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Abstract Under new conditions on weight functions b(x), this paper mainly
considers the exact boundary behavior of solutions to the following boundary
blow-up elliptic problems △∞u = b(x)f(u), x ∈ Ω, u|∂Ω = +∞ for more
general nonlinearities f, where Ω is a bounded domain with smooth boundary
in RN , and b ∈ C(Ω̄) which is positive in Ω.
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1. Introduction and the main results
In this paper, we analyze the exact asymptotic behavior of viscosity solutions to
the following problem

△∞u = b(x)f(u), u > 0, x ∈ Ω, u|∂Ω = ∞, (1.1)

where Ω is a bounded domain with smooth boundary in RN (N ≥ 2), the last
condition means that u(x) → ∞ as d(x) = dist(x, ∂Ω) → 0, and the solution is
called “boundary blow-up solution,” “large solution” or “explosive solution.”

The operator △∞ is the ∞-Laplacian, a highly degenerate elliptic operator given
by

△∞u := ⟨D2uDu,Du⟩ =
N∑

i,j=1

DiuDijuDju,

b satisfies

(b1) b ∈ C(Ω̄) is positive in Ω,

and f satisfies

(f1) f ∈ C1(0,∞), f(0) = 0, f is increasing on (0,∞);
(f2)

∫∞
1

dν

(f(ν))
1
3
<∞.
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Aronsson [1] established that the ∞-Laplacian equation △∞u = 0 is the Euler-
Lagrange equation for smooth absolute minimizers. Because of the high degeneracy
of the ∞-Laplacian, the associated Dirichlet problems may not have classical solu-
tions. Therefore, Crandall, Lions [5], Crandall, Evans, Lions [6] and Crandall, Ishii,
Lions [7] introduced the concept of viscosity solution. Later, Jensen [9] proved the
equivalence of absolute minimizers and viscosity solutions of the Dirichlet prob-
lem to the infinity harmonic equation and the uniqueness of the viscosity solutions.
Since then, the infinity Laplace equation has been considered widely, see [2–10] and
the references therein.

Juutinen and Rossi [10] first studied the existence, uniqueness and boundary
behavior of solutions to the following problem

△N
∞u = uq, q > 1, x ∈ Ω, u|∂Ω = ∞,

with the normalized ∞−Laplacian

△N
∞u :=

1

|Du|2
⟨D2uDu,Du⟩.

When b satisfies (b1) and f satisfies (f1), Mohammed and Mohammed [11, 12]
first supplied a necessary and sufficient condition∫ ∞

a

ds
4
√
F (s)

<∞, ∀a > 0, F (s) =

∫ s

0

f(ν)dν, (1.2)

for the existence of solutions to problem (1.1). Moreover, they showed that

(i) if

b2diam(Ω) < Ψ(0) =

∫ ∞

0

ds
4
√
F (s)

,

then there are constants c0 > 0 and δ > 0 sufficiently small such that for any
solution u ∈ C(Ω) to problem (1.1), it holds

ψ1(b2d(x)) ≤ u(x) ≤ ψ1(b1d(x)) + c0, x ∈ Ωδ := {x ∈ Ω : d(x) < δ},

where b1 =
(
min
x∈Ω

b(x)
)1/4

, b2 =
(
max
x∈Ω

b(x)
)1/4

, and ψ1 satisfies

∫ ∞

ψ1(t)

ds
4
√
F (s)

= t, ∀t > 0; (1.3)

(ii) if b ≡ b0 in Ω and f satisfies the condition that

f(s)/s3 is nondecreasing on (0,∞),

then problem (1.1) has a unique solution.
By means of Karamata regularly varying theory, Wang et al. [18] and [19], the

author [14] and Zhang [21] further showed the boundary behavior of solutions to
problem (1.1).

Next, we introduce two classes of functions.
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Firstly, we denote Λ the set of all positive non-decreasing functions k ∈ C1(0, ν)
which satisfy

lim
t→0+

d

dt

(
K(t)

k(t)

)
= Ck, where K(t) =

∫ t

0

k(s)ds. (1.4)

It is easy to see that for each k ∈ Λ,

lim
t→0+

K(t)

k(t)
= 0 and Ck ∈ [0, 1].

Next, let Θ denote the set of all Karamata functions L̂ which are normalized
slowly varying at zero (the definition can be found in Section 2.) defined on (0, σ]
for some σ > 0 by

L̂(s) = c0 exp

(∫ σ

s

y(τ)

τ
dτ

)
, s ∈ (0, σ], (1.5)

where c0 > 0 and the function y ∈ C[0, σ] with y(0) = 0.

To the best of the author’s knowledge, in the previous papers that consider
the exact asymptotic behavior of the solution u to problem (1.1) near ∂Ω, the
assumption on the weight function b(x) mainly depends on the set Λ. In this paper,
the assumption on the weight function b(x) mainly depends on the set Θ.

Inspired by the above works, in this paper, we also consider the exact asymptotic
behavior of the solution u to problem (1.1) near ∂Ω under the following structure
conditions on b and f.

Suppose b also satisfies the following condition:

(b2) there exist some L ∈ Θ and a positive constant b0 such that

lim
d(x)→0

b(x)

(d(x))−λL(d(x))
= b0

where
λ ≤ 0 and

∫ a

0

s
1−λ
3

(
L(s)

) 1
3 ds <∞ for some a > 0, (1.6)

and f also satisfies

(f3) there exists Cf > 0 such that

lim
s→+∞

H ′(s)

∫ ∞

s

1

H(ν)
dν = Cf , H(s) :=

(
f(s)

)1/3
, ∀s > 0.

In this paper, we mainly use the solution of the problem∫ ∞

ϕ(t)

ds

H(s)
= t, t > 0, (1.7)

to get our estimates.
Our main results are summarized as follows.
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Theorem 1.1. Let f satisfy (f1)-(f3) and b satisfy (b1)-(b2). If Cf > 1 and
4Cf + λ(1− Cf ) > 1, for the unique solution u of problem (1.1), it holds that

lim
d(x)→0

u(x)

ϕ
(
h(d(x))

) = ξ0, (1.8)

where ϕ is uniquely determined by (1.7),

h(t) =

∫ t

0

s
1−λ
3 L

1
3 (s)ds, (1.9)

and

ξ0 =

(
3b0

(4− λ)Cf + (λ− 1)

) 1−Cf
3

. (1.10)

Remark 1.1. For the existence of solutions for problem (1.1), see A. Mohammed
and S. Mohammed [11,12].

Remark 1.2. By the following Proposition 2.6, one can see that when λ < 0, h in
(1.9) satisfies

h(t) ∼=
3

4− λ
t
4−λ
3 L

1
3 (t).

Remark 1.3. Some basic examples of the functions which satisfy (f3) are

(i1) When f(s) = sp, p > 3, Cf = p
p−3 ,

ϕ(t) =
(
((p− 3)t)/3

) 3
3−p , ∀ t > 0.

(i2) When f(s) = sp(ln s)β , p > 3, β ∈ R, s ≥ S0, Cf = p
p−3 .

(i3) When f(s) = spe(ln s)
β

, p > 3, 0 < β < 1, s ≥ S0, Cf = p
p−3 .

(i4) When f(s) = es
β

, γ > 0, s ≥ S0, Cf = 1.

(i5) When f(s) = es ln s, s ≥ S0, Cf = 1.

The outline of this paper is as follows. In sections 2-3, we give some useful
results that will be used in the next section. The proof of Theorem 1.1 will be given
in section 4.

2. Preparation
In this section, we first give a brief account of the definition and properties of
regularly varying functions that will be used in this paper (see [15–17]).

Definition 2.1. A positive measurable function f defined on [a,∞), for some a > 0,
is called regularly varying at infinity with index ρ, written as f ∈ RVρ, if for
each ξ > 0 and some ρ ∈ R,

lim
s→∞

f(ξs)

f(s)
= ξρ. (2.1)

In particular, when ρ = 0, f is called slowly varying at infinity.

Clearly, if f ∈ RVρ, then L(s) := f(s)/sρ is slowly varying at infinity.
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Definition 2.2. A positive measurable function f defined on [a,∞), for some a > 0,
is called rapidly varying at infinity if for each ρ > 1

lim
s→∞

f(s)

sρ
= ∞. (2.2)

A positive measurable function g defined on (0, a) for some a > 0, is regularly
varying at zero with index σ ( written as g ∈ RV Zσ) if t → g(1/t) belongs to
RV−σ. Similarly, g is called rapidly varying at zero if t → g(1/t) is rapidly
varying at infinity.

Proposition 2.1 (Uniform convergence theorem). If f ∈ RVρ, then (2.1) holds
uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2. Moreover, if ρ < 0, then uniform
convergence holds on intervals of the form (a1,∞) with a1 > 0; if ρ > 0, then
uniform convergence holds on intervals (0, a1] provided f is bounded on (0, a1] for
all a1 > 0.

Proposition 2.2 (Representation theorem). A function L is slowly varying at
infinity if and only if it may be written in the form

L(s) = φ(s)exp

(∫ s

a1

y(τ)

τ
dτ

)
, s ≥ a1, (2.3)

for some a1 ≥ a, where the functions φ and y are measurable and for s → ∞,
y(s) → 0 and φ(s) → c0, with c0 > 0.

We call that
L̂(s) = c0exp

(∫ s

a1

y(τ)

τ
dτ

)
, s ≥ a1, (2.4)

is normalized slowly varying at infinity and

f(s) = sρL̂(s), s ≥ a1, (2.5)

is normalized regularly varying at infinity with index ρ ( and written as f ∈
NRVρ).

Similarly, g is called normalized regularly varying at zero with index σ, written
as g ∈ NRV Zσ if t→ g(1/t) belongs to NRV−σ.

A function f ∈ RVρ belongs to NRVρ if and only if

f ∈ C1[a1,∞) for some a1 > 0 and lim
s→∞

sf ′(s)

f(s)
= ρ. (2.6)

Proposition 2.3. If functions L,L1 are slowly varying at infinity, then

(i) Lσ for every σ ∈ R, c1L + c2L1 (c1 ≥ 0, c2 ≥ 0 with c1 + c2 > 0), L ◦ L1 (if
L1(t) → +∞ as t→ +∞), are also slowly varying at infinity.

(ii) For every θ > 0 and t→ +∞, tθL(t) → +∞, t−θL(t) → 0.

(iii) For ρ ∈ R and t→ +∞, ln(L(t))
ln t → 0 and ln(tρL(t))

ln t → ρ.

Proposition 2.4. (i) If f1 ∈ RVρ1 , f2 ∈ RVρ2 with lim
t→∞

f2(t) = ∞, then f1 ◦ f2 ∈
RVρ1ρ2 .

(ii) If f ∈ RVρ, then fα ∈ RVρα for every α ∈ R.
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Proposition 2.5. If a function L be defined on (0, η], is slowly varying at zero.
Then we have

lim
t→0+

L(t)∫ η
t
L(s)
s ds

= 0. (2.1)

If further
∫ η
0
L(s)
s ds converges, then we have

lim
t→0+

L(t)∫ t
0
L(s)
s ds

= 0. (2.2)

Proposition 2.6 (Asymptotic behavior). If a function L is slowly varying at in-
finity, then for a ≥ 0 and t→ ∞,

(i)
∫ t
a
sβL(s)ds ∼= (β + 1)−1t1+βL(t), for β > −1;

(ii)
∫∞
t
sβL(s)ds ∼= (−β − 1)−1t1+βL(t), for β < −1.

Next, we give the precise definition of viscosity solutions for the problem (1.1).

Definition 2.3. A function u ∈ C(Ω) is a viscosity subsolution of the PDE ∆∞u =
b(x)f(u) in Ω if for every φ ∈ C2(Ω), with the property that u − φ has a local
maximum at some x0 ∈ Ω, then

∆∞φ(x0) ≥ b(x0)f(u(x0)).

Definition 2.4. We say a function u ∈ C(Ω) is a viscosity supsolution of the PDE
∆∞u = b(x)f(u) in Ω if for every φ ∈ C2(Ω), with the property that u − φ has a
local minimum at some x0 ∈ Ω, then

∆∞φ(x0) ≤ b(x0)f(u(x0)).

Definition 2.5. A function u ∈ C(Ω) is a viscosity solution of the PDE ∆∞u =
b(x)f(u) in Ω if it is both a subsolution and a supersolution. Finally, by a solution
of (1.1), we mean a function u that is a solution of the PDE △∞u = b(x)f(u)such
that u = ∞ on ∂Ω.

Remark 2.1. It is easy to prove that if u ∈ C2(Ω) is a classical subsolution (su-
persolution) of the PDE ∆∞u = b(x)f(u), then u is a viscosity subsolution (super-
solution) of the PDE ∆∞u = b(x)f(u).

3. Some auxiliary results
Some auxiliary results that will be used in the proof of the theorem are given in
this section.

Lemma 3.1. Let
a(t) = t−λL(t)

and
h(t) =

∫ t

0

s
1−λ
3 (L(s))

1
3 ds,

where t ∈ (0, δ0), λ ≤ 4,
∫ η
0
s

1−λ
3 (L(s))

1
3 ds <∞ for some η > 0 and L ∈ Θ. Then
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(i) lim
t→0+

(h′(t))4

h(t)a(t) =
4−λ
3 and lim

t→0+

th′(t)
h(t) = 4−λ

3 ;

(ii) lim
t→0+

th′′(t)
h′(t) = 1−λ

3 ;

(iii) lim
t→0+

(h′(t))2h′′(t)
a(t) = 1−λ

3 .

Proof. (i) Since h′(t) = t
1−λ
3 (L(t))

1
3 , then

(h′(t))4

h(t)a(t)
=

t
4−4λ

3 L
4
3 (t)

t−λL(t)
∫ t
0
s

1−λ
3 (L(s))

1
3 ds

=
t
4−λ
3 L

1
3 (t)∫ t

0
s

1−λ
3 (L(s))

1
3 ds

and
th′(t)

h(t)
=

t
4−λ
3 L

1
3 (t)∫ t

0
s

1−λ
3 (L(s))

1
3 ds

.

Hence, when λ < 4, it follows by Proposition 2.6 that lim
t→0+

(h′(t))4

h(t)a(t) = lim
t→0+

th′(t)
h(t) =

4−λ
3 ;

when λ = 4, it follows by Proposition 2.5 that lim
t→0+

(h′(t))4

h(t)a(t) = lim
t→0+

th′(t)
h(t) = 0.

(ii) By a direct calculation, we obtain

h′′(t) =
1− λ

3
t−

2+λ
3 (L(t))

1
3 +

1

3
t
1−λ
3 (L(t))−

2
3L′(t)

and
th′′(t)

h′(t)
=

1

3

tL′(t)

L(t)
+

1− λ

3
.

Since L ∈ Θ, lim
t→0+

tL′(t)
L(t) = 0. Therefore,

lim
t→0+

th′′(t)

h′(t)
=

1− λ

3
.

(iii) Since
(h′(t))2h′′(t)

a(t)
=
th′′(t)

h′(t)

(h′(t))3

ta(t)
=
th′′(t)

h′(t)
,

by (ii), we have

lim
t→0+

(h′(t))p−2h′′(t)

a(t)
=

1− λ

3
.

Lemma 3.2. Let f satisfy (f1)-(f2), we get

(i) if f satisfies (f3), then Cf ∈ [1,∞);
(ii) (f3) holds for Cf > 1 if and only if f ∈ NRVρ with ρ > 3. In this case

ρ = 3Cf/(Cf − 1).

(iii) if f satisfies (f3) with Cf = 1, f is rapidly varying at infinity.
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(iv) if f ∈ C2(S0,∞) for some large S0 > 0 and

lim
s→∞

f(s)f ′′(s)

(f ′(s))2
= 1, (3.1)

then f satisfies (f3) with Cf = 1.

Proof. (i) Let Cf ∈ (0,∞] and

I(s) = H ′(s)

∫ ∞

s

dτ

H(τ)
, ∀s > 0.

Integrating I(v) from a (a > 0) to s and integration by parts, we obtain∫ s

a

I(t)dt = H(s)

∫ ∞

s

1

H(ν)
dν −H(a)

∫ ∞

a

1

H(ν)
dν + s− a, ∀s > a.

It follows by the l’Hospital’s rule that

0 ≤ lim
s→∞

H(s)
∫∞
s

dν
H(ν)

s
= lim
s→∞

∫ s
a
I(ν)dν

s
− 1 = lim

s→∞
I(s)− 1 = Cf − 1, (3.2)

i.e., Cf ≥ 1, so (i) holds.
(ii) When (f3) holds with Cf ∈ (1,∞), by (3.10) and (f3), we have that

lim
s→∞

f(s)

sf ′(s)
= lim
s→∞

f1/3(s)
∫∞
s

1
f1/3(ν)

dν

sf ′(s)
∫∞
s

1
f1/3(ν)

dνf
1
3−1(s)

= lim
s→∞

H(s)
∫∞
s

dν
H(ν)

3sH ′(s)
∫∞
s

dν
H(ν)

=
Cf − 1

3Cf
, (3.3)

i.e., f ∈ NRV3Cf/(Cf−1).

Conversely, when f ∈ NRVρ with ρ > 3, i.e., lim
s→∞

sf ′(s)
f(s) = ρ and there exist

sufficiently large constant S0 > 0 and L̂ ∈ Λ1 such that f(s) = sρL̂(s), ∀s ≥ S0.
By 2.2 and Proposition 2.6(i), we have

lim
s→∞

H ′(s)

∫ ∞

s

dν

H(ν)
=

1

3
lim
s→∞

sf ′(s)

f(s)
lim
s→∞

f1/3(s)

s

∫ ∞

s

f−1/3(ν)dν

=
ρ

3
lim
s→0+

s
ρ
3−1(L̂(s))

1
3

∫ ∞

s

ν−
ρ
3

(
L̂(ν)

)− 1
3 dν

=
ρ

ρ− 3
= Cf .

(iii) By Cf = 1 and (3.8), one can see that

lim
s→∞

sf ′(s)

f(s)
= ∞.

Consequently, for an arbitrary p > 1, there exists S0 > 0 such that

f ′(s)

f(s)
≥ (p+ 1)s−1 ∀s ≥ S0.
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Integrating the above inequality from S0 to s, we get

ln
(
f(s)

)
− ln

(
f(S0)

)
≥ (p+ 1)

(
ln s− lnS0

)
∀s ≥ S0,

i.e.,
f(s)

sp
≥ f(S0)s

Sp+1
0

∀s ≥ S0. (3.4)

Letting s→ ∞, by Definition 2.2, we obtain that f is rapidly varying at infinity.
(v) It follows by (3.1) and the l’Hospital’s rule that

lim
s→∞

f(s)

sf ′(s)
= lim
s→∞

f(s)
f ′(s)

s
= lim
s→∞

d

ds

(
f(s)

f ′(s)

)
= 1− lim

s→∞

f(s)f ′′(s)

(f ′(s))2
= 0, (3.5)

i.e.
lim
s→∞

sf ′(s)

f(s)
= ∞.

By the similar proof of (iv), we have that for an arbitrary p > 3, there exists S1 > 0
such that

f(s) ≥ f(S0)

Sp+1
0

sp+1 ∀s ≥ S1. (3.6)

Hence, (
f(s)

) 1
3

s
≥

(
f(S0)

Sp+1
0

) 1
3

s
p−2
3 ∀s ≥ S1. (3.7)

Letting s→ ∞, it follows that

lim
s→∞

(
f(s)

) 1
3

s
= ∞. (3.8)

So, combining with (3.5), we get that

lim
s→∞

f
2
3 (s)

f ′(s)
= lim
s→∞

f(s)

sf ′(s)

s

f
1
3 (s)

= lim
s→∞

f(s)

sf ′(s)
lim
s→0

s

f
1
3 (s)

= 0. (3.9)

By the l’Hospital’s rule and (3.9), we get that

lim
s→∞

H ′(s)

∫ ∞

s

1

H(ν)
dν

= lim
s→∞

1

3f
2
3 (s)

f ′(s)

∫ ∞

s

f−1/3(ν)dν

= lim
s→∞

1

3

∫∞
s
f−1/3(ν)dν

f
2
3 (s)
f ′(s)

= lim
s→∞

1

3

1
2
3 − f ′′(s)f(s)

(f ′(s))2

= 1,

i.e. Cf = 1.
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Lemma 3.3. Let f satisfy (f1)-(f3) and ϕ be the solution to the problem∫ ∞

ϕ(t)

ds

(f(s))
1
3

= t, ∀ t > 0.

Then

(i) −ϕ′(t) =
(
f(ϕ(t))

) 1
3 , ϕ(t) > 0, t > 0, ϕ(0) : = lim

t→0+
ϕ(t) = +∞ and ϕ′′(t) =

1
3

(
f(ϕ(t))

)− 1
3 f ′(ϕ(t)), t > 0;

(ii) ϕ ∈ NRV Z−(Cf−1);
(iii) ϕ′ ∈ NRV Z−Cf

;

(iv) lim
t→0+

ln(ϕ(t))
− ln t = (Cf − 1) and lim

t→0+

ln(f(ϕ(t)))
− ln t = 3Cf .

Proof. By the definition of ϕ and a direct computation, we show that (i) holds.
(ii) It follows from the proof of Lemma 3.1 and Proposition 2.4(ii) that f− 1

3 ∈

RV
−

Cf
Cf−1

. Define L1(t) := f−
1
3 (t)/t

−
Cf

Cf−1 . Then L1 is slowly varying, and − Cf

Cf−1 <

−1 due to Cf ≥ 1. So, It follows by Proposition 2.6, that

lim
t→∞

tf−
1
3 (t)∫∞

t
f−

1
3 (s)ds

= lim
t→∞

tL1(t)t
−

Cf
Cf−1∫∞

t
L1(s)s

−
Cf

Cf−1 ds

=
1

Cf − 1
. (3.10)

Therefore,

lim
t→0+

tϕ′(t)

ϕ(t)
= − lim

t→0+

t(f(ϕ(t)))
1
3

ϕ(t)

= − lim
s→+∞

(f(s))
1
3

∫∞
s

dν

(f(ν))
1
3

s
= −(Cf − 1),

i.e., ϕ ∈ NRV Z−(Cf−1).
(iii) It follows by Lemma 3.2, (i) and (3.10) that

lim
t→0+

tϕ′′(t)

ϕ′(t)
= −1

3
lim
t→0+

f ′(ϕ(t))
∫∞
ϕ(t)

(f(s))−
1
3 ds

(f(ϕ(t)))
2
3

= − lim
s→+∞

f ′(s)
∫∞
s

(f(ν))−
1
3 dν

3(f(s))
2
3

= −1

3
lim

s→+∞

sf ′(s)

f(s)

∫∞
s

(f(ν))−
1
3 dν

s(f(s))−
1
3

= −Cf .

The last result (iv) follows from (ii)-(iii) and Proposition 2.3 (iii).

4. Proof of the Theorem
Theorems 1.1 will be proved in this section.

First, we need the following result.
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Lemma 4.1 (the comparison principle, [12, Lemma 2.5]). Let b satisfy (b1), and
f satisfy (f1). Suppose u, v ∈ C(Ω̄) such that

∆∞u ≥ b(x)f(u) in Ω and ∆∞v ≤ b(x)f(v) in Ω

in the viscosity sense. If u ≤ v on ∂Ω and 0 ≤ v on ∂Ω, then u ≤ v in Ω.

For any δ > 0, we define

Ωδ = {x ∈ Ω : d(x) < δ}.

Because Ω is smooth, there exists δ0 ∈ (0, σ) (σ is given as in the definition of Θ )
such that d ∈ C2(Ωδ0) and |∇d(x)| = 1, ∀ x ∈ Ωδ0 . Hence, ∆∞d = 0 in Ωδ0 in the
viscosity sense.
Proof of Theorem 1.1. Fix a small ε > 0. Let δε ∈ (0, δ02 ), ρ ∈ (0, δε) and define

ūε = (ξ0 + ε)ϕ
(
h(d(x))− h(ρ)

)
for any x ∈ Ω2δε\Ω̄ρ =: Ω−

ρ

and
uε = (ξ0 − ε)ϕ

(
h(d(x)) + h(ρ)

)
for any x ∈ Ω2δε−ρ =: Ω+

ρ ,

where h is given as in (1.9) and ξ0 is given as in (1.10).
Let

η(t) = (ξ0 + ε)ϕ
(
h(t)− h(ρ)

)
, t ∈ (ρ, 2δε).

Obviously, h and ϕ are increasing and decreasing in their respective definition do-
mains. So, when δε is small enough, η is decreasing in (ρ, 2δε). Let ζ be the inverse
of η. By a direct computation, we have

ζ ′(t) =
1

η′(ζ(t))
=
(
(ξ0 + ε)ϕ′

(
h(ζ(t))− h(ρ)

)
h′(ζ(t))

)−1 (4.1)

and

ζ ′′(t) = −(ξ0 + ε)−2
(
ϕ′
(
h(ζ(t))− h(ρ)

)
h′(ζ(t))

)−3

×
(
ϕ′′
(
h(ζ(t))− h(ρ)

)(
h′(ζ(t))

)2
+ ϕ′

(
h(ζ(t))− h(ρ)

)
h′′(ζ(t))

)
.(4.2)

Let(x0, ψ) ∈ Ω−
ρ × C2(Ω−

ρ ) be a pair such that ūε ≥ ψ in a neighborhood N of x0
and ūε(x0) = ψ(x0) Then φ = ζ(ψ) ∈ C2(Ω−

ρ ), and

d(x) ≤ φ(x) in N, d(x0) = φ(x0).

Because ∆∞d = 0 in Ω−
ρ , we get ∆∞φ(x0) ≥ 0. A simple computation shows

that
∆∞φ = ζ ′′(ψ)(ζ ′(ψ))2|Dψ|4 + (ζ ′(ψ))3∆∞ψ.

Since ∆∞φ(x0) ≥ 0 and ζ ′ < 0, we have

∆∞ψ(x0) ≤ −ζ ′′(ψ(x0))(ζ ′(ψ(x0)))−1|Dψ(x0)|4.

Moreover, since |Dd(x)| = 1 for x ∈ Ω−
ρ and d− φ attains a local maximum at x0,

it follows that
|Dd(x0)| = |ζ ′(ψ(x0))Dψ(x0)|.
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So
∆∞ψ(x0) ≤ −ζ ′′(ψ(x0))(ζ ′(ψ(x0)))−5.

Combing with (4.1) and (4.2), we further get

∆∞ψ(x0) ≤ (ξ0 + ε)3
(
ϕ′(h(ζ(ψ(x0)))− h(ρ)

))3
×

[
ϕ′′(h(ζ(ψ(x0)))−h(ρ))(h′(ζ(ψ(x0)))

)4
ϕ′
(
h(ζ(ψ(x0)))−h(ρ)

) +h′′(ζ(ψ(x0)))
(
h′(ζ(ψ(x0)))

)2]
.

Since
lim
ρ→0

h(d(x))

h(d(x))− h(ρ)
= 1, for any x ∈ Ω2δε\Ω̄ρ =: Ω−

ρ ,

we can choose ρ small enough such that

1 <
h(d(x))

h(d(x))− h(ρ)
< 1 + αε, for ∀ε > 0 and any x ∈ Ω2δε\Ω̄ρ =: Ω−

ρ ,

where α is a sufficiently small positive constant.
Combing with −ϕ′′(t)t

ϕ′(t) > 0, t > 0, we can obtain

∆∞ψ(x0)− b(x0)f(ūε(x0))

≤ (ξ0+ε)
3 (−ϕ′(h(d(x0))−h(ρ)))3 a(d(x0))[−ϕ′′(h(d(x0))−h(ρ))(h(d(x0))−h(ρ))

ϕ′
(
h(d(x0))−h(ρ)

)
×

(
h′(d(x0))

)4
h(d(x0))a(d(x0))

h(d(x0))

h(d(x0))− h(ρ)
−
h′′(d(x0))

(
h′(d(x0))

)2
a(d(x0))

− (ξ0 + ε)
−3 b(x0)

a(d(x0))

f(ūε(x0))(
−ϕ′

(
h(d(x0))− h(ρ)

))3
]

≤ (ξ0+ε)
3 (−ϕ′(h(d(x0))−h(ρ)))3 a(d(x0))[−ϕ′′(h(d(x0))−h(ρ))(h(d(x0))−h(ρ))

ϕ′
(
h(d(x0))−h(ρ)

)
×

(
h′(d(x0))

)4
h(d(x0))a(d(x0))

(1 + αε)−
h′′(d(x0))

(
h′(d(x0))

)2
a(d(x0))

− (ξ0 + ε)
−3 b(x0)

a(d(x0))

f(ūε(x0))(
−ϕ′

(
h(d(x0))− h(ρ)

))3
]

=: ((ξ0 + ε))
3 (−ϕ′(h(d(x0))− h(ρ)

))3
a(d(x0)))I(x0).

Notice that h(d(x0)) → 0 as δε → 0 (and thereby x0 tends to the boundary of Ω.)
Then, by Lemmas 3.1 and 3.3, we get that

I(x0) →
Cf (4− λ)− (1− λ)

3
− b0 (ξ0 + ε)

3
Cf−1 +

Cf (4− λ)

3
αε as δε → 0.

By the choice of ξ0, we have I(x0) < 0 provided α > 0 and δε ∈ (0, δ02 ) small
enough. Thus

∆∞ψ(x0) ≤ b(x0)f(ūε(x0)),

i.e., ūε is a supersolution of equation (1.1) in Ω−
ρ .
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Next, in a similar way, we will prove that uε is a subsolution of equation (1.1)
in Ω+

ρ .
Let

η(t) = (ξ0 − ε)ϕ
(
h(t) + h(ρ)

)
, t ∈ (0, 2δε − ρ).

Obviously, h and ϕ are increasing and decreasing in their respective definition do-
mains. So, when δε is small enough, η is decreasing in (0, 2δε − ρ). Let ζ be the
inverse of η. By a direct computation, we have

ζ ′(t) =
1

η′(ζ(t))
=
(
(ξ0 − ε)ϕ′

(
h(ζ(t)) + h(ρ)

)
h′(ζ(t))

)−1 (4.3)

and

ζ ′′(t) = −(ξ0 − ε)−2
(
ϕ′
(
h(ζ(t)) + h(ρ)

)
h′(ζ(t))

)−3

×
(
ϕ′′
(
h(ζ(t)) + h(ρ)

)(
h′(ζ(t))

)2
+ ϕ′

(
h(ζ(t)) + h(ρ)

)
h′′(ζ(t))

)
.(4.4)

Let(x0, ψ) ∈ Ω+
ρ × C2(Ω+

ρ ) be a pair such that uε ≤ ψ in a neighborhood N of x0
and uε(x0) = ψ(x0) Then φ = ζ(ψ) ∈ C2(Ω+

ρ ), and

d(x) ≥ φ(x) in N, d(x0) = φ(x0).

Because ∆∞d = 0 in Ω+
ρ , we get ∆∞φ(x0) ≤ 0. A simple computation shows that

∆∞φ = ζ ′′(ψ)(ζ ′(ψ))2|Dψ|4 + (ζ ′(ψ))3∆∞ψ.

Since ∆∞φ(x0) ≤ 0 and ζ ′ < 0, we have

∆∞ψ(x0) ≥ −ζ ′′(ψ(x0))(ζ ′(ψ(x0)))−1|Dψ(x0)|4.

Moreover, since |Dd(x)| = 1 for x ∈ Ω+
ρ and d− φ attains a local minimum at x0,

it follows that
|Dd(x0)| = |ζ ′(ψ(x0))Dψ(x0)|.

So
∆∞ψ(x0) ≥ −ζ ′′(ψ(x0))(ζ ′(ψ(x0)))−5.

Combing with (4.3) and (4.4), we further get

∆∞ψ(x0) ≥ (ξ0 + ε)3
(
ϕ′(h(ζ(ψ(x0))) + h(ρ)

))3
×

[
ϕ′′(h(ζ(ψ(x0))) + h(ρ)

)(
h′(ζ(ψ(x0)))

)4
ϕ′
(
h(ζ(ψ(x0))) + h(ρ)

) + h′′(ζ(ψ(x0)))
(
h′(ζ(ψ(x0)))

)2]
.

Since
lim
ρ→0

h(d(x))

h(d(x)) + h(ρ)
= 1, for any x ∈ Ω2δε−ρ =: Ω+

ρ ,

we can choose ρ small enough such that

1− αε <
h(d(x))

h(d(x)) + h(ρ)
< 1, for ∀ε > 0 and any x ∈ Ω2δε−ρ =: Ω+

ρ ,

where α is a sufficiently small positive constant.
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Combing with −ϕ′′(t)t
ϕ′(t) > 0, t > 0, we can obtain

∆∞ψ(x0)− b(x0)f(ūε(x0))

≥ (ξ0+ε)
3 (−ϕ′(h(d(x0))+h(ρ)))3 a(d(x0))[−ϕ′′(h(d(x0))+h(ρ))(h(d(x0))+h(ρ))

ϕ′
(
h(d(x0))+h(ρ)

)
×

(
h′(d(x0))

)4
h(d(x0))a(d(x0))

h(d(x0))

h(d(x0)) + h(ρ)
−
h′′(d(x0))

(
h′(d(x0))

)2
a(d(x0))

− (ξ0 + ε)
−3 b(x0)

a(d(x0))

f(ūε(x0))(
−ϕ′

(
h(d(x0)) + h(ρ)

))3
]

≥ (ξ0+ε)
3 (−ϕ′(h(d(x0))+h(ρ)))3 a(d(x0))[−ϕ′′(h(d(x0))+h(ρ))(h(d(x0))+h(ρ))

ϕ′
(
h(d(x0))+h(ρ)

)
×

(
h′(d(x0))

)4
h(d(x0))a(d(x0))

(1− αε)−
h′′(d(x0))

(
h′(d(x0))

)2
a(d(x0))

− (ξ0 + ε)
−3 b(x0)

a(d(x0))

f(ūε(x0))(
−ϕ′

(
h(d(x0)) + h(ρ)

))3
]

=: ((ξ0 + ε))
3 (−ϕ′(h(d(x0)) + h(ρ)

))3
a(d(x0)))I(x0).

Notice that h(d(x0)) → 0 as δε → 0 (and thereby x0 tends to the boundary of Ω.)
Then, by Lemmas 3.1 and 3.3, we get that

I(x0) →
Cf (4− λ)− (1− λ)

3
− b0 (ξ0 − ε)

3
Cf−1 − Cf (4− λ)

3
αε as δε → 0.

By the choice of ξ0, we have I(x0) > 0 provided α > 0 and δε ∈ (0, δ02 ) small
enough. Thus

∆∞ψ(x0) ≥ b(x0)f(uε(x0)),

i.e., uε is a supersolution of equation (1.1) in Ω+
ρ .

Now let u be an arbitrary solution of problem (1.1). We assert that there exists
a positive constant M such that

u ≤M + ūε, x ∈ Ω−
ρ , (4.5)

uε ≤ u+M, x ∈ Ω+
ρ . (4.6)

In fact, we may choose a large M such that

u ≤M + ūε on Γ2δ : = {x ∈ Ω : d(x) = 2δε},

where M := max{u(x) : d(x) ≥ 2δε}.
By (f1), we see that ūε+M is also a supersolution of equation (1.1) in Ω−

ρ . Since
u < ūε on Γβ := {x ∈ Ω : d(x) = ρ}, (3.6) follows by Lemma 3.1.

In a similar way, we can show (3.7).
Hence, x ∈ Ω−

ρ ∩ Ω+
ρ , by letting ρ→ 0, we have

ξ0 − ε− M

ϕ
(
h(d(x))

) ≤ u(x)

ϕ
(
h(d(x))

)
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and
u(x)

ϕ
(
h(d(x))

) ≤ ξ0 + ε+
M

ϕ
(
h(d(x))

) .
Moreover, it follows by Lemma 3.3 that ϕ(0) = ∞, hence, we obtain

ξ0 − ε ≤ lim inf
d(x)→0

u(x)

ϕ
(
h(d(x))

) and lim sup
d(x)→0

u(x)

ϕ
(
h(d(x))

) ≤ ξ0 + ε.

Thus the proof is finished by letting ε→ 0.
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