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1. Introduction
For the following equation

x′′ = f(t, x(t)), t ∈ R,

where f ∈ C(R/TZ, (0,+∞)), there are many results [3,18] on the periodic solution
of this equation.

However, the systems controlled by feedback loops in engineering, predator-prey
models in ecosystems [8, 12], and value laws in economics in real life all have the
influence of delay factors, so the research on functional differential equations has
already stepped into a climax period [1, 15, 17]. At the same time, many research
methods have been considered, such as the upper and lower solutions method and
monotone iterative technique [10, 16], fixed point theorems [11, 13, 21] and so on
[5, 9, 14,19,20].

Jiang et al. [10] studied the following periodic problem

− x′′ = f(t, x(t), x(t− τ(t))), t ∈ R,

where f ∈ C(R3,R), τ ∈ C(R, [0,+∞)), and they are T -periodic functions. They
established the existence results of T -periodic solutions by using monotone iterative
technique.
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However, for many problems in real life, we only need to consider the properties
of its positive periodic solution. In [21], Wu obtained the existence and multiplicity
of the solutions to the following equation

x′′ + a(t)x = λf(t, x(t− τ0(t)), x(t− τ1(t)), ..., x(t− τn(t))), t ∈ R,

where a ∈ C(R/TZ, (0,+∞)), f ∈ C
(
(R/TZ)× [0,+∞)n+1, [0,+∞)

)
,

τi(t) ∈ C(R/TZ,R), and a(t) satisfies the condition that 0 < a(t) < π2

T for every
t ∈ R.

Li et al. studied the following equation in [13]

x′′ + a(t)x = f(t, x(t), x(t− τ1(t)), ..., x(t− τn(t))), t ∈ R,

where a ∈ C(R/TZ, (0,+∞)), f ∈ C
(
(R/TZ)× [0,+∞)n+1, [0,+∞)

)
,

τi(t) ∈ C(R/TZ, [0,+∞)), they obtained the existence of positive periodic solution
by using the first eigenvalue corresponding to the relevant linear operator and fixed-
point index theory in cones.

In [11], Kang et al. considered the following equation with damped term

x′′ + h(t)x′ + a(t)x = λg(t)f(t, x(t− τ(t))), t ∈ R,

where h ∈ C(R/TZ, [0,+∞)), a ∈ C(R/TZ, [0,+∞)), f ∈ C((R/TZ)×R, [0,+∞)),
τi(t) ∈ C(R/TZ,R), g ∈ C(R/TZ, [0,+∞)). They obtained the existence and multi-
plicity of positive periodic solutions when the coefficients h(t), a(t) and g(t) satisfy∫ T

0
h(ξ)dξ > 0,

∫ T

0
a(ξ)dξ > 0 and

∫ T

0
g(ξ)dξ > 0, respectively, moveover, f is

nondecreasing in the second variable.
Motivated by the above papers, in this paper, we study the existence, multiplic-

ity of positive periodic solutions for the following equation

x′′ + h (t)x′ + a(t)x = λg(t)f(t, x(t− τ0(t)), x(t− τ1(t)), ..., x(t− τn(t))), (1.1)

where h ∈ C(R/TZ,R), a ∈ C(R/TZ,R), f ∈ C
(
(R/TZ)× [0,+∞)n+1, [0,+∞)

)
and f(t, x0, x1, ..., xn) > 0 for (xi ≥ 0, 0 ≤ i ≤ n, (x0, x1, ..., xn) ̸= (0, 0, ..., 0)),
τi(t) ∈ C(R/TZ,R), g ∈ C(R/TZ, [0,+∞)) and

∫ T

0
g(ξ)dξ > 0, λ > 0 is a parame-

ter.
Three highlights should be pointed out. Firstly, compared with the equation

studied in [13, 21], we add the damping term h(t)x′. Secondly, different from [11],
the equation we studied has multiple delays. Thirdly, we relax the restrictions for
the coefficients h(t) and a(t) in [11].

2. Preliminaries
If the unique solution of linear equation

x′′ + h (t)x′ + a(t)x = 0, (2.1)

associated to periodic boundary conditions

x(0) = x(T ), x′(0) = x′(T ) (2.2)
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is trivial, then it is nonresonant. By Fredholm’s alternative theorem, we know that
when (2.1)-(2.2) is nonresonant,

x′′ + h (t)x′ + a(t)x = l(t) (2.3)

has a unique solution and it can be expressed as

x(t) =

∫ T

0

G(t, ξ)l(ξ)dξ,

where G(t, ξ) is the Green’s function of (2.1)-(2.2).
Next we assume that:
(A0) The Green’s function G(t, ξ) of system (2.1)-(2.2), is positive for all (t, ξ) ∈

[0, T ]× [0, T ].
In general, condition (A0) is difficult to establish. However, through the anti-

maximum principle established by Hakl and Torres (see [7]), Chu, Fan and Torres
obtained that (A0) is true in [2]. Describe the above criterion by defining the
following function

σ(h)(t) = exp(

∫ t

0

h(ξ)dξ),

and
σ1(h)(t) = σ(h)(T )

∫ t

0

σ(h)(ξ)dξ +

∫ T

t

σ(h)(ξ)dξ.

Lemma 2.1 (Corollary 2.6, [7]). If a(t) ̸≡ 0 and the following two inequalities∫ T

0

a(ξ)σ(h)(ξ)σ1(−h)(ξ)dξ ≥ 0, (H1)

and
sup

0≤t≤T

{∫ t+T

t

σ(−h)(ξ)dξ
∫ t+T

t

[a(ξ)]+σ(h)(ξ)dξ
}
≤ 4 (H2)

are satisfied, where [a(ξ)]+ = max{a(ξ), 0}. Then (A0) holds.

When (A0) holds, we always denote

A = min
0≤ξ,t≤T

G(t, ξ), B = max
0≤ξ,t≤T

G(t, ξ), σ = A/B. (2.4)

Obviously B > A > 0 and 0 < σ < 1.
Then, let X = C(R/TZ,R), ∥ x ∥= max{|x(t)|

∣∣∣x(t) ∈ X, t ∈ [0, T ]}, and
P = {x(t) ∈ X : x(t) ≥ σ ∥ x ∥, t ∈ [0, T ]}. Moreover, for r > 0, let Ωr = {x ∈ X, ∥
x ∥< r} and

m(r) = min{f(t, x0, x1, ..., xn) : 0 ≤ t ≤ T, σr ≤ xi ≤ r, 0 ≤ i ≤ n};

M(r) = max{f(t, x0, x1, ..., xn) : 0 ≤ t ≤ T, 0 ≤ xi ≤ r, 0 ≤ i ≤ n}.

Define operator:

Qλx(t) = λ

∫ T

0

G(t, ξ)g(ξ)f(ξ, x(ξ − τ0(ξ)), x(ξ − τ1(ξ)), ..., x(ξ − τn(ξ)))dξ.

Therefore, the fixed point of the operator equation x = Qλx is the T -periodic
solution of (1.1).
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Lemma 2.2. Qλ : P → P is completely continuous and Qλ(P ) ⊂ P .

Proof. Since

Qλx(t) ≥ λA

∫ T

0

g(ξ)f(ξ, x(ξ − τ0(ξ)), x(ξ − τ1(ξ)), ..., x(ξ − τn(ξ)))dξ,

and

∥ Qλx(t) ∥≤ λB

∫ T

0

g(ξ)f(ξ, x(ξ − τ0(ξ)), x(ξ − τ1(ξ)), ..., x(ξ − τn(ξ)))dξ,

therefore
Qλx(t) ≥ λA

∥ Qλx(t) ∥
λB

= σ ∥ Qλx(t) ∥ .

Then, according to the Arscoli-Arzele theorem, Qλ is completely continuous.
The proof is completed.

Lemma 2.3. If x ∈ P ∩ ∂Ωr for r > 0, then λAm(r)
∫ T

0
g(ξ)dξ ≤∥ Qλx(t) ∥≤

λBM(r)
∫ T

0
g(ξ)dξ.

Proof. Since x ∈ P ∩ ∂Ωr, it is clear that σr ≤ x(t) ≤ r, that is

Qλx(t) ≥ λA

∫ T

0

g(ξ)m(r)dξ

= λAm(r)

∫ T

0

g(ξ)dξ,

hence ∥ Qλx(t) ∥≥ λAm(r)
∫ T

0
g(ξ)dξ. And

Qλx(t) ≤ λB

∫ T

0

g(ξ)M(r)dξ

= λBM(r)

∫ T

0

g(ξ)dξ,

thus ∥ Qλx(t) ∥≤ λBM(r)
∫ T

0
g(ξ)dξ. The proof is finished.

Lemma 2.4 ( [4,6]). Let X be a Banach space and P be a close convex cone in X.
Ω1, Ω2 are bounded open subsets of X, θ ∈ Ω1, Ω1 ⊂ Ω2. Q : P ∩ (Ω2 \ Ω1) → P
is a completely continuous operator. Assume that Q satisfies one of the following
conditions:

(i) ∥ Qx ∥≥∥ x ∥ for x ∈ P ∩ ∂Ω1, ∥ Qx ∥≤∥ x ∥ for x ∈ P ∩ ∂Ω2;
(ii) ∥ Qx ∥≤∥ x ∥ for x ∈ P ∩ ∂Ω1, ∥ Qx ∥≥∥ x ∥ for x ∈ P ∩ ∂Ω2.

Then Q has at least one fixed point in P ∩ (Ω2 \ Ω1).

3. Main results
Let x = (x0, x1, ..., xn) ∈ [0,+∞)n+1, x △

= max{x0, x1, ..., xn}.
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Next, make the following assumptions about f :

f0 = lim sup
x→0+

max
t∈[0,T ]

f(t, x)

x
, f∞ = lim inf

x→+∞
min

t∈[0,T ]

f(t, x)

x
,

f0 = lim inf
x→0+

min
t∈[0,T ]

f(t, x)

x
, f∞ = lim sup

x→+∞
max
t∈[0,T ]

f(t, x)

x
.

Assume that:
j0 = the number of zeros in set {f0, f∞}; j∞ = the number of infinities in set

{f0, f∞};
j′0 = the number of zeros in set {f0, f∞}; j′∞ = the number of infinities in set

{f0, f∞}.

Theorem 3.1. Suppose that (A0) holds.
(1) If j0 = 1 or 2, when λ > 1

Am(1)
∫ T
0

g(ξ)dξ
> 0, equation (1.1) has at least j0

positive T -periodic solution(s).
(2) If j′∞ = 1 or 2, when 0 < λ < 1

BM(1)
∫ T
0

g(ξ)dξ
, equation (1.1) has at least j′∞

positive T -periodic solution(s).
(3) If j′0 = 0 or j∞ = 0, there is no positive T -periodic solution to equation (1.1)
for sufficiently large or sufficiently small λ > 0, respectively.

Proof. For ϕ ∈ P ∩ ∂Ωr, define

Φ(t) = (ϕ(t− τ0(t)), ϕ(t− τ1(t)), ..., ϕ(t− τn(t)))

and Φ(t) = max
0≤i≤n

{ϕ(t− τi(t))}.

(1) Let r1=1, by Lemma 2.3, we can obtain that there exists λ0= 1
Am(1)

∫ T
0

g(ξ)dξ
>

0, such that

∥ Qλϕ ∥≥ λAm(1)

∫ T

0

g(ξ)dξ >∥ ϕ ∥, ϕ ∈ P ∩ ∂Ω1, λ > λ0.

If f0 = 0, then we have f(t, x) ≤ εx for 0 < x ≤ r2 and t ∈ [0, T ], where ε > 0

satisfies λεB
∫ T

0
g(ξ)dξ < 1, and 0 < r2 < r1 = 1, obviously, Ωr2 ⊂ Ω1.

Then 0 < σr2 = σ ∥ ϕ ∥≤ Φ(t) ≤∥ ϕ ∥= r2, for all ϕ ∈ P ∩ ∂Ωr2 , t ∈ [0, T ], thus

f(t,Φ(t)) ≤ εΦ(t).

From the definition of Qλ, for ϕ ∈ P ∩ ∂Ωr2 , we can obtain

∥ Qλϕ ∥ ≤ λεB

∫ T

0

g(ξ)Φ(ξ)dξ

≤ λεB ∥ ϕ ∥
∫ T

0

g(ξ)dξ <∥ ϕ ∥ .
(3.1)

Thus, by Lemma 2.4(ii), the operatorQλ has at least one fixed point in P∩(Ω1\Ωr2).
If f∞ = 0, then there exists H > 0, such that f(t, x) ≤ εx for x ≥ H and

t ∈ [0, T ], where ε > 0 still satisfies λεB
∫ T

0
g(ξ)dξ < 1. Moreover, select r3 =

max{2, Hσ }, obviously, Ω1 ⊂ Ω
r3

.
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Then Φ(t) ≥ σ ∥ ϕ ∥= σr3 ≥ H, for all ϕ ∈ P ∩ ∂Ωr3 , t ∈ [0, T ], thus

f(t,Φ(t)) ≤ εΦ(t).

Then for ϕ ∈ P ∩ ∂Ωr3 , we can obtain

∥ Qλϕ ∥≤ λεB ∥ ϕ ∥
∫ T

0

g(ξ)dξ <∥ ϕ ∥ .

Thus, by Lemma 2.4(i), the operator Qλ has at least one fixed point in P∩(Ωr3\Ω1).
Above all, if f0 = 0 and f∞ = 0, the operator Qλ has at least two fixed points

in P ∩ (Ωr3 \ Ωr2), that is, (1.1) has at least two positive T -periodic solutions for
λ > λ0.

(2) Let r1 = 1, by Lemma 2.3, we can obtain that there exists λ0 = 1
BM(1)

∫ T
0

g(ξ)dξ

> 0, such that

∥ Qλϕ ∥≤ λBM(1)

∫ T

0

g(ξ)dξ <∥ ϕ ∥, ϕ ∈ P ∩ ∂Ω1, 0 < λ < λ0.

If f0 = ∞, then we have f(t, x) ≥ ηx for 0 < x ≤ r2 and t ∈ [0, T ], where η > 0

satisfies λησA
∫ T

0
g(ξ)dξ > 1, and 0 < r2 < r1 = 1, obviously, Ωr2 ⊂ Ω1.

Then 0 < σr2 = σ ∥ ϕ ∥≤ Φ(t) ≤∥ ϕ ∥= r2, for all ϕ ∈ P ∩ ∂Ωr2 , t ∈ [0, T ], thus

f(t,Φ(t)) ≥ ηΦ(t).

From the definition of Qλ, for ϕ ∈ P ∩ ∂Ωr2 , we can obtain

∥ Qλϕ ∥ ≥ ληA

∫ T

0

g(ξ)Φ(ξ)dξ

≥ λησA ∥ ϕ ∥
∫ T

0

g(ξ)dξ >∥ ϕ ∥ .
(3.2)

Thus, by Lemma 2.4(i), the operator Qλ has at least one fixed point in P∩(Ω1\Ωr2).
If f∞ = ∞, then there exists H ′ > 0, such that f(t, x) ≥ ηx for x ≥ H ′

and t ∈ [0, T ], where η > 0 still satisfies λησA
∫ T

0
g(ξ)dξ > 1. Moreover, select

r3 = max{2, H
′

σ }, obviously, Ω1 ⊂ Ω
r3

.
Then Φ(t) ≥ σ ∥ ϕ ∥= σr3 ≥ H ′, for all ϕ ∈ P ∩ ∂Ωr3 , t ∈ [0, T ], thus

f(t,Φ(t)) ≥ ηΦ(t).

Then for ϕ ∈ P ∩ ∂Ωr3 , we can obtain

∥ Qλϕ ∥≥ λησA ∥ ϕ ∥
∫ T

0

g(ξ)dξ >∥ ϕ ∥ .

Thus, by Lemma 2.4(ii), the operatorQλ has at least one fixed point in P∩(Ωr3\Ω1).
Above all, if f0 = ∞ and f∞ = ∞, the operator Qλ has at least two fixed

points P ∩ (Ωr3 \ Ωr2), that is, (1.1) has at least two positive T -periodic solutions
for 0 < λ < λ0.



804 P. Liu, Y. Fan & L. Wang

(3) If j′0 = 0, then f0 > 0 and f∞ > 0, that is, there exist positive constants ω1,
ω2, r1, r2, where r1 < r2, such that

f(t, x) ≥ ω1x, x ∈ [0, r1], t ∈ [0, T ];
f(t, x) ≥ ω2x, x ∈ [r2,+∞), t ∈ [0, T ].

Select c1 = min
{
ω1, ω2,min{ f(t,x)

x : t ∈ [0, T ], x ∈ [r1, r2]}
}

. Thus c1 > 0, and

f(t, x) ≥ c1x, ∀x ∈ [0,+∞)n+1, t ∈ [0, T ].

Assume φ(t) is the fixed point of the operator Qλ, then Qλφ(t) = φ(t), t ∈ [0, T ].
Moreover, define φ′ = (φ(t−τ0(t)), φ(t−τ1(t)), ..., φ(t−τn(t))), thus f(t, φ′) ≥ c1φ′.

On the other hand, there exists λ0 = 1
c1σA

∫ T
0

g(ξ)dξ
, such that

∥ φ ∥=∥ Qλφ ∥≥ λc1σA ∥ φ ∥
∫ T

0

g(ξ)dξ >∥ φ ∥ ,

for λ > λ0. This is contradictory.
If j∞ = 0, then f0 <∞ and f∞ <∞, that is, there exist positive constants ζ1,

ζ2, r1, r2, where r1 < r2, such that

f(t, x) ≤ ζ1x, x ∈ [0, r1], t ∈ [0, T ];
f(t, x) ≤ ζ2x, x ∈ [r2,+∞), t ∈ [0, T ].

Select c2 = max{ζ1, ζ2,max{ f(t,x)
x : t ∈ [0, T ], x ∈ [r1, r2]}}. Thus c2 > 0, and

f(t, x) ≤ c2x, ∀x ∈ [0,+∞)n+1, t ∈ [0, T ].

Assume ψ(t) is the fixed point of the operator Qλ, then Qλψ(t) = ψ(t), t ∈ [0, T ].
Moreover, define ψ′ = (ψ(t−τ0(t)), ψ(t−τ1(t)), ..., ψ(t−τn(t))), thus f(t, ψ′) ≤ c2ψ′.

On the other hand, there exists λ0 = 1
c2B

∫ T
0

g(ξ)dξ
, such that

∥ ψ ∥=∥ Qλψ ∥≤ λc2B ∥ ψ ∥
∫ T

0

g(ξ)dξ <∥ ψ ∥ ,

for 0 < λ < λ0. This is also contradictory.
This proves the theorem.

Corollary 3.1. Suppose that (A0) holds.
(1) If there exists a c1 > 0 such that f(t, x) ≥ c1x for t ∈ [0, T ], x ∈ [0,+∞)n+1,
when λ > 1

c1σA
∫ T
0

g(ξ)dξ
, equation (1.1) has no positive T -periodic solution.

(2) If there exists a c2 > 0 such that f(t, x) ≤ c2x for t ∈ [0, T ], x ∈ [0,+∞)n+1,
when 0 < λ < 1

c2B
∫ T
0

g(ξ)dξ
, equation (1.1) has no positive T -periodic solution.

Theorem 3.2. Suppose that (A0) holds and j0 = j′0 = j∞ = j′∞ = 0.
(1) If f0B < f∞σA, when 1

f∞σA
∫ T
0

g(ξ)dξ
< λ < 1

f0B
∫ T
0

g(ξ)dξ
, equation (1.1) has at

least a positive T -periodic solution.
(2) If f0σA > f∞B, when 1

f0σA
∫ T
0

g(ξ)dξ
< λ < 1

f∞B
∫ T
0

g(ξ)dξ
, equation (1.1) has at

least a positive T -periodic solution.
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Proof. Still define

Φ(t) = (ϕ(t− τ0(t)), ϕ(t− τ1(t)), ..., ϕ(t− τn(t)))

and Φ(t) = max
0≤i≤n

{ϕ(t− τi(t))}, for ϕ ∈ P ∩ ∂Ωr.

(1) Assume f0B<f∞σA, then f0<f∞, when 1
f∞σA

∫ T
0

g(ξ)dξ
<λ< 1

f0B
∫ T
0

g(ξ)dξ
,

then there exists 0 < ε < f∞, such that

1

(f∞ − ε)σA
∫ T

0
g(ξ)dξ

< λ <
1

(f0 + ε)B
∫ T

0
g(ξ)dξ

,

for the above ε, choose r1 > 0, such that f(t, x) ≤ (f0+ε)x for x ∈ [0, r1], t ∈ [0, T ].
Thus, for all ϕ ∈ P ∩ ∂Ωr1 , we have 0 ≤ Φ(t) ≤ r1, that is

f(t,Φ(t)) ≤ (f0 + ε)Φ(t).

Thus, we have

∥ Qλϕ ∥≤ λ(f0 + ε)B ∥ ϕ ∥
∫ T

0

g(ξ)dξ <∥ ϕ ∥ , (3.3)

for all ϕ ∈ P ∩ ∂Ωr1 .
On the other hand, there exists H1 > 0, such that f(t, x) ≥ (f∞−ε)x for x ≥ H1

and t ∈ [0, T ]. Moreover, select r2 = max{2r1, H1

σ }, obviously, Ωr1 ⊂ Ωr2
.

Then Φ(t) ≥ σ ∥ ϕ ∥= σr2 ≥ H1, for all ϕ ∈ P ∩ ∂Ωr2 , t ∈ [0, T ]. Thus

f(t,Φ(t)) ≥ (f∞ − ε)Φ(t).

Then, for ϕ ∈ P ∩ ∂Ωr2 , we can obtain

∥ Qλϕ ∥≥ λσ(f∞ − ε)A ∥ ϕ ∥
∫ T

0

g(ξ)dξ >∥ ϕ ∥ .

Thus, by Lemma 2.4(ii), the operatorQλ has at least one fixed point in P∩(Ωr2\Ω1),
that is, (1.1) has at least a positive T -periodic solution for 1

f∞σA
∫ T
0

g(ξ)dξ
< λ <

1
f0B

∫ T
0

g(ξ)dξ
.

(2) Assume f0σA>f∞B, then f0>f
∞, when 1

f0σA
∫ T
0

g(ξ)dξ
<λ< 1

f∞B
∫ T
0

g(ξ)dξ
,

then there exists 0<ε<f0, such that

1

(f0 − ε)σA
∫ T

0
g(ξ)dξ

< λ <
1

(f∞ + ε)B
∫ T

0
g(ξ)dξ

,

for the above ε, choose r1 > 0, such that f(t, x) ≥ (f0−ε)x for x ∈ [0, r1], t ∈ [0, T ].
Thus, for all ϕ ∈ P ∩ ∂Ωr1 , we have 0 ≤ Φ(t) ≤ r1, that is

f(t,Φ(t)) ≥ (f0 − ε)Φ(t).

Thus, we have

∥ Qλϕ ∥≥ λσ(f0 − ε)A ∥ ϕ ∥
∫ T

0

g(ξ)dξ >∥ ϕ ∥ , (3.4)



806 P. Liu, Y. Fan & L. Wang

for all ϕ ∈ P ∩ ∂Ωr1 .
On the other hand, there exists H2 > 0, such that f(t, x) ≤ (f∞ + ε)x for

x ≥ H2 and t ∈ [0, T ]. Moreover, select r2 = max{2r1, H2

σ }, obviously, Ωr1 ⊂ Ωr2
.

Then Φ(t) ≥ σ ∥ ϕ ∥= σr2 ≥ H2, for all ϕ ∈ P ∩ ∂Ωr2 , t ∈ [0, T ]. Thus

f(t,Φ(t)) ≤ (f∞ + ε)Φ(t).

Then, for ϕ ∈ P ∩ ∂Ωr2 , we can obtain

∥ Qλϕ ∥≤ λ(f∞ + ε)B ∥ ϕ ∥
∫ T

0

g(ξ)dξ <∥ ϕ ∥ .

Thus, by Lemma 2.4(i), the operator Qλ has at least one fixed point in P ∩ (Ωr2 \
Ω1), which is the positive T -periodic solution of (1.1) for 1

f0σA
∫ T
0

g(ξ)dξ
< λ <

1
f∞B

∫ T
0

g(ξ)dξ
.

The proof is completed.

Corollary 3.2. Suppose h(t) ≡ 0, a(t) ̸≡ 0, then (A0) holds if
∫ T

0
a(ξ)dξ ≥ 0 and∫ T

0
[a(ξ)]+dξ ≤ 4

T .

4. Example
Example 4.1. Consider the following equations:

ϕ′′ + 2ϕ′ + ϕ = λ(1 + sin 8t)
2 + cos 8t

2 + ϕ(t− τ(t))n
, n > 0, (4.1)

where h(t) = 2, a(t) = 1, g(t) = 1 + sin 8t, f(t, x) = 2+cos 8t
2+xn , obviously, they are all

T = π
4 periodic functions in t, moreover, τ(t) is an arbitrary π

4 -periodic continuous
function.

Through some calculations, the conditions of Lemma 2.1 are satisfied,

A =
π
4

[exp(π4 )− 1]2
, B =

π
4 exp(π2 )

[exp(π4 )− 1]2
, σ = exp(−π

2
),

and ∫ π
4

0

g(ξ)dξ =

∫ π
4

0

(1 + sin 8ξ)dξ =
π

4
,

m(1) = min{f(t, x), 0 ≤ t ≤ π

4
, exp(−π

2
) ≤ x ≤ 1}

= min{2 + cos 8t

2 + xn
, 0 ≤ t ≤ π

4
, exp(−π

2
) ≤ x ≤ 1} =

1

3
,

M(1) = max{f(t, x), 0 ≤ t ≤ π

4
, 0 ≤ x ≤ 1}

= max{2 + cos 8t

2 + xn
, 0 ≤ t ≤ π

4
, 0 ≤ x ≤ 1} =

3

2
.

Moreover,

f0 = lim sup
x→0+

max
t∈[0,π4 ]

f(t, x)

x
= lim sup

x→0+
max

t∈[0,π4 ]

2 + cos 8t

x(2 + xn)
= ∞,
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f∞ = lim inf
x→+∞

min
t∈[0,π4 ]

f(t, x)

x
= lim inf

x→+∞
min

t∈[0,π4 ]

2 + cos 8t

x(2 + xn)
= 0,

f0 = lim inf
x→0+

min
t∈[0,π4 ]

f(t, x)

x
= lim inf

x→0+
min

t∈[0,π4 ]

2 + cos 8t

x(2 + xn)
= ∞,

f∞ = lim sup
x→+∞

max
t∈[0,π4 ]

f(t, x)

x
= lim sup

x→+∞
max

t∈[0,π4 ]

2 + cos 8t

x(2 + xn)
= 0.

Thus, j0 = 1, j′∞ = 1, furthermore,

λ01 = 1
Am(1)

∫ T
0

g(ξ)dξ
=

48[exp(π
4 )−1]2

π2 , λ02 = 1
BM(1)

∫ T
0

g(ξ)dξ
=

32[exp(π
4 )−1]2

3π2 exp(π
2 ) .

Therefore, by Theorem 3.1(1), Eq.(4.1) has at least a positive π
4 -periodic solution

for λ > λ01 =
48[exp(π

4 )−1]2

π2 , and by Theorem 3.1(2), Eq.(4.1) has at least a positive
π
4 -periodic solution for 0 < λ < λ02 =

32[exp(π
4 )−1]2

3π2 exp(π
2 ) .

When n = 5, τ = 0.7 and λ = 10, now λ > λ01, Figure 1 is the numerical
simulation of Example 4.1.

0 1 2 3 4 5 6 7 8 9 10
0.3

0.305

0.31

0.315

Figure 1. The numerical simulation of Example 4.1.

Example 4.2. Now consider the following equations:

ϕ′′ + 2ϕ′ + ϕ = λ(1 + sin 8t)
ϕ(t− τ(t))2(2 + cos 8t)

2 + ϕ(t− τ(t))6
, (4.2)

note that f(t, x) = x2(2+cos 8t)
2+x6 , moreover, τ(t) is still an arbitrary π

4 -periodic con-
tinuous function.

Now the conditions of Lemma 2.1 are still satisfied,

A =
π
4

[exp(π4 )− 1]2
, B =

π
4 exp(π2 )

[exp(π4 )− 1]2
, σ = exp(−π

2
),

and ∫ π
4

0

g(ξ)dξ =

∫ π
4

0

(1 + sin 8ξ)dξ =
π

4
,
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m(1) = min{f(t, x), 0 ≤ t ≤ π

4
, exp(−π

2
) ≤ x ≤ 1}

= min{x
2(2 + cos 8t)

2 + x6
, 0 ≤ t ≤ π

4
, exp(−π

2
) ≤ x ≤ 1}

=
1

2 exp(π) + exp(−2π)
,

moreover,

f0 = lim sup
x→0+

max
t∈[0,π4 ]

f(t, x)

x
= lim sup

x→0+
max

t∈[0,π4 ]

x2(2 + cos 8t)

x(2 + x6)

= lim sup
x→0+

max
t∈[0,π4 ]

x(2 + cos 8t)

2 + x6
= 0,

f∞ = lim sup
x→+∞

max
t∈[0,π4 ]

f(t, x)

x
= lim sup

x→+∞
max

t∈[0,π4 ]

x2(2 + cos 8t)

x(2 + x6)

= lim sup
x→+∞

max
t∈[0,π4 ]

x(2 + cos 8t)

2 + x6
= 0.

Thus, j0 = 2,

λ01 =
1

Am(1)
∫ T

0
g(ξ)dξ

=
16[exp(π4 )− 1]2[2 exp(π) + exp(−2π)]

π2
.

Therefore, by Theorem 3.1(1), Eq.(4.2) has at least two positive π
4 -periodic

solutions for λ > λ01 =
16[exp(π

4 )−1]2[2 exp(π)+exp(−2π)]

π2 .
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