0S,,, we can obtain

T
| Qx¢ [|Z Ao(foo —€)A [ & || A 9(&)dg > o || -

Thus, by Lemma 2.4(ii), the operator @ has at least one fixed point in PN(£2,.,\21),
. e 1. . 1

that is, (1.1) has at least a positive T-periodic solution for TooA T O & <A<

1

fOB [y g(&)dg”
(2) Assume foocA> f>°B, then fo> f°°, when

then there exists 0 <e < fy, such that
1 1
- <A< - ,
(fo—e)aA [y g(§)dE (f>+e)B [y g(§)ds

for the above ¢, choose 1 > 0, such that f(¢,2) > (fo—¢e)z for T € [0,74], t € [0, T].
Thus, for all ¢ € PN IN,.,, we have 0 < &(¢) < rq, that is

1 1
foed T @& <N F=B T g

f(t,2(1) = (fo—2)®(1).

Thus, we have

T
1 Qxé (12 Ao(fo—)A & | / a(€)de > 6, (3.4)
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for all ¢ € PN OQY,,.
On the other hand, there exists Hy > 0, such that f(t,z) < (f* 4 ¢)T for
T > Hy and t € [0,T]. Moreover, select 75 = max{2ry, £2}, obviously, €2, C Q,,-

Then ®(t) > o || ¢ ||= ora > Ho, for all ¢ € PN IQ,.,, t € [0,T]. Thus

Ft, (1) < (f* +e)P(t).
Then, for ¢ € PN 0S,,, we can obtain

T
Qo IS AT +e)B | ¢l /0 g9(&)ds <[l o | -

Thus, by Lemma 2.4(i), the operator @, has at least one fixed point in P N (Q,, \

. . .. 3 . g . 1
Q1), which is the positive T-periodic solution of (1.1) for oo AT 9O <A<
N
f=B [y g(&)d¢’
The proof is completed. O

Corollary 3.2. Suppose h(t) =0, a(t) Z 0, then (A0) holds if fOT a(§)dé > 0 and
Jy la©)de < 7.

4. Example

Example 4.1. Consider the following equations:

& 20 + 6= A1+ sin8t)%,

where h(t) =2, a(t) =1, g(t) =1 +sin 8¢, f(t,z) = %, obviously, they are all

T = % periodic functions in ¢, moreover, 7(t) is an arbitrary Z-periodic continuous

function.
Through some calculations, the conditions of Lemma 2.1 are satisfied,

n >0, (4.1)

z T exp(Z T
e e R
and
1 I T
| oode= [ sinseyae =,
m(1) = min{f(t,2), 0 <t < T, exp(—5) <z < 1}
= mi {2;—f(;sn8t’ 0<t< %, exp(—g) <z<ly= %7
M(1) = max{f(t,z), 0 <t < g, 0<z<1}
:max{%mgtg%ogxgl}:;
Moreover,
f(t,x) 2+cos8t

f° = lim sup max = lim sup max ——— =
s—o+ tel0.3] T a0t €0, F12(2 +2m)
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t 2 8t
foo = lim inf min f(t,) = lim inf min 2t cosdt ,
r—=+ootef0,F] X z+ootelo, =] x(2 + ™)
t 2 9 8t
fo = lim inf min M = lim inf min 2+ cosst — 0,
z—0t t€[0,F] T x—0+ te[o,%]f(g + x")
ft,z) 2+ cos8t

f°° = lim sup max = lim sup max ——— =
z—too tE[0,T] X z—too t€[0,F]2(2 + ™)

Thus, jo = 1, j., = 1, furthermore,

_ 32[exp(Z)—1]?

48[exp(Z)—1]?
Ao 1 _ 48[exp(F)—1] Aoz =

_ _ _ 1
— Am(1) [ g(€)dé ™ ’ BM(1) [ g(¢)dé
Therefore, by Theorem 3.1(1), Eq.(4.1) has at least a positive 7 -periodic solution

s 2
28lexp(2) =1 " nd by Theorem 3.1(2), Eq.(4.1) has at least a positive

s
mYy_112
I-periodic solution for 0 < A < Ag2 = %
2

When n = 5, 7 = 0.7 and A = 10, now A > Ag1, Figure 1 is the numerical
simulation of Example 4.1.

for A > Ag1 =

0.315

0.305 B

0.3 I I I I I I I I I
0

Figure 1. The numerical simulation of Example 4.1.

Example 4.2. Now consider the following equations:

Bt — 7(t))*(2 + cos 8t)
24+ ¢t —7(t)s

@" +2¢" + ¢ = \(1 + sin 8t) (4.2)

x2(24-cos 8t)

note that f(t,z) = —5 5

tinuous function.
Now the conditions of Lemma 2.1 are still satisfied,

, moreover, 7(t) is still an arbitrary 7-periodic con-

_ & op_oge(y) T
T G R e S

I

and

' ¢ = : in8)de = =
| otode= [ asimseyie= 1.
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m(1) = min{f(t,z), 0 <t < %, eXp(—g) <z<1}
2(2 s 8t
= min{%, 0<t< T exp(—3) Sa <1}
B 1
2exp(m) + exp(—2m)’
moreover,
t 2(2 8t
f° = lim sup max ft,2) = lim sup max 35(—&—7002)
20t tE[0,F] T o0t t€[0,5] (2 + z6)
. z(2 + cos 8t)
= lim sup max —— = =0,
s—0t t€0,Z] 2+ af
t 2(2 8t
f°° = lim sup max ftz) = lim sup max LCOS)
z—+oo t€[0,F] X o—too t€[0,X]  x(2 4 20)
. x(2 + cos 8t)
= lim sup max ———= =
z—+too t€[0,Z] 24 a8
Thus, jo = 2,
A 1 16[exp(%) — 1]*[2 exp(7) + exp(—2m)]
01 - T - 2 .
Am(1) [y g(€)dE i

Therefore, by Theorem 3.1(1), Eq.(4.2) has at least two positive F-periodic

solutions for A > A\g1 = 16[6@&)71]2[2C;(p(WHCXp(f%”.
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