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Abstract In this study, starting from the rigid-lid shallow water equations,
an amplitude evolution equation is derived by using the multi-scale and pertur-
bation analysis method. The resulting equation has complex coefficients and is
called (2+1)-dimensional generalized Ginzburg-Landau(gGL) equation. Then,
the (2+1)-dimensional time-space fractional gGL equation is obtained by us-
ing the semi-inverse method and fractional variational principle in the first
time. Finally, the conservation laws and exact solutions of the fractional gGL
equation are discussed on the basis of Lie symmetry analysis and exp(−ϕ(ζ))-
expansion method. By analyzing these solutions, we conclude that there are
solitary waves and rogue waves in shallow wake flows.
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1. Introduction
On June 4, 1942, at 10 am, the US B-17 bomber fleet spotted the Japanese destroyer
“arashi” in a clear zigzagged line on the sea, and tracked down the unsuspecting
Japanese aircraft carriers. In the ensuing minutes, three Japanese aircraft carriers,
the “akita”, “kaga” and “soru”, became fireballs and sank. This battle rewrote
the end of midway and the whole of the Second World War. What looks like an
ordinary shallow wake flow can be deadly.

Shallow wake flows are defined as the tail-like flows that are formed when the
flows are split by obstacles(such as islands and headlands) and the transverse length
scale of the flow, is much larger than the water depth. In daily life, the most common
shallow wake flows are the wakes formed by ships pushing the sea water forward
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and under the action of wave-making resistance. Ship wake flows [7] are usually her-
ringbone line of waves, consisting of diffuse and transverse waves. The existence of
these wake flows will directly affect the ship’s navigation safety and pose a potential
threat to the ship’s concealment. In the Marine environment, shallow wake flows
also be formed, which are the island wake flow. With the development of science
and technology, satellite images and aerial photographs show that the wake creates
vortices in the leeward areas of islands and headlands. This indicates that the water
flow patterns of island wake flows presents a complex vortex pattern. These vortices
trap sediments and pollutants, worsening water quality around islands and affecting
entire ecosystems. Therefore, the study of island wake flows plays a decisive role in
the location of drainage outlets, sludge treatment outlets, Marine parks and nature
reserves [5].

The interest in shallow wake flows has been growing continually during the last
few years because of their practical significance. In 1997, Chen & Jirka deduced
the modified Orr-Sommerfeld equation to describe the stability characteristics of
wake flows. After that, Shumm, Berger & Monkewitz and Leweke & Provansal dis-
covered that the Ginzburg-Landanu(GL) equation could better describe the wake
flows motion, and they determined the coefficients of the equation based on exper-
imental data. In 2003, Kolyshkin & Ghidaoui derived the (1+1)-dimensional GL
equation from the two-dimensional shallow water equation under the rigid-lid as-
sumption [14]. On such basis, starting from the shallow water equation, we use the
multiple-scale and perturbation method to deduce a higher dimensional model, that
is (2+1)-dimensional gGL equation. The one-dimensional equations in space [29]
have limitations in the study of shallow wake flows, while the two-dimensional equa-
tions we consider are more in line with the actual environment.

A fractional partial differential equation(FPDE) is an equation that contains
fractional derivatives or fractional integrals. The FPDE is an important branch
of modern mathematics, and it can be defined in a variety of ways [26, 28]. In
the real world, because many phenomena cannot be described by integral order
differential equations [3], fractional order differential equations [16] have been highly
valued by the mathematical circle in recent years, and have been proposed in many
fields such as fluid mechanics, material mechanics, biology, plasma physics, finance
and so on [27]. The conservation law of constructing differential equations is an
important subject of mathematical physics research. The conservation law reflects
the phenomenon that physical quantities do not change with time [13, 25]. Lie
symmetry analysis is an effective tool for studying conservation laws of FPDEs
[19–22]. In general, Lie symmetry analysis can obtain the symmetry and invariance
of the system. A symmetry corresponds to a conservation law, and the invariant
performance is used to check the accuracy of numerical results.

In order to explain more characteristics related to shallow wake flow through the
gGL equation, the equation was converted into time-space fractional equation, and
multiple conservation laws were obtained by applying the method of lie symmetry
analysis. In addition to, the search for exact solutions of FPDEs [18] is becoming an
emerging area of current research. Up to now, many effective and powerful methods
to obtaining exact solutions have been proposed, such as finite difference method [6],
sub-equation method [30], tan(ϕ/2)-expansion method [17], fractional variational
iteration method [24], exp-function method [4], (G′/G)-expansion method [8] and
so on [9,31,32]. In this paper, we use the exp(−ϕ(ζ))-expansion method [1] to solve
the fractional gGL equation, and finally obtain some more accurate results.
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2. Derivation procedure of (2+1)-dimensional gGL
equation

In the realm of hydraulic, ocean and atmospheric engineering, the shallow water
equations can be used to explain various engineering applications. The shallow wa-
ter equations can be derived from the Navier-Stokes equations by using vertically-
averaged quantities. In this section, based on the two-dimensional shallow water
equations under the rigid-lid [14], (2+1)-dimensional gGL equation is derived by us-
ing the multi-scale and perturbation analysis method. The two-dimensional shallow
water equations in the following form

∂u

∂x
+

∂v

∂y
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
+

cf
2h

u
√
u2 + v2 = 0, (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

∂p

∂y
+

cf
2h

v
√
u2 + v2 = 0, (2.3)

where x and y are the spatial coordinates, u and v are the velocity components, p
is the dimensionless pressure, cf is the friction coefficient and h is the water depth.

Introducing the stream function φ(x, y, t) as well as u = ∂φ
∂y , v = ∂φ

∂x to represent
the perturbation field. Then, combining them with Eqs.(2.1)-(2.3) to eliminate
pressure p, we can obtain

(∆φ)t + φy(∆φ)x − φx(∆φ)y +
s

2
∆φ

√
φ2
x + φ2

y

+
s

2
√
φ2
x + φ2

y

(φ2
yφyy + 2φxφyφxy + φ2

xφxx) = 0,
(2.4)

where ∆ is two-dimensional Laplace operator and s =
cf
h , subscripts express the

partial derivatives of the independent variables x,y and t. The slow variation of this
function in time and space can denote the wave packet.

In order to balance the nonlinearity of space, we transform the scale of time and
space with the small parameter ε and a group velocity cg

T = ε2t, X = ε(x− cgt), Y = εy, S = s(1− ε2), (2.5)

where ε ≪ 1 is used to measure the weakness of nonlinearity.
Using the chain rule, the differential operators ∂/∂t, ∂/∂x and ∂/∂y in the form

∂

∂t
→ ∂

∂t
− εcg

∂

∂X
+ ε2

∂

∂T
,

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
,

∂

∂y
→ ∂

∂y
+ ε

∂

∂Y
.

Supposing the stream function has the following expansion form

φ = φ0(y) + εφ1 + ε2φ2 + ε3φ3 + · · · , (2.6)

where φ0 = u0(y)y, φi, (i = 1, · · · , n) are functions of x, y, t,X, Y, T .
Substituting (2.5) and (2.6) into Eq.(2.4), then taking the square root and col-

lecting the terms of ε gives

ε1 :φ1xxt + φ1yyt + φ0yφ1yyx + φ0yφ1xxx − φ1xφ0yyy

+
1

2
S[φ0yφ1xx + 2φ0yφ1yy + φ1yφoyy] = 0,

(2.7)
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ε2 :



φ2xxt + φ2yyt + φ0yφ2yyx + φ0yφ2xxx − φ2xφ0yyy +
1

2
S[φ0yφ2xx

+ 2φ0yφ2yy + φ2yφoyy] = cg(φ1Xxx + φ1Xyy)− 2φ1Xxt

− 3φ0yφ1Xxx − φ1yφ1xxx − φ1yφ1yyx − φ0yφ1Xyy + φ1xφ1yyy

+ φ1Xφ0yyy − 2φ1Y yt − 2φ0yφ1Y yx − 1

2
S[φ1xxφ1y + 2φ1Xxφ0y

+ 2φ1yyφ1y + φ1xφ1xy − 2φ0yφ0yy + 4φ0yφ1Y y],

(2.8)

ε3 :



φ3xxt + φ3yyt + φ0yφ3yyx + φ0yφ3xxx − φ3xφ0yyy +
1

2
S[φ0y·

φ3xx + 2φ0yφ3yy + φ3yφoyy] = cg(φ2Xyy + φ2Xxx + 2φ1XXx+

2φ1Y Y y)− φ1xxT − φXXt − φ1yyT − φ1Y Y t − 2φ2Xxt − 2φ2Y yt−
3φ0yφ2Xxx − 3φ0yφ1XXx − φ0yφ2Xyy − φ1yφ2xxx − 3φ1yφ1Xxx−
φ1yφ2yyx − φ1yφ1yyX − φ2yφ1xxx + φ1xφ2xxy + 2φ1xφ1Xxy+

φ1xφ2yyy + φ2xφ1xxy + φ2xφ1yyy + φ1Xφ1xxy + φ1Xφ1yyy+

φ2Xφ0yyy − 2φ0yφ2Y yx − 2φ0yφ1Y yX − φ0yφ1Y Y x − 2φ1yφ1Y yx

− φ1Y φ1xxx − φ1Y φ1yyx + φ1xφ1xxY + 3φ1xφ1Y yy

+ 3φ1xφ1Y yy −
1

2
S[φ2xφ1xx + 2φ0yφ2Xx + φ0yφ1XX + φ1y·

φ2xx + 2φ1yφ2yy + 2φ2yφ1yy + φ1xφ2xy + φ2xφ1xy + φ1xφ1Xy

+ φ1Xφ1xy +
φ2
1xφ1xx

φ0y
− φ0yφ1xx − 2φ0yφ1yy − 2φ1y

+ φ0yy + 4φ0yφ2Y y + 2φ0yφ1Y Y 4φ1yφ1Y y + 2φ1Y φ1yy

+ 2φ2Y φ0yy + φ1xφ1Y x].

(2.9)

where on account of the small parameter ε is much less than one, so the high power
of ε can be omitted.

We can assume that perturbation function φ1 in Eq.(2.6) has the form

φ1 = A(X,Y, T )ϕ1(y) exp[ik(x− ωt)] + c.c, (2.10)

where A is function of slowly varying amplitude, k is parameter, ω is the wave speed
and c.c is complex conjugate.

Substituting this function into Eq.(2.8), the function φ2 can be obtained as

φ2 = φ20 + φ21 + φ22 + φ23

= AA∗ϕ20(y) +AXϕ21(y) exp[ik(x− ωt)]

+AY ϕ22(y) exp[ik(x− ωt)] +A2ϕ23(y) exp[2ik(x− ωt)] + c.c,

(2.11)

here φ21 is to balance the nonlinear terms which are proportional to AX and
exp[ik(x − ωt)] on the right-hand side of Eq.(2.8), and substituting φ2 into the
Eq.(2.8) to get the corresponding terms as follows

ϕ22y(u0 − ω +
u0S

ik
) + ϕ22y

Su0y

2ik
+ ϕ21(k

2ω − k2u0 − u0yy −
u0kS

2i
)

=ϕ1y[2ω − 2u0 +
S(2u0 − u0y)i

2k
] + ϕ1

u0yS

2k
,
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similarly, φ20, φ23 and φ24 exist to balance corresponding nonlinear terms, then
arranging the terms proportional to AA∗ϕ20(y), AY ϕ22(y) exp[ik(x− ωt)] and
A2ϕ23(y) exp[2ik(x− ωt)] respectively yields

2Su0ϕ20yy + u0ySϕ20y

=ik(ϕ1yϕ
∗
1yy − ϕ∗

1yϕ1yy + ϕ1ϕ
∗
1yyy − ϕ∗

1ϕ1yyy)−
1

2
S[k2(ϕ∗

1ϕ1y + ϕ1ϕ
∗
1y)

+ 2(ϕ∗
1yϕ1yy + ϕ∗

1yyϕ1y)],

ϕ21yy(u0 − ω +
u0S

ik
) + ϕ21y

u0yS

2ik
+ ϕ21(k

2ω − k2u0 − u0yy −
u0kS

2i
)

=ϕ1
1

ik
(−2k2ω + 3k2u0 + u0yy − k2cg − iku0S) + ϕ1yy

1

ik
(cg − u0),

ϕ23yy[Su0 + 2ik(u0 − ω)] + ϕ23ySu0 − ϕ23[8ik
3(u0 − ω) + 2iku0yy + 2Sk2u0]

=ik(ϕ1ϕ1yyy − ϕ1yϕ1yy)−
1

2
S(2ϕ1yϕ1yy − 3k2ϕ1ϕ1y).

Putting φ1 and φ2 as well as Eqs.(2.10) and (2.11) into Eq.(2.9), sorting out
the linear and non-linear terms which proportional to exp[ik(x−ωt)]. A whole new
model to describe the amplitude evolution of shallow wake flows can be given as

AT + a1A+ a2AXX + a3AY Y + a4AXY + a5|A|2A = 0, (2.12)

where 

a1 =(Su0φ1yy + Su0y −
1

2
Sk2u0φ1)/ξ,

a2 =[φ1(2icgk + ikω − 3iku0 −
1

2
Su0)− φ21(cgk

2 + 2k2ω

− 3k2u0 − u0yy + iSu0k) + φ21yy(cg − u0)]/ξ

a3 =[φ1(ikω − iku0 + Su0) + φ1y2cg + φ22Su0y

+ φ22y(2ikω − 2iku0 + 2Su0)]/ξ,

a4 =[−φ1y2uo − φ21Su0y + φ21y(2ikω − 2iku0 − 2Su0)− φ22(cgk
2

+ 2k2ω − u0yy − 3u0k
2 + ikSu0) + φ22yy(cg − u0)]/ξ,

a5 =[φ1(k
3φ20yyy +

1

2
Sk2φ20y) + φ∗

1(k
3ϕ23yyy +

1

2
Sk2φ23y) + φ∗

1y

− Sφ23yy + φ1ySφ20yy − φ∗
1yyφ23y − φ1yyφ20y]/ξ,

ξ =k2φ1 − φ1yy.

The (2+1)-dimensional gGL equation is obtained by considering the spatial fac-
tor y on the basis of the (1+1)-dimensional GL equation. It does not simply increase
derivative terms related to y, but generates a cross-coupling term. Similar to the
form of the nonlinear Schrödinger equation, it is also a complex function. We
hypothesized that the new gGL equation could exhibit more propagation charac-
teristics of shallow wake flows and have many characteristics similar to Schrödinger
equation.
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3. Time-space fractional (2+1)-dimensional gGL
equation

In the last section, we successfully derived the (2+1)-dimensional gGL equation de-
scribing shallow wake flows. However, in the actual atmospheric and ocean system,
the propagation process of shallow wake flows is complex and diverse, and the par-
tial differential equation of integer order is far from enough to describe. Therefore,
in this section, we will introduce another brand-new model called the time-space
fractional (2+1)-dimensional gGL equation to further explore more about the prop-
agation properties of shallow wake flows.

In order to get the target function, we suppose that X → ix, Y → iy, T → it
Eq.(2.12) can become the follow nonstationary gGL equation

iAt + a1A− a2Axx − a3Ayy − a4Axy + a5|A|2A = 0. (3.1)

Because A = A(x, y, t) is a complex function and not a real function, we in-
troduce a pair of potential functions p(x, y, t) and q(x, y, t), substitute A(x, y, t) =
p(x, y, t) + iq(x, y, t) into Eq.(3.1), we obtain

− qt + a1p− a2pxx − a3pyy − a4pxy + a5p(p
2 + q2)

+ i[pt + a1q − a2qxx − a3qyy − a4qxy + a5q(q
2 + p2)] = 0,

(3.2)

which can be divided into two second-order equations as follows

− qt + a1p− a2pxx − a3pyy − a4pxy + a5p(p
2 + q2) = 0, (3.3)

pt + a1q − a2qxx − a3qyy − a4qxy + a5q(q
2 + p2) = 0. (3.4)

Furthermore, a trial-functional H(p) is constructed to find the variational prin-
ciple of the Eqs.(3.3) and (3.4)

J(p, q) =

∫
R

∫
R

∫
T

[ptq +
a1
2
q2 +

a2
2
q2x +

a3
2
q2y +

a4
2
qxqy

+
a5
4
(2p2q2 + q4) +H(p)]dxdydt,

(3.5)

where H(p) is an unknown function consisting of p and the derivatives of p which
will be solved later. Then, taking the variation of p, we get the following Euler-
Lagrange equation [2]

− qt + a5pq
2 +

δH

δP
= 0, (3.6)

there the meaning of δH
δP is He’s variational differential [10]

δH

δp
=
∂H

∂p
− ∂

∂t
(
∂H

∂pt
)− ∂

∂x
(
∂H

∂px
)− ∂

∂y
(
∂H

∂py
)

+
∂2

∂x2
(
∂H

∂pxx
) +

∂2

∂y2
(
∂H

∂pyy
) +

∂2

∂x∂y
(
∂H

∂pxy
) + · · · .

Since both Eq.(3.3) and Eq.(3.6) are satisfied, δH
δP can be expressed as

δH

δp
= a1p− a2pxx − a3pyy + a5p

3, (3.7)
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therefore, H = a1

2 p+ a2

2 p2x + a3

2 p2y +
a4

2 pxpy +
a5

4 p4, Eq.(3.5) can be rewritten as

J(p, q) =

∫
R

∫
R

∫
T

[ptq +
a1
2
(p2 + q2) +

a2
2
(p2x + q2x) +

a3
2
(p2y + q2y)

+
a4
2
(pxpy + qxqy) +

a5
4
(p2 + q2)2]dxdydz.

(3.8)

On substituting p = A+A∗

2 , q = iA
∗−A
2 into the functional, where A∗ is the

conjugate function of A and A∗ = p − iq, the following needed variation principle
is expressed as

J(A) =

∫
R

∫
R

∫
T

[
i

4
(A−A∗)(At +A∗

t ) +
a1
2
AA∗ +

a2
2
(AxA

∗
x)

+
a3
2
(AyA

∗
y) +

a4
2
(AxA

∗
y +A∗

xAy) +
a5
4
(AA∗)2]dxdydz,

(3.9)

form this we have the Lagrangian form of (2+1)-dimensional nonstationary gGL
equation

La =
i

4
(A∗ −A)(At +A∗

t ) +
a1
2
AA∗ +

a2
2
(AxA

∗
x)

+
a3
2
(AyA

∗
y) +

a4
2
(AxA

∗
y +A∗

xAy) +
a5
4
(AA∗)2.

(3.10)

Equivalently, the Lagrangian form of the time-space fractional order of (2+1)-
dimensional nonstationary gGL equation can be written as

Fr =
i

4
(A−A∗)(Dα

t A+Dα
t A

∗) +
a1
2
AA∗ +

a2
2
(Dβ

xA ·Dβ
xA

∗)

+
a3
2
(Dω

yA ·Dω
yA

∗
y) +

a4
2
(Dβ

xA ·Dω
yA

∗ +Dβ
xA

∗ ·Dω
yA) +

a5
4
(AA∗)2,

(3.11)

where something like Dγ
z g(z) represents the mRL fractional definition [11, 12] and

is specifically defined as

Dγ
z g(z) =

1

Γ(1− γ)

d

dz

{∫ z

a

dδ
[(δ)− f(a)]

(z − δ)γ

}
, 0 ≤ γ < 1,

and, the integration by parts rule is∫ b

a

(dκ)γf(z)Dγ
z g(z) = Γ(1 + γ)[g(z)f(z)]ba −

∫ b

a

(dz)γg(z)Dγ
z f(z),

f(z), g(z) ∈ [a, b].

Then, the functional of the time-space fractional order of (2+1)-dimensional
nonstationary gGL equation has the form

JFr(A
∗) =

∫
x

(dx)β
∫
y

(dy)ω
∫
t

(dt)αFr(A∗, Dα
t A

∗, Dβ
xA

∗, Dω
yA

∗). (3.12)

Applying the rule of integration by parts, optimizing the variation of the functional
and making the δJFr(A) = 0, as well as

JFr(A) =

∫
x

(dx)β
∫
y

(dy)ω
∫
t

(dt)α[
∂Fr

∂A∗ −Dα
t (

∂Fr

∂Dα
t A

∗ )

−Dβ
x(

∂Fr

∂Dβ
xA∗

)−Dω
y (

∂Fr

∂Dω
yA

∗ )]δJFr = 0.

(3.13)
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The Euler-Lagrange equation of (2+1)-dimensional time-space fractional nonsta-
tionary gGL equation can be written in the form

∂Fr

∂A∗ −Dα
t (

∂Fr

∂Dα
t A

∗ )−Dβ
x(

∂Fr

∂Dβ
xA∗

)−Dω
y (

∂Fr

∂Dω
yA

∗ ) = 0. (3.14)

Finally, substituting Fr which is the Eq.(3.11) into the Euler-Lagrange equation,
the (2+1)-dimensional time-space fractional nonstationary gGL equation takes the
form

iDα
t A+ a1A− a2D

2β
x A− a3D

2ω
y A− a4D

β
xD

ω
yA+ a5|A|2A = 0. (3.15)

Introducing a inverse transformation x → ix′, y → iy′, t → it′, and the apostro-
phe of independent variable is ignored. The fractional nonstationary gGL equation
is changed into the (2+1)-dimensional time-space fractional gGL equation as follows

Dα
t A+ a1A+ a2D

2β
x A+ a3D

2ω
y A+ a4D

β
xD

ω
yA+ a5|A|2A = 0. (3.16)

The fractional derivative of the time-space fractional gGL equation are related to
the wave propagation in shallow wake flows with fractal properties. The fractional
derivative may due to superdiffusive wave propagation, other terms correspond to
wave interaction due to the nonlinear properties of the media. Thus, Eq.(3.16) can
describe fractal processes of the shallow wake flows.

4. Conservation laws of time-space fractional gGL
equation

There are many methods to construct the conservation law of fractional partial
differential equations. Considering the close relationship between symmetry and
conservation law, in this section, we use the Lie symmetry method to obtain new
conservation quantities of time-space fractional (2+1)-dimensional gGL equation by
utilizing the invariance of the equation under infinitesimal transformation. For the
convenience of understanding, we divide the content into two parts to elaborate.

4.1. Lie symmetry analysis
Introducing the following one-parameter lie group of point transformations, the
time-space fractional (2+1)-dimensional gGL equation is invariant under the lie
group 

x̄ → x+ εξ1(x, y, t, A) + o(ε2),

ȳ → y + εξ2(x, y, t, A) + o(ε2),

t̄ → t+ ετ(x, y, t, A) + o(ε2),

Ā → A+ εη(x, y, t, A) + o(ε2),

Dα
t Ā → Dα

t A+ εηαt (x, y, t, A) + o(ε2),

D2β
x Ā → D2β

x A+ εη2βx (x, y, t, A) + o(ε2),

D2ω
y Ā → D2ω

y A+ εη2ωy (x, y, t, A) + o(ε2),

Dβ
xD

ω
y Ā → Dβ

xD
ω
yA+ εηβωx,y(x, y, t, A) + o(ε2),

(4.1)
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where ε is the infinitesimal group parameter, ξ1, ξ2, τ, η are infinitesimal generator
functions and ηαt , η

2β
x , η2ωy , ηβωx,y are extension functions defined as

ηαt =Dα
t (η) + ξ1D

α
t (Ax)−Dα

t (ξ1Ax) + ξ2D
α
t (Ay)−Dα

t (ξ2Ay)

+Dα
t (Dt(τ)A)−Dα+1

t (τA) + τDα+1
t (A),

(4.2)

η2βx =D2β
x (η) +Dβ

x(τD
β
x(At))−D2β

x (τAt) +Dβ
x(ξ2D

β
x(Ay))

−D2β
x (ξ2Ay) +D2β

x (Dx(ξ1)A)−D2β+1
x (ξ1A) +Dβ

x(ξ1D
β+1
x (A))

+ ξ1D
2β
x (Ax) + τD2β

x (At) + ξ2D
2β
x (Ay),

(4.3)

η2ωy =D2ω
y (η) +Dω

y (τD
ω
y (At))−D2ω

y (τAt) +Dω
y (ξ1D

ω
y (Ax))

−D2ω
y (ξ1Ax) +D2ω

y (Dy(ξ2)A)−D2ω+1
y (ξ2A) +Dω

y (ξ2D
ω+1
y (A))

+ ξ2D
2ω
y (Ay) + τD2ω

y (At) + ξ1D
2ω
y (Ax),

(4.4)

ηβωx,y =Dβ
xD

ω
y (η) +Dβ

x(τD
ω
y (At))−Dβ

xD
ω
y (τAt) +Dβ

x(ξ1D
ω
y (Ax))

−Dβ
xD

ω
y (ξ1Ax) +Dβ

xD
ω
y (Dy(ξ2)A)−Dβ

xD
ω+1
y (ξ2A) +Dβ

x(ξ2D
ω+1
y (A))

+ ξ2D
β
xD

ω
y (Ay) + τDβ

xD
ω
y (At) + ξ1D

β
xD

ω
y (Ax),

(4.5)

here D2γ
z g = Dγ

z [D
γ
z g] and Dα

t , D
β
x , D

ω
y are the total differential operators with

respect to the independent variables x, y, t respectively, which have the forms

Dt =
∂

∂t
+A

∂

∂A
+Att

∂

∂At
+Axt

∂

∂Ax
+Ayt

∂

∂Ay
+ · · · ,

Dx =
∂

∂x
+Ax

∂

∂A
+Axx

∂

∂x
+Atx

∂

∂At
+Ayx

∂

∂Ay
+ · · · ,

Dy =
∂

∂y
+Ay

∂

∂A
+Ayy

∂

∂Ay
+Ayt

∂

∂At
+Axy

∂

∂Ax
+ · · · .

(4.6)

Taking the infinitesimal transformations to generate the symmetry vector N

N = ξ1(x, y, t, A)
∂

∂x
+ ξ2(x, y, t, A)

∂

∂y
+ τ(x, y, t, A)

∂

∂t
+ η(x, y, t, A)

∂

∂A
, (4.7)

where the coefficient functions ξ1, ξ2, τ, η are to be determined. Due to the invariance
of the equation Eq.(3.16), the vector field can be obtained

Pr(4)N(Λ)|Λ=0 = 0, (4.8)

here Λ denotes the time-space fractional (2+1)-dimensional gGL equation. The
invariant conditions yields

τ(x, y, t, A)|t=0 = 0, ξ1(x, y, t, A)|x=0 = 0, ξ2(x, y, t, A)|y=0 = 0.

In consideration of the generalized Leibnitz rule [23] and the generalized chain
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rule, the prolongation form of symmetry operator ηαt after calculation is

ηαt =Dα
t η + (ηA − αDt(τ))D

α
t A−ADα

t ηA + µα

+

∞∑
m=1

[

α

m

Dα
t ηA −

 α

m+ 1

Dm+1
t (τ)]Dα−m

t (A)

−
∞∑

m=1

α

m

Dm
t (ξ1)D

α−m
t Ax −

∞∑
m=1

α

m

Dm
t (ξ2)D

α−m
t Ay,

(4.9)

where

µα =

∞∑
m=2

m∑
n=2

m∑
k=2

r∑
n−α

α

m

 1

r!

tm−l

Γ(m+ 1− α)
(−A)r

∂n

∂tn
(Ak−r)

∂m−n+kn

∂tm−n∂Ak
.

And similarly, the prolongation forms of η2βx , η2ωy , ηβωx,y can be written as

η2βx =D2β
x η + (ηA − βDx(ξ1))D

2β
x A−AD2β

x ηA + µ2β +

∞∑
m=1

[2β

m


·Dm

x ηA −

 2β

m+ 1

Dm+1
x (ξ1) +

 β

m+ 1

Dβ
x(ξ1)

]
D2β−m

x A

+

∞∑
m=1

[β

m

−

2β

m

]
Dβ

x(τ)D
2β−m
x (At) +

∞∑
m=1

[β

m


−

2β

m

]
Dm

x (ξ2) ·D2β−m
x (Ay) + ξ1D

2β
x (Ax) + τD2β

x (At) + ξ2D
2β
x (Ay),

(4.10)

η2ωy =D2ω
y η + (ηA − ωDy(ξ2))D

2ω
y A−AD2ω

y ηA + µ2ω +

∞∑
m=1

[2ω

m


·Dm

y ηA −

 2ω

m+ 1

Dm+1
y (ξ2) +

 ω

m+ 1

Dm
y (ξ2)

]
D2ω−m

y A

+

∞∑
m=1

[ω

m

−

2ω

m

]
Dω

y (τ)D
2ω−m
y (At) +

∞∑
m=1

[ω

m

−

2ω

m

]
·Dm

y (ξ1)D
2ω−m
y (Ax) + ξ1D

2ω
y (Ax) + τD2ω

y (At) + ξ2D
2ω
y (Ay),

(4.11)
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ηβωx,y =Dβ
xD

ω
y η + (ηA − ωDy(ξ2))D

β
xD

ω
yA−ADβ

xD
ω
y ηA + µβ+ω

+

∞∑
m=1

[β + ω

m

Dm
y ηA −

ω + ω

m+ 1

Dm+1
y (ξ2) +

 ω

m+ 1

Dm
y (ξ2)

]

·Dβ
xD

ω−m
y A+

∞∑
m=1

[ω

m

−

β + ω

m

]
Dω

y (τ)D
β
xD

ω−m
y (At)

+

∞∑
m=1

[ω

m

−

ω + β

m

]
Dm

y (ξ1)D
β
xD

ω−m
y (Ax) + ξ1D

β
xD

ω
y (Ax)

+ τDβ
xD

ω
y (At) + ξ2D

β
xD

ω
y (Ay).

(4.12)

Applying the second prolongation to Eq.(3.16),the symmetry determining equa-
tion is given as

ηαt + a2η
2β
x + a3η

2ω
y + a4η

βω
x,y + (a1 + 2a5AA∗)η = 0. (4.13)

Substituting Eq.(4.9)-Eq.(4.12) into Eq.(4.13),and sorting out similar terms, the
infinitesimal generator functions can be determined in the form as

ξ1 =
b1x+ b2y

β
+ b3, ξ2 =

b1y + b2x

ω
+ b4, τ =

2b1t

α
+ b5, η = b1A, (4.14)

where bi, i = 1 · · · 4 are arbitrary constants. Hence, we obtain the explicit expression
of the infinitesimal operators as follows

N1 =
∂

∂x
, N2 =

∂

∂y
, N3 =

∂

∂t
, N4 =

y

β

∂

∂x
+

x

ω

∂

∂y
,

N5 =
x

β

∂

∂x
+

y

ω

∂

∂y
+

2t

α

∂

∂t
+A

∂

∂A
.

(4.15)

Since we have solved the symmetric operators and the conservation vector as-
sociated with the time-space fractional (2+1)-dimensional gGL equation, multiple
conservation laws are obtained in the next section.

4.2. Conservation laws
It is well known that the conservation laws of the (2+1)-dimensional time-space
fractional gGL equation satisfy the equation given by

Dt(C
t) +Dx(C

x) +Dy(C
y) = 0, (4.16)

where Ct, Cx and Cy are called the conserved vectors.
A formal Lagrangian of Eq.(3.16) can be presented as

= ς(x, y, t)(Dα
t A+ a1A+ a2D

2β
x A+ a3D

2ω
y A+ a4D

β
xD

ω
yA+ a5|A|2A), (4.17)

here ς(x, y, t) denotes a new dependent variable. The adjoint equation is introduced
as

F =
δ

δA
= 0, (4.18)
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where δ
δA is Euler-Lagrange operator can be defined as follows

δ

δA
=

∂

∂A
+ (Dα

t )
∗ ∂

∂Dα
t A

+ (D2β
x )∗

∂

∂D2β
x A

+ (D2ω
y )∗

∂

∂D2ω
y A

+ (Dβ
xD

ω
y )

∗ ∂

∂D2ω
y A

,

(4.19)

where (Dα
t )

∗, (D2β
x )∗, (D2ω

y )∗ and (Dβ
xD

ω
y )

∗ are the adjoint operators of the (Dα
t ),

(D2β
x ), (D2ω

y ) and (Dβ
xD

ω
y ) respectively.

Then, the Lie characteristic function ℵ is given by

ℵ = η − τAt − ξ1Ax − ξ2Ay, (4.20)

as well as

ℵ1 = −Ax, ℵ2 = −Ay, ℵ3 = −At, ℵ4 = − y

β
Ax − x

ω
Ay,

ℵ5 = −A− x

β
Ax +

y

ω
Ay −

2t

α
At.

The fractional Noether operator for the variable t has the following from

Ct = τ +

m−1∑
k=0

(−1)kDα−1−k
t (ℵ)Dk

t

( ∂

∂(Dα
t A)

)
− (−1)mJ

(
ℵ, Dm

t

( ∂

∂(Dα
t A)

))
,

(4.21)

where m = [α] + 1 and ,for any two functions f(x, y, t), g(x, y, t),J is defined as

J(f, g) =
1

Γ(m− α)

∫ t

0

∫ b

t

f(x, y, r)g(x, y, s)

(s− r)α+1−m
dsdr.

Equivalently, the fractional Noether operators for the x and y are writing as

Cx =ξ1 +

n−1∑
k=0

(−1)kDβ−1−k
x (ℵ)Dk

x

( ∂

∂(Dβ
xA)

)
− (−1)nJ1

(
ℵ, Dn

x

( ∂

∂(Dβ
xA)

))
,

(4.22)

Cy =ξ2 +

e−1∑
k=0

(−1)kDω−1−k
y (ℵ)Dk

t

( ∂

∂(Dω
yA)

)
− (−1)eJ2

(
ℵ, De

y

( ∂

∂(Dω
yA)

))
,

(4.23)

and
J1(f, g) =

1

Γ(n− β)

∫ x

0

∫ b

x

f(r, y, t)g(s, y, t)

(s− r)β+1−n
dsdr,

J2(f, g) =
1

Γ(e− ω)

∫ y

0

∫ b

y

f(x, r, t)g(x, s, r)

(s− r)ω+1−n
dsdr.
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By putting ℵi, i = 1 · · · 5 into the Noether operators, the conservation laws of
the (2+1)-dimensional time-space fractional gGL equation can be obtained. For
the sake of brevity, let’s take ℵ5 as an example to calculate by using the preceding
formula

Ct1 =ςDα−1
t (η − τAt − ξ1Ax − ξ2Ay)

+ J [(η − τAt − ξ1Ax − ξ2Ay), ςt],

Cx1 =a2ςD
2β−1
x (η − τAt − ξ1Ax − ξ2Ay)

+ J1[(η − τAt − ξ1Ax − ξ2Ay), a2ςx],

Cy1 =a3ςD
2ω−1
y (η − τAt − ξ1Ax − ξ2Ay)

+ J2[(η − τAt − ξ1Ax − ξ2Ay), a3ςy].

5. Exact solutions of time-space fractional gGL
equation

In this section, the exp(−ϕ(ζ))-expansion method [1] has been utilized for finding
new exact solutions of (2+1)-dimensional time-space fractional gGL equation. New
soliton solutions of the model have been constructed.

For our goal, we wish to obtain the following travelling wave solution of the form

A(x, y, t) = U(ζ)eiτ , ζ =
xβ

Γ(1 + β)
+

yω

Γ(1 + ω)
− vtα

Γ(1 + α)
,

τ =
−kxβ

Γ(1 + β)
+

−lyω

Γ(1 + ω)
+

wtα

Γ(1 + α)
+ θ,

(5.1)

where v is the soliton velocity, k and l are the soliton frequencies, w is the soliton
wave number and θ is the phase constant.

Putting the above wave transformation into the fractional gGL equation Eq.(3.16)
and decomposing into real and imaginary parts as follows

(a1 + k2a2 + l2a3 + kla4)U − vU
′
+ (a2 + a3 + a4)U

′′
+ a5U

3 = 0, (5.2)

and
wU − [2a2k + 2a3l + (k + l)a4]U

′
= 0, (5.3)

where ′ denotes the derivative with respect to ζ. Substituting Eq.(5.3) into Eq.(5.2),
an ordinary differential equation is obtained as

b1U + b2U
′′
+ a5U

3 = 0, (5.4)

where

b1 = a1 + k2a2 + l2a3 + kla4 −
wv

2a2k + 2a3l + (k + l)a4
, b2 = a2 + a3 + a4.

Balancing the highest order derivative and nonlinear term in the above equation
gives N = 1. Then we assume that Eq.(5.4) has a truncated series as follows

U(ζ) = c0 + c1exp(−ϕ(ζ)), (5.5)
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where c0, c1 are constants and ϕ(ζ) satisfies the auxiliary ordinary differential equa-
tion given by

ϕ
′
(ζ) = exp(−ϕ(ζ)) + µexp(ϕ(ζ)) + λ. (5.6)

Substituting Eq.(5.5) into Eq.(5.4) gets a polynomial in exp(−ϕ(ζ)), collecting
all terms with the same degree of exp(−ϕ(ζ)) and equating each coefficient to zero
yields, a set of equations is obtained as following

(exp(−ϕ(ζ))0 : b1c0 + b2c1λµ+ a5c
3
0 = 0,

(exp(−ϕ(ζ))1 : b1c1 + 2b2c1µ+ b2c1λ
2 + 3a5c

2
0 = 0,

(exp(−ϕ(ζ))2 : 3b2c1λ+ 3a5c0c1 = 0,

(exp(−ϕ(ζ))3 : 2b1c1 + a5c
3
1 = 0.

Maple software was used to solve the above equations, the values of the constants
c0, c1, µ can be calculated as set 1

c1 = ±i

√
2
√
b2√
3

,

c0 = ±i

√
b1b22a5c1 + 2b1b22√

3b22a
2
5 + b1a5c1 + 2b32a5

,

µ = − b1
a5c1

+
b22
a25c1

λ2.

and set 2

c1 = ±i

√
2
√
b2√
3

,

c0 = λ = 0,

µ = − b1
2b2

,

For set 1, as when the following solutions can be obtained, when λ2 − 4µ > 0
and µ ̸= 0, then

A11(x, y, t) =± iei(
−kxβ

Γ(1 + β)
+

−lyω

Γ(1 + ω)
+

wtα

Γ(1 + α)
+ θ)

×
{ √

b1b22a5c1 + 2b1b22√
3b22a

2
5 + b1a5c1 + 2b32a5

±
√

2b2c1
3

·
(
a5b1c1−b22λ

2

a2
5c1

)√
4a5c1b1+(a2

5c1−4b22)λ
2

4a2
5c1

tanh
[√ 4a5c1b1+(a2

5c1−4b22)λ
2

4a2
5c1

(ζ + C)
]
− λ

}
.

When λ2 − 4µ < 0 and µ ̸= 0, then

A12(x, y, t) =± iei(
−kxβ

Γ(1 + β)
+

−lyω

Γ(1 + ω)
+

wtα

Γ(1 + α)
+ θ)

×
{ √

b1b22a5c1 + 2b1b22√
3b22a

2
5 + b1a5c1 + 2b32a5

∓
√

2b2c1
3
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·
(
a5b1c1−b22λ

2

a2
5c1

)√
4a5c1b1+(a2

5c1−4b22)λ
2

4a2
5c1

tan
[√ 4a5c1b1+(a2

5c1−4b22)λ
2

4a2
5c1

(ζ + C)
]
− λ

}
.

When λ2 − 4µ > 0 and µ = 0 and λ ̸= 0, then

A13(x, y, t) =± iei(
−kxβ

Γ(1 + β)
+

−lyω

Γ(1 + ω)
+

wtα

Γ(1 + α)
+ θ)

×
{ √

b1b22a5c1+2b1b22√
3b22a

2
5+b1a5c1+2b32a5

+

√
2b2c1

3 λ

cosh(λ(ζ+C))+sinh(λ(ζ+C))−1

}
.

When λ2 − 4µ = 0 and µ ̸= 0, λ ̸= 0, then

A14(x, y, t) =± iei(
−kxβ

Γ(1 + β)
+

−lyω

Γ(1 + ω)
+

wtα

Γ(1 + α)
+ θ)

×
[ √

b1b22a5c1 + 2b1b22√
3b22a

2
5 + b1a5c1 + 2b32a5

+

√
2b2c1λ

2(ζ + C)

2
√
3λ(ζ + C) + 2

]
.

When λ2 − 4µ = 0 and µ = 0, λ = 0, then

A15(x, y, t) =± iei(
−kxβ

Γ(1 + β)
+

−lyω

Γ(1 + ω)
+

wtα

Γ(1 + α)
+ θ)

×
[ √

b1b22a5c1 + 2b1b22√
3b22a

2
5 + b1a5c1 + 2b32a5

+

√
2b2c1

2
√
3(ζ + C)

]
.

For set 2 the following solutions can be obtained, when λ2 − 4µ > 0 and µ ̸= 0,
then

A21(x, y, t) =± 2iei(
−kxβ

Γ(1 + β)
+

−lyω

Γ(1 + ω)
+

wtα

Γ(1 + α)
+ θ)

·
{√b1

3
coth

[√2b1
b2

(ζ + C)
]}

.

When λ2 − 4µ < 0 and µ ̸= 0, then

A22(x, y, t) =± 2iei(
−kxβ

Γ(1 + β)
+

−lyω

Γ(1 + ω)
+

wtα

Γ(1 + α)
+ θ)

·
{√b1

3
cot

[√2b1
b2

(ζ + C)
]}

.

When λ2 − 4µ = 0 and µ = 0, λ = 0, then

A23(x, y, t) = ±2iei(
−kxβ

Γ(1 + β)
+

−lyω

Γ(1 + ω)
+

wtα

Γ(1 + α)
+ θ)

[ √
b1√

3(ζ + C)

]
,

where C is the constant of integration.
These solutions are travelling wave solutions that provide strong evidence for the

existence of solitary waves in shallow wake flows. Obviously, A11, A13, A21, A22 are
hyperbolic function solutions, A12 are trigonometric function solutions and periodic
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solutions with the spatial variables x and y, which indicates that the propagation
of shallow wake flows is a cyclical phenomena. In addition to, A14, A15, A23 are
rational function solutions, in particular, as ζ approaches zero, the A15, A23 get
bigger. This reflects that the (2+1)-dimensional fractional gGL equation has rogue
wave solution, and the shallow wake flows have rogue wave with a high crest at a
certain moment.

6. Conclusion
In this paper, for the first time, a (2+1)-dimensional gGL equation describing shal-
low wake flows propagation is obtained by using the multi-scale and perturbation
analysis method. Furthermore, in order to explore more propagation rules, we ex-
tended the integer (2+1)-dimensional gGL equation to the fractional order equation
of time-space, and found for the first time that the (2+1)-dimensional time-space
fractional gGL equation is more suitable to describe the actual situation in the
atmosphere and ocean. In addition to,using the Lie symmetry, the conservation
laws of the (2+1)-dimensional time-space fractional gGL equation are explored. Fi-
nally, exp(−ϕ(ζ))-expansion method is used to obtain the exact solutions of the
new model. We find that there are solitary waves and rogue wave in the shallow
wake flows, and the propagation has periodicity.
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