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DARBOUX TRANSFORMATIONS,
MULTISOLITONS, BREATHER AND ROGUE
WAVE SOLUTIONS FOR A HIGHER-ORDER
DISPERSIVE NONLINEAR SCHRÖDINGER

EQUATION
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Abstract In this paper, dynamic of a higher-order dispersive nonlinear Schrö-
dinger equation is investigated. Firstly, we obtain the determinant represen-
tation of the N-fold Darboux transformations of the Schrödinger equation.
Then based on the above analysis, we get the one-soliton, two-soliton and the
breather wave solution. Furthermore, the first-order rogue wave is derived by
means of a Taylor expansion of the breather wave. Finally, by selecting some
special parameters and drawing the 3-D and 2-D graphs to better describe the
dynamic traits of those solutions.
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1. Introduction
Nonlinear partial differential equations (NLPDEs) can be used as models for many
complex physical phenomena, including mathematics, plasma physics, fluid me-
chanics, aerodynamics, atmospheric oceans, etc [3–5,7,12,17,22,28,31]. Therefore,
searching exact solutions of NLPDEs plays a rather significant part in the fields
of nonlinear science. Recently, the completely integrable nonlinear Schrödinger
equations (NLSEs) attract an increasing attention in natural science and mathe-
matics. The Hirota bilinear method [1,6], Darboux transformation scheme [24,30],
Riemann-Hilbert approach [9] and the inverse scattering method [23] are used to
solve NLSE. Moreover, the research of solution of NLSE promotes better analysis
of NLPDEs [13, 20, 21]. Akhmediev and Ankiewicz have obtained rogue wave solu-
tions and rational solutions of the standard self-focusing NLSE through traditional
Darboux transformation scheme [2]. Li-Ping Xu has constructed exact solutions of
two higher order nonlinear Schrödinger equations by applying homogeneous balance
principle and F-expansion method [27]. The rogue wave solution is a type of special
rational solution, rogue waves be called killer waves, are higher and steeper than all
the other waves around them [8]. In addition, rogue waves have been considered by
sailors as a threaten to shipping and are believed to have been responsible for the
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unexplained losses of vessels [8]. Due to this feature of rogue waves, the research of
rogue waves has become more and more important.

In this paper, we mainly study the higher-order dispersive nonlinear Schrödinger
equation, reads

iqt+qxx+2q|q|2+τ(qxxxx+6q2xq
∗+4q|qx|2+8|q|2qxx+2q2q∗xx+6|q|4q) = 0, (1.1)

where q(x, t) is the complex envelope and τ denotes the strength of higher-order
linear and nonlinear effects [25]. Hai-Qiang Zhang and Bo Tian have obtained
conservation laws, soliton solutions and modulational instability of Eq. (1.1) based
on linear eigenvalue problem and Darboux transformation method [29]. Porsezian
and Daniel have studied the effect of perturbation on the nonintegrable GNLSE by
using perturbation method [18]. As far as we know, the multisolitons, breather wave
solutions, rogue wave solutions of Eq. (1.1) by applying the Darboux transformation
have never been researched.

In this paper, the multisolitons, breather wave solution, rogue wave solution
of Eq. (1.1) are obtained by applying the N-fold Darboux transformation. In
Section 2, the N-fold Darboux transformations of Eq. (1.1) are researched in detail.
In Section 3, based on obtained N-fold Darboux transformations, the one-soliton
solution and two-soliton solution of Eq. (1.1) are derived. In Section 4, we obtain
the breather wave solution through the eigenfunctions associated with a periodic
seed solution. In Section 5, the rogue wave solution is derived by using the Taylor
expansion of the breather wave solution. The last Section includes a conclusion and
further discussion.

2. Darboux transformation
In this section, we would like to research the Darboux transformation of Eq. (1.1).
Firstly, the Lax pair of Eq. (1.1) are derived by utilizing the Ablowitz-Kaup-Newell-
Segur scheme [14,18]

ϖx = Uϖ, ϖt = V ϖ, (2.1)

where ϖ = (ϕ, φ)T is the vector eigenfunction, and matrices U and V satisfy the
following forms

U = iλU0 + U1 = iλ

−1 0

0 1

+

 0 q

−q∗ 0

 =

−iλ q

−q∗ iλ

 , (2.2)

V = 8iγ1V4 − 2iV2, here

V2 =

 λ2 − 1
2qq

∗ iqλ− 1
2qx

−iq∗λ− 1
2q

∗
x −λ2 + 1

2qq
∗

 , V4 =

A4 B4

C4 −A4

 ,

A4 = λ4 − 1

2
qq∗λ2 +

i

4
(qq∗x − qxq

∗)λ+
1

8
(3q2q∗2 + q∗qx,x + qq∗x,x − qxq

∗
x),

B4 = iqλ3 − 1

2
qxλ

2 − i

4
(qx,x + 2q2q∗)λ+

1

8
(qx,x,x + 6qq∗qx),

C4 = −iq∗λ3 − 1

2
q∗xλ

2 +
i

4
(q∗x,x + 2qq∗2)λ+

1

8
(q∗x,x,x + 6qq∗q∗x).

(2.3)
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Furthermore,

ϖ(λ) =

 ϕ(λ)

φ(λ)

 =

 ϕ(λ;x, t)

φ(λ;x, t)

 , (2.4)

indicates the eigenfunction of Lax pair Eq. (1.1) related to λ, and λ is a constant
spectral parameter. Then we introduce a simple gauge transformation

ϖ[1] = Tϖ. (2.5)

It can be clearly seen that the linear problem Eq. (2.5) is transformed into

ϖ[1]
x = U [1]ϖ[1], U [1]T = Tx + TU,

ϖ
[1]
t = V [1]ϖ[1], V [1]T = Tt + TV.

(2.6)

In view of compatibility conditions ϖ[1]
xt = ϖ

[1]
tx , we can obtain the following rela-

tionship
U

[1]
t − V [1]

x +
[
U [1], V [1]

]
= T (Ut − Vx + [U, V ])T−1, (2.7)

where U [1], V [1] have the same structure as U and V , the q, q∗ in the matrices U,V
are replaced with q[1] and q[1]

∗ in the matrices U [1], V [1]. It can be seen that the
solution of matrix T is rather vital to solve Eq. (1.1). Moreover, the seed solution
(q1, q2) of Eq.(1.1) in U, V is transformed into new solution (q

[1]
1 , q

[1]
2 ) in U [1], V [1].

The Darboux matrix T of Eq. (2.1) is assumed as follows

T = T (λ) =

a1 b1

c1 d1

λ+

a0 b0

c0 d0

 , (2.8)

where a0, b0, c0, d0, a1, b1, c1, d1 are functions of x, t. Substituting the specific form
of matrix T (2.8) into U [1]T = Tx + TU of Eq. (2.6) to calculate the relationships
among all functions of Eq. (2.8), that isa1x b1x

c1x d1x

λ+

a0x b0x

c0x d0x


=

−ia1λ2 − ia0λ+ c1q
[1]λ+ c0q

[1] −ib1λ2 − ib0λ+ d1q
[1]λ+ d0q

[1]

ic1λ
2 + ic0λ− a1q

[1]∗λ− a0q
[1]∗ id1λ

2 + id0λ− b1q
[1]∗λ− b0q

[1]∗


−

−ia1λ2 − ia0λ− b1q
∗λ− b0q

∗ ib1λ
2 + ib0λ+ a1qλ+ a0q

−ic1λ2 − ic0λ− d1q
∗λ− d0q

∗ id1λ
2 + id0λ+ c1qλ+ c0q

 .

(2.9)

By comparing the coefficients of λn(n = 0, 1, 2), we obtain

n = 2, b1 = c1 = 0.

n = 1, a1x = d1x = 0, − 2ib0 + d1q
[1] − a1q = 0, 2ic0 − a1q

[1]∗ + d1q
∗ = 0.

n = 0, a0x=c0q
[1]+b0q

∗, b0x=d0q
[1]−a0q, c0x=−a0q[1]

∗
+d0q

∗, d0x=−b0q[1]
∗
−c0q.
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We can know that b1 = c1 = 0, a1, d1 are constants. Without loss of generality, we
derive the DT of Eq. (1.1) in the following form

ϖ[1] = Tϖ = (λI −R)ϖ, (2.10)

where λ is a complex spectral parameter, I is a 2 × 2 identity matrix, and R is a
nonsingular matrix. Substituting expression of U,U [1], T into U [1]T = Tx + TU of
Eq. (2.6), then comparing the coefficient of λ, one can obtain 0 q[1]

−q[1]∗ 0

λ =

 0 q

−q∗ 0

+ i [R, σ] , (2.11)

where σ =

 1 0

0 −1

 , and R =

 r11 r12

r21 r22

. Therefore a new solution is obtained

q[1] = q − 2ir12, q[1]
∗
= q∗ − 2ir21, (2.12)

under a constraint r∗12 = −r21.
According to the examples of the NLSE [15, 16], in order to derive the explicit

formula of R by applying the solution of the Lax pair, we can presume that

R =

 f1 g1

f2 g2

×

λ1 0

0 λ2

×

 f1 g1

f2 g2

−1

, (2.13)

where (f1, f2)
T is a solution of the eigenvalue equation of Eq. (2.1) with λ = λ1.

Moreover, (g1, g2)T = (−f∗2 , f∗1 ) is a solution of Eq. (2.1) when λ = λ∗1. To meet
the constraint of R, letting λ2 = λ∗1, we have

R =
1

|f1|2 + |f2|2

λ1|f1|2 + λ∗1|f2|
2

(λ1 − λ∗1)f1f
∗
2

(λ1 − λ∗1)f
∗
1 f2 λ1|f2|2 + λ∗1|f1|

2

 . (2.14)

Based on the above analysis, we can obtain a new solution of Eq. (1.1) as follows

q[1] = q − 2i

|f1|2 + |f2|2
(λ1 − λ∗1)f1f

∗
2 . (2.15)

In addition, the DT can be written determinant representation to obtain the higher
order transformation. The one-fold DT is as follows

q[1] = q − 2i
R2

M2
= q − 2i

∣∣∣∣∣∣ f1 λ1f1g1 λ2g1

∣∣∣∣∣∣∣∣∣∣∣∣ f1 f2g1 g2

∣∣∣∣∣∣
, (2.16)
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under the reductions g1 = −f∗2 , g2 = f∗1 , λ2 = λ∗1. As for the two-fold DT, we
have

q[2] = q − 2i
R4

M4
, (2.17)

here

R4 =

∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 λ1f1 λ
2
1f1

g1 g2 λ2g1 λ
2
2g1

f3 f4 λ3f3 λ
2
3f3

g3 g4 λ4g3 λ
2
4g3

∣∣∣∣∣∣∣∣∣∣∣∣
, M4 =

∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 λ1f1 λ1f2

g1 g2 λ2g1 λ2g2

f3 f4 λ3f3 λ3f4

g3 g4 λ4g3 λ4g4

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.18)

under the reductions g1 = −f∗2 , g2 = f∗1 , g3 = −f∗4 , g4 = f∗3 , λ2 = λ∗1, λ4 = λ∗3.
In a similar way, the n-fold DT can be written

q[n] = q − 2i
R2n

M2n
, (2.19)

where

R2n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 λ1f1 λ1f2 · · · λn−1
1 f1 λn1f1

g1 g2 λ2g1 λ2g2 · · · λn−1
2 g1 λn2 g1

f3 f4 λ3f3 λ3g3 · · · λn−1
3 f3 λn3f3

g3 g4 λ4g3 λ4g4 · · · λn−1
4 g3 λn4 g3

...
...

...
... . . . ...

...

g2n−1 g2n λ2ng2n−1 λ2ng2n · · · λn−1
2n g2n−1 λ

n
2ng2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

M2n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2 λ1f1 λ1f2 · · · λn−1
1 f1 λn−1

1 f2

g1 g2 λ2g1 λ2g2 · · · λn−1
2 g1 λn−1

2 g2

f3 f4 λ3f3 λ3g3 · · · λn−1
3 f3 λn−1

3 f4

g3 g4 λ4g3 λ4g4 · · · λn−1
4 g3 λn−1

4 g4
...

...
...

... . . . ...
...

g2n−1 g2n λ2ng2n−1 λ2ng2n · · · λn−1
2n g2n−1 λ

n−1
2n g2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(2.20)

As far as we know [10, 15, 19], the Darboux transformation is more convenient
to obtain the multisolitons, multibreathers and higher order rogue waves of the
nonlinear Schrödinger equation.

3. Solitons and Breather wave solutions
According to the analysis of the determinant representation of DT, we construct
one-soliton solution and two-soliton solution by taking a zero seed solution. Then
by taking a periodic seed solution, the breather wave solution of Eq. (1.1) is derived.
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3.1. One-Soliton solution
It can be seen that the accurate form of the one-soliton solution has been given in
Eq. (2.15). Setting the seed q = 0 and λ1 = ξ + iη, and substituting them into the
Lax pair Eq. (2.1). By calculation with the help of MAPLE, we obtain

f1 = e−i(ξ+iη)x+(−2i(ξ+iη)2+8iτ(ξ+iη)4)t,

f2 = ei(ξ+iη)x+(2i(ξ+iη)2−8iτ(ξ+iη)4)t,
(3.1)

and g1 = −f∗2 , g2 = f∗1 , λ2 = λ∗1. Then substituting Eq. (3.1) into Eq. (2.15), the
one-soliton solution of Eq. (1.1) is obtained

q[1] =2ηe(4itη
2+16itτξ4+16itτη4−2ixξ−4itξ2−96itτξ2η2)

× sech(64η3tτξ − 64ηtτξ3 + 8ηtξ + 2ηx). (3.2)

3.2. Two-Soliton solution
In this subsection, taking the seed solution q = 0, and λ1 = ξ + iη, λ3 = θ + iυ, to
derive two-soliton solution. Where

f1 = e−i(ξ+iη)x+i(−2(ξ+iη)2+8τ(ξ+iη)4)t,

f2 = ei(ξ+iη)x+i(2(ξ+iη)
2−8τ(ξ+iη)4)t,

f3 = e−i(θ+iυ)x+i(−2(θ+iυ)2+8τ(θ+iυ)4)t,

f4 = ei(θ+iυ)x+i(2(θ+iυ)
2−8τ(θ+iυ)4)t,

(3.3)

under the reductions g1 = −f∗2 , g2 = f∗1 , g3 = −f∗4 , g4 = f∗3 , λ2 = λ∗1 and
λ4 = λ∗3. Substituting Eq. (3.3) into the two-fold DT of Eq. (2.16), the two-soliton
solution of Eq. (1.1) can be derived

q[2] = [2A cosh(B)+iC sinh(B)]e−2i(θx+Dt)+[2E cosh(F )−iC sinh(F )]e−2i(ξx+Gt)

2(ψ+2ηυ) cosh(H)+2(ψ−2ηυ) cosh(I)−8ηυ cos(J) ,
(3.4)

where

A = 4η2υ − 4θ2υ + 8θξυ − 4ξ2υ − 4υ3,

B = 64η3tτξ − 64ηtτξ3 + 8ηtξ + 2ηx,

C = −16ξηυ + 16θηυ,

D = (96tυ2 − 4)θ2 − 16τθ4 − 16τυ4 + 4υ2,

E = −4η3 − 4ηθ2 + 8ηθξ − 4ηξ2 + 4ηυ2,

F = 64tτθ3υ − 64tτθυ3 − 8tθυ − 2xυ, (3.5)
G = (96η2τ + 4)ξ2 − 16ξ4τ − 16η4τ,

ψ = η2 + θ2 − 2θξ + ξ2 + θ2,

H = (−64τθυ3 + (64τθ3 − 8θ)υ − 64ξ(ξ2τ − η2τ − 1

8
)η)t+ 2x(η − υ),

I = (64tθυ3 + (−64τθ3 + 8θ)υ − 64ξ(ξ2τ − η2τ − 1

8
)η)t+ 2x(η + υ),

J=((16η4−96η2ξ2−16θ4+96θ2υ2+16ξ4−16υ4)τ−4ξ2+4η2+4θ2−4υ2)t−2x(ξ−θ).
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Figs. 1-2 reveal the characters of the one-soliton solution and two-soliton solution,
respectively. From Fig. 1, it can be seen that the high peak keeps constant over
time. Fig. 2 displays the interaction phenomenon of two single solitons.

3.3. Breather wave solution
According to the determinant presentation of DT, taking a periodic seed solution
q[0], the breather wave solution can be derived. The q[0] is defined as

q[0] = ceiρ, (3.6)

here ρ = ax+ bt. Substituting q[0] into Eq.(1.1), we get b = a4τ − 12a2c2τ +6c4τ −
a2+2c2. By using the MAPLE, the solution of eigenvalue equations of the Lax pair
is as follows

f1 = cei(
1
2a+υ1)x+i(

1
2 b+υ1υ2)t,

f2 = (
1

2
a+ λ1 + υ1)e

i(− 1
2a+υ1)x+i(−

1
2 b+υ1υ2)t,

(3.7)

where

Figure 1. The one-soliton solution of the higher-order dispersive nonlinear Schrödinger equation with
η = 0.1, ξ = 0.05 and τ = 1 : a three-dimensional plot, b density plot, c the two-dimensional plot at
different t = −10(left), t = 0(middle), t = 10(right).

Figure 2. The two-soliton solution of the higher-order dispersive nonlinear Schrödinger equation with
η = 1, ξ = 1, υ = 1, θ = 0, and τ = 1 : a three-dimensional plot, b density plot, c the contour plot.

υ1 =
1

2
(a2 + 4aλ+ 4c2 + 4λ2)

1
2 ,

υ2 = τ(a3 − 2a2λ+ (−6c2 + 4λ2)a+ 4c2λ− 8λ3)− a+ 2λ.
(3.8)
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Then by applying the one-fold DT and principle of the superposition of linear dif-
ferential equation, the first-order breather wave solution of Eq. (1.1) can be derived

q[1] = q − 2i

|F1|2 + |F2|2
(λ1 − λ∗1)F1F

∗
2 , (3.9)

and F1 = f1−f∗2 , F2 = f∗1 +f2. Without loss of generality, taking a = −2Re(λ1) =
−2ξ, then substituting Eq. (3.7) into Eq. (3.9), the exact expression of breather
wave solution is as follows

q[1] = eiρ
[
c+

2η{[κ1 cos(2S)−κ2 cos(2W )]−i[(κ1−2c2) sin(2S)−κ3 sinh(2W )]}
κ1 cosh(2W )−κ2 cos(2S)

]
,

(3.10)
where

κ1 = c2 + η2 + χ2,

κ2 = 2cη,

κ3 = 2cχ,

W = (−48ξ2ητ + 8η3τ + 4c2ητ + 2η)χt,

S = (χx+ χ(−32τξ3 + 16c2ξτ + 32η2τξ + 4ξ)t,

(3.11)

and

χ = c2 − 1

6

−24ξ2τ +
√

480τ2ξ4 − 24τξ2 + 6bτ + 1 + 1

τ
. (3.12)

The character of breather wave solution is illustrated by Fig. 3.

Figure 3. The first-order breather solution of higher-order dispersive nonlinear Schrödinger equation
with η = 0.2, ξ = 0, b = 1, c = 1, and τ = 1 : a three-dimensional plot, b density plot, c the contour
plot.

4. Rogue wave solution
In this section, the rogue wave solution of the higher-order dispersive nonlinear
Schrödinger equation is researched. On the basis of [26], we know that when the
period of breather wave Eq. (3.10) tends to infinity, the breather wave can translate
to the rogue wave. According to [11], the first-order rogue wave of Eq. (1.1) is
obtained through the coefficient of the Taylor expansion

q[1] =

(
P1 + iQ1

γ1
− 1

)
ceiρ, (4.1)
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where
P1 = 4,

Q1 = 16(1 + 6c2τ − 6a2τ)c2t,

γ1 = 4c2x2 + (32a3c2τ − 16ac2(1 + 12τc2))xt+ (64c2τ2a6 − 64c2τa4(1 + 3τc2)

+ 16c2(1 + 12τc2 + 72c4τ2)a2 + 16c4(6τc2 + 1)2)t2 + 1.
(4.2)

The traits of rogue wave solution are shown by Fig. 4.

Figure 4. The first-order rogue wave solution of higher-order dispersive nonlinear Schrödinger equation
with ξ = 0, η = 0.5, a = 0, b = 1, c = 0.5, and τ = 0.5 : a three-dimensional plot, b density plot, c the
contour plot.

5. Conclusion and Discussion
In this paper, the high-order solitons, breather wave solution and rogue wave so-
lution for the higher-order dispersive nonlinear Schrödinger equation by applying
the Darboux transformation method, are obtained. Firstly, the soliton solutions by
taking zero-seed solution are derived. Then the breather wave solution and rogue
wave solution by taking the period seed solutions are obtained. These solutions
can be used to explain some phenomena appear in fluid and plasma mechanics via
3-D and 2-D plots in detail. It can be known that the solutions of NLSE is rather
important for the research and development of nonlinear phenomena. Nextly, we
will dedicated to the other dynamic characters of NLSE.

Acknowledgements
This work was supported by the National Natural Science Foundation of China
(grant No.11971475).

References
[1] A. Abdeljabbar, W. Ma and A. Yildirim,Determinant solutions to a (3+1)-

dimensional generalized KP equation with variable coefficients, Chinese Annals
of Mathematics, Series B, 2012, 33(5), 641–650.

[2] N. Akhmediev, A. Ankiewicz and J. M. Soto-Crespo,Rogue waves and rational
solutions of the nonlinear Schrödinger equation, Physical Review E, 2009, 80(2),
026601.



Darboux transformation. . . 901

[3] M. Alam, M. Rahman, R. Islam et al., Application of the new extended (G’/G)-
expansion method to find exact solutions for nonlinear partial differential equa-
tion, Computational Methods for Differential Equations, 2015, 3(1), 59–69.

[4] H. M. Baskonus, H. Bulut and T.A. Sulaiman, New complex hyperbolic struc-
tures to the lonngren-wave equation by using sine-gordon expansion method,
Applied Mathematics and Nonlinear Sciences, 2019, 4(1), 129–138.

[5] H. M. Baskonus, H. Bulut and A. Atangana,On the complex and hyperbolic
structures of the longitudinal wave equation in a magneto-electro-elastic circular
rod, Smart Materials and Structures, 2016, 25(3), 035022.

[6] J. Chen, Y. Chen, B. Feng et al.,Rational solutions to two- and one-dimensional
multicomponent Yajima-Oikawa systems, Physics Letters A, 2015, 379(24-25),
1510-1519.

[7] S. K. El-Labany, W. M. Moslem, E. I. El-Awady et al., Nonlinear dynam-
ics associated with rotating magnetized electron-positron-ion plasmas, Physics
Letters A, 2010, 375(2), 159–164.

[8] V. Efimov, P. McClintock, A. Ganshin et al.,Experiments on Rogue Waves in
Superfluid 4He. 2009.

[9] B. Guo and L. Ling,Riemann-Hilbert approach and N-soliton formula for cou-
pled derivative Schrödinger equation, Journal of Mathematical Physics, 2012,
53(7), 073506.

[10] B. Guo, L. Ling and Rogue Wave,Breathers and Bright-Dark-Rogue Solutions
for the Coupled Schrödinger Equations, Chinese Physics Letters, 2011, 28(11).

[11] J. He, H. Zhang, L. Wang et al.,A generating mechanism for higher order rogue
waves, Physical Review E, 2013, 87(5–1),052914.

[12] C. M. Khalique and I. E. Mhlanga,Travelling waves and conservation laws of a
(2+1)-dimensional coupling system with Korteweg-de Vries equation, Applied
Mathematics and Nonlinear Sciences, 2018, 3(1), 241–254.

[13] D. J. Kaup and A. C. Newell,An exact solution for a derivative nonlinear
Schrödinger equation, Journal of Mathematical Physics, 1978, 19(4), 798.

[14] M. Lakshmanan, K. Porsezian and M. Daniel,Effect of discreteness on the
continuum limit of the Heisenberg spin chain, Physics Letters A, 1988, 133(9),
483–488.

[15] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons,
Springer, Berlin-Heidelberg, 1991.

[16] G. Neugebauer and R. Meinel,General N-soliton solution of the AKNS class
on arbitrary background, Physics Letters A, 1984, 100(9), 467–470.

[17] Z. Pinar,Analytical studies for the Boiti-Leon-Monna-Pempinelli equations with
variable and constant coefficients, Asymptotic Analysis, 2019, 1–9.

[18] K. Porsezian, M. Daniel and M. Lakshmanan,On the integrability aspects of
the one-dimensional classical continuum isotropic biquadratic Heisenberg spin
chain, Journal of Mathematical Physics, 1992, 33(5), 1807–1816.

[19] N. V. Priya, M. Senthilvelan and M. Lakshmanan,Akhmediev breathers, Ma
solitons and general breathers from rogue waves: A case study in Manakov
system, Physical Review E, 2013, 88(2), 022918.



902 H. Zhang & Y. Zhang

[20] Z. Qiao,A new completely integrable Liouville’s system produced by the Kaup-
Newell eigenvalue problem, Journal of Mathematical Physics, 1993.

[21] Z. Qiao,A hierarchy of nonlinear evolution equations and finite-dimensional
involutive systems, Journal of Mathematical Physics, 1994, 35(6), 2971–2977.

[22] T. A. Sulaiman, A. Yokus, N. Gulluoglu et al., Regarding the numerical so-
lutions of the Sharma-Tasso-Olver equation, Itm Web of Conferences, 2018,
22.

[23] E. K. Sklyanin,Method of the inverse scattering problem and the nonlinear
quantum Schrödinger equation, Soviet Physics Doklady, 1979, 24.

[24] X. Wang, Y. Li and Y. Chen,Generalized Darboux transformation and localized
waves in coupled Hirota equations, Wave Motion, 2014, 51(7), 1149–1160.

[25] L. Wang, K. Porsezian and J. He,Breather and rogue wave solutions of a gener-
alized nonlinear Schrödinger equation, Physical Review E, 2013, 87(5), 053202.

[26] L. Wang, K. Porsezian and J. He,Breather and rogue wave solutions of a gener-
alized nonlinear Schrödinger equation, Physical Review E, 2013, 87(5), 053202.

[27] L. Xu and J. Zhang,Exact solutions to two higher order nonlinear Schrödinger
equations, Chaos, Solitons & Fractals, 2007, 31(4), 937–942.

[28] A. Yokus, H. M. Baskonus, T. A. Sulaiman et al., Numerical simulation and
solutions of the two-component second order KdV evolutionary system, Numer-
ical Methods for Partial Differential Equations, 2018, 34(1), 211–227.

[29] H. Zhang, B. Tian, X. Meng et al.,Conservation laws, soliton solutions and
modulational instability for the higher-order dispersive nonlinear Schrödinger
equation, The European Physical Journal B, 2009, 72(2), 233.

[30] J. Zhang, L. Wang and C. Liu, Superregular breathers, characteristics of nonlin-
ear stage of modulation instability induced by higher-order effects, Proceedings
of the Royal Society A Mathematical Physical and Engineering Sciences, 2017,
473(2199), 20160681.

[31] Y. Zhang, Q. Liu and Z. Qiao, Fifth-order b-family Novikov (FObFN) model
with pseudo-peakons and multi-peakons, Modern Physics Letters B, 2019,
33(18), 1950205.


	Introduction
	Darboux transformation
	Solitons and Breather wave solutions
	One-Soliton solution
	Two-Soliton solution
	Breather wave solution

	Rogue wave solution
	Conclusion and Discussion

