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AN ELLIPTIC PARTIAL DIFFERENTIAL
EQUATION MODELLING A PRODUCTION

PLANNING PROBLEM
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Abstract Our purpose is to investigate the existence and uniqueness of posi-
tive solutions for an elliptic partial differential equation. The considered prob-
lem describes many real-world models and the obtained solutions can be useful
in industry and manufacturing.
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1. Introduction
The problem of establishing the existence, uniqueness, asymptotic behavior, deter-
mination or numerical approximation of positive solutions for the partial differential
equation ∆u = f (x, u) in Ω, f : Ω× R → R, Ω ⊆ RN (N ≥ 1),

u = g on ∂Ω g : ∂Ω → R,
(1.1)

are in the attention of several of researchers.
In general, the theoretical methods for approaching the problem (1.1) under

different classes of functions f and g are different from researcher to researcher and
depends on the desired response to the applicative models; for more on this see
Baalal-Berghout [2], Chang, Li, Yue, Lee, Chiang-Lin [7], He-Wu [14], Zhang [18],
Zhang-Xu-Jiang-Wu-Cui [17] and references therein.

In our work we consider the problem

∆u (x) =
1

σ4
a (x)u (x) +

2α

σ2
u (x) lnu (x) for x ∈ Ω ⊆ RN (N ≥ 1), (1.2)

where σ and α are positive real numbers. We show that this problem is important
from applications point of view and also interesting from the theoretical point of
view.

For example, let us consider the production planning problem for the continuous-
time case, with a factory producing N types of economic goods which stores them
in an inventory designated place. In describing the model the following notations
are used:
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• α > 0 is the constant discount rate,
• σ > 0 the diffusion coefficient,
• p (t) = (p1(t), ..., pN (t)) , with pi(t) ≥ 0 for all i and t, the production rate at

time t (control variable) adjusted for the demand rate,
• |·| the Euclidean norm,
• y (t) = (y1(t), ..., yN (t)) the inventory level for production rate at time t (state

variable) adjusted for demand,
• y0i the initial inventory level of good i,
• (Ω, {Ft}0≤t≤T≤∞,F , P ) is a complete probability space on which lives a N -

dimensional Brownian motion denoted by w = (w1, ..., wN ), with T the length
of planning period generated by w.

Next, we define the cost functional

J (p1, ..., pN ) := E

∫ T

0

(|p(t)|2 + a(y(t))))e−αtdt, (1.3)

and our theoretical problem is reduced to finding the value function

z(y01 , y
0
2 , . . . y

0
N ) = inf

p∈RN
{J (p1, ..., pN )}, (1.4)

subject to Itö stochastic differential equation

dyi (t) = pidt+ σdwi, yi (0) = y0i , i = 1, ..., N. (1.5)

The Hamilton-Jacobi-Bellman equation (HJB) associated with the problem (1.4)-
(1.5) is

αz − σ2

2
∆z − a (x) = inf

p∈RN
{p∇z + |p|2}, (1.6)

and it can be shown from an elementary computation originally due to [8, 9] that
z := z (x1, ..., xN ) is a C2(Ω) function satisfying

− 2σ2∆z + |∇z|2 + 4αz = 4a (x) for x ∈ Ω, (1.7)

where x ∈ RN assumes values (y1 (0) , ..., yN (0)).
By using the change of variable u (x) = e−

z(x)

2σ2 , the problem (1.7) is reduced to
the partial differential equation (1.2).

In the case α = 0, a general and rigorous mathematical theory referring to the
problem (1.2) can be found in many articles from the literature, since is the case
when the problem become the well known stationary Schrödinger equation, see [6]
for details.

When Ω = RN (N = 1), α ̸= 0 and a (x) = |x|2, with a long time ago Bensous-
san, Sethi, Vickson and Derzko [4], observed that the equation (1.7) subject to the
boundary condition

z (x) → ∞ as |x| → ∞, (1.8)
has a unique classical convex solution.

Many works have been done after Bensoussan et all.’s results to the study of
equation (1.7) and the corresponding system of equations, some of them are [5,
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10–12]. Unfortunately, all these works was restricted to the case N = 1, T = ∞,
a (x) = x2 and the boundary condition (1.8) which simply means that the stochastic
production planning problem is considered for one economical good in an infinite
horizon case with a quadratic loss function.

Among all of the results, the extension to several economic goods was recently
given in the paper [9], where the problem is treated both from theoretical and
practical point of view in the entire Euclidean space RN .

Regarding our mathematical contribution about (1.2), an existence and unique-
ness result is obtained and presented for the case when Ω = BR is the ball of radius
R > 0 centered at the origin (zero element) and a closed form solution for the case

Ω = RN and a (x) = |x|2 ,

is given. Then, this work is a follow-up of the papers by [4], [8] and [9] where
the authors have investigates the existence and uniqueness of solutions in RN . A
relevant work in our direction is the paper of Barles and Murat [3].

We are ready to state our first result.

Theorem 1.1. Suppose Ω = BR and a : BR → [0,∞) is a continuous function
satisfying

a (x) ≤ K
(
|x|2 + 1

)
such that K > 0. (1.9)

Then, the problem (1.2) subject to the Dirichlet boundary condition

u (x) = 1, for x ∈ ∂BR, (1.10)

has a unique solution u ∈ C2 (BR) ∩ C
(
BR

)
with 0 < u (x) ≤ 1 for any x ∈ BR.

Theorem 1.1 can also be very useful in many economic models. Indeed, let
T < ∞ be the stopping time representing the moment when the inventory level
reaches some threshold R, i.e.,

T = inf
t>0

{|y(t)| ≥ R}.

From the applications point of view, the objective is to minimize this cost functional
(1.3) subject to the Itö stochastic differential equation (1.5) in order to obtain the
problem (1.2) subject to the Dirichlet boundary condition (1.10).

Our next result refer to the entire Euclidean space RN and relies on an elemen-
tary computation.

Theorem 1.2. Assume Ω = RN and a (x) = |x|2. The partial differential equation
(1.2) with boundary condition

u(x) → 0 as |x| → ∞, (1.11)

has a unique positive classical convex solution with quadratic growth.

To conclude, let me mention that a different abbordation to the proof of Theorem
1.2 has been developed in Cadenillas, Lakner and Pinedo [5], again for the case
N = 1.

The rest of the paper is structured as follows. In Section 2 we will prove Theorem
1.1. The main tool we use here is the classical sub-supersolution method. The
difficulty that arises is the construction of a sub-supersolution with order. Section
3 is dedicated to the proof of Theorem 1.2. Here, we exploit our intuition.
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2. The Proof of Theorem 1.1
The proof is divided into two parts: uniqueness and existence. We begin with

Uniqueness. If one solution exists we show that it is unique. We proceed in
a similar way to the paper [16]. Suppose that u1 and u2 are classical solutions of
(1.2) subject to the Dirichlet boundary condition (1.10) with 0 < u1 (x) ≤ 1 and
0 < u2 (x) ≤ 1 for any x ∈ BR. Let us show that u1 (x) ≤ u2 (x) for any x ∈ BR.
Assume on the contrary that there exists x0 ∈ BR such that u1 (x0) > u2 (x0).

Now, we set

w (x) :=
u1 (x)

u2 (x)
− 1.

Note that from (1.10), we have

w (x) = 0 for x ∈ ∂BR,

which implies in fact that
max
BR

w (x) ,

exists and is positive. At that point, say x1 ∈ BR, we have

∇w (x1) = 0 and ∆w (x1) ≤ 0.

It is clear from the definition of w (x) that

−div
(
u2
2 (x1)∇w (x1)

)
= −div

(
u2
2 (x1)

)
∇w (x1)− u2

2 (x1)∆w (x1)

= −u2
2 (x1)∆w (x1) ≥ 0.

A straightforward computation shows that

−div
(
u2
2 (x1)∇w (x1)

)
= −u2 (x1)∆u1 (x1) + u1 (x1)∆u2 (x1) .

As a consequence, we have

−u2 (x1)∆u1 (x1) + u1 (x1)∆u2 (x1) ≥ 0,

or, equivalently
∆u1 (x1)

u1 (x1)
− ∆u2 (x1)

u2 (x1)
≤ 0.

The above relation produces

0 ≥ 1

σ4
a (x) +

2α

σ2
lnu1 (x1)−

1

σ4
a (x)− 2α

σ2
lnu2 (x1) =

2α

σ2
ln

u1 (x1)

u2 (x1)
,

which is a contradiction, since

u1 (x1)

u2 (x1)
− 1 > 0 =⇒ 2α

|σ|2
ln

u1 (x1)

u2 (x1)
> 0.

A similar argument can be made to produce u2 (x) ≤ u1 (x) for any x ∈ BR.
Therefore, (1.2) has a unique such solution if it exists. We next establish
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Existence. We apply the sub- and supersolution method due to Sattinger [15].
In the following we construct the functions u, u ∈ C2(BR) such that

∆u ≥ 1
σ4 a (x)u (x) +

2α
σ2 u (x) lnu (x) for x ∈ BR,

0 < u (x) ≤ 1 for x ∈ BR,

u (x) = 1 for x ∈ ∂BR,

(2.1)

and 
∆u ≤ 1

σ4 a (x)u (x) +
2α
σ2 u (x) lnu (x) for x ∈ BR,

0 < u (x) ≤ 1 for x ∈ BR,

u (x) = 1 for x ∈ ∂BR.

(2.2)

We point that the function u (resp. u) is called a subsolution (resp. supersolution)
for the problem (1.2) subject to the Dirichlet boundary condition (1.10). A simple
calculation shows that u (x) = 1 is a supersolution for the problem (1.2) and that

u (x) = e−
1

4σ2 (α+
√
α2+4K)(R2−|x|2),

is a subsolution for (1.2). As a consequence of the above construction, one obtains

u (x) ≤ u (x) for x ∈ BR.

We are showing that, the problem (1.2) admits a unique solution u ∈ C2 (BR) ∩
C
(
BR

)
such that

u (x) ≤ u (x) ≤ u (x) for x ∈ BR.

Denote
M1 = e−

1
4σ2 (α+

√
α2+4K)R2

and M2 = 1,

and let g : BR × [M1,M2] → R defined by

g (x, t) =
1

σ4
a (x) t+

2α

σ2
t ln t.

Since g is a continuous function with respect to the first variable in BR and con-
tinuously differentiable with respect to the second in [M1,M2], it allows to choose
Λ < 0 such that

−Λ ≥ g (x, s)− g (x, t)

s− t
,

for every t, s with u ≤ t < s ≤ u and x ∈ BR. Starting with u0 = u we inductively
define a sequence {uk}k∈N such that∆uk + Λuk = g (x, uk−1) + Λuk−1 for x ∈ BR,

uk (x) = u (x) for x ∈ ∂BR.

Next, assuming that uk−1 ≤ uk on BR we prove that uk ≤ uk+1 on BR. The
constant Λ was chosen so that

(∆ + Λ) (uk+1 (x)− uk (x)) ≤ 0 in BR, (2.3)
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if uk−1 ≤ uk on BR for k = 1, 2, ..., which is true for k = 1 and thus for every larger
k by (2.3) and the maximum principle (see [13]).

Finally, by induction we get a monotone increasing sequence {uk}k≥1 of iterates

u ≤ u1 ≤ u2 ≤ ... ≤ uk−1 ≤ uk ≤ uk+1 ≤ ... ≤ u on BR.

Therefore the sequences {uk}k∈N converge (since they are monotone and bounded
by some constants independent of k). It is perfectly clear that the limit

lim
k→∞

uk (x) = u (x) , for all x ∈ BR,

exists as a continuous function. A standard bootstrap argument, implies that
uk (x) → u (x) in C2 (BR) ∩ C(BR) and that u is a solution of problem (1.2) sat-
isfying u (x) ≤ u (x) ≤ u (x) for x ∈ BR. Thanks to the uniqueness the Theorem
1.1 is proved. We now present

3. The proof of Theorem 1.2
In the following we construct the function u which satisfies (1.2) with boundary
condition (1.11). More exactly, we observe that there exist

u (x) = eB|x|2+D with B,D ∈ (−∞, 0) ,

that solve (1.2).
This is reduced to find B, D ∈ (−∞, 0) such that

2B
(
2 |x|2 B + 1

)
+ 2B (N − 1) =

1

σ4
|x|2 + 2α

σ2

(
B |x|2 +D

)
,

or, after rearranging the terms

|x|2
[
4B2 − 1

σ4
− 2αB

σ2

]
+ 2BN − 2αD

σ2
= 0.

Now, we observe that the system of equations4B2 − 1
σ4 − 2αB

σ2 = 0,

2BN − 2αD
σ2 = 0,

has the solution

B =
1

4σ2

(
α−

√
α2 + 4

)
, D =

1

4

N

α

(
α−

√
α2 + 4

)
. (3.1)

Then u (x) = eB|x|2+D, with B, D defined by (3.1), is a solution for (1.2) with
boundary condition (1.11).

It remains now to establish the uniqueness of the solution to (1.2) with boundary
condition (1.11). Our argument relies on a simple maximum principle used in [1, p.
118] (see [13] for details). Suppose that v is another solution of the problem (1.2)
with boundary condition (1.11). Let us show that u (x) ≤ v (x) for any x ∈ RN .
Assume the contrary, there exists x0 ∈ RN such that u (x0) > v (x0). Since

lim
|x|→∞

(u (x)− v (x)) = 0,
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we deduce that
max
RN

(u (x)− v (x)) ,

exists and is positive. At that point, say x1, we have

0 ≥ ∆u (x1)−∆v (x1)

=
(
4 |x1|2 B2 + 2BN

)
u (x1)−

1

σ4
|x1|2 v (x1)−

2α

σ2
v (x1) ln v (x1)

> (4B2 |x1|2 + 2BN − |x1|2

σ4
)v (x1)−

2α

σ2
v (x1) ln v (x1)

= (2BN +
2αB |x1|2

σ2
)v (x1)−

2α

σ2
v (x1) ln v (x1)

= [(
2αD

σ2
+

2αB |x1|2

σ2
)− 2α

σ2
ln v (x1)]v (x1)

=
[(

D +B |x1|2
)
− ln v (x1)

] 2α

σ2
v (x1) = (lnu (x1)− ln v (x1))

2α

σ2
v (x1) > 0,

which is a contradiction. So, u (x) ≤ v (x) for any x ∈ RN . A similar argument can
be made to produce v (x) ≤ u (x) for any x ∈ RN .

Setting

B =
1

4σ2

(
α−

√
α2 + 4

)
, D =

1

4

N

α

(
α−

√
α2 + 4

)
,

clearly z (x) = −2σ2
(
B |x|2 +D

)
, is the unique solution of (1.7) subject to the

boundary condition (1.2). This finishes the proof of Theorem 1.2.
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