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FRACTIONAL BOUNDARY VALUE PROBLEM
WITH NABLA DIFFERENCE EQUATION∗
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Abstract In the paper, using Z-transform technique, we study eigenvalues
and eigenfunctions for a fractional boundary value problem with linear nabla
difference equation. Furthermore, by topological degree theory and the ob-
tained results of eigenvalues, we get at least one nontrivial solution for relevant
nonlinear fractional boundary value problem.
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1. Introduction

In recent years, the theory of fractional ordinary differential equations (FODE) has
been received many attentions due to its wide applications. Many results have
been obtained about this class of equations (see [1–8, 10, 12, 14–17]). For instance,
in 2011, Abdeljawad [1] studied the Caputo fractional difference equation. And
Abdeljawad and Baleanu [2] introduced the fractional differences and integration
by parts. In [5], the authors considered a two-point BVP for fractional difference
equation. In 2014, Wu and Baleanu [16] gave some applications for the Caputo
fractional difference to chaotic maps. Cheng [7] introduced the theory of fractional
nabla difference equations and gave the definition of fractional sum, fractional nabla
difference and basic calculus theory.

Following the trend, we consider the following boundary value problem with
linear fractional difference equation


c
0∇α

nu(n) + λu(n) = 0, 0 ≤ n ≤ N,

γ1u(−1) = δ1u(N),

γ2∇u(−1) = δ2∇u(N),

(1.1)

where 1 < α < 2, c
0∇α

n is the Caputo fractional difference, ∇u(n) := u(n) − u(n −
1). Moreover we consider the following boundary value problem with nonlinear
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fractional difference equation
c
0∇α

nu(n) + f(n, u(n)) = 0, 0 ≤ n ≤ N,

γ1u(−1) = δ1u(N),

γ2∇u(−1) = δ2∇u(N).

(1.2)

By using Z-Transformation, we get eigenvalues and eigenfunctions of (1.1). By
applying the topological degree theory combining the eigenvalue theory, we obtain
the existence of nontrival solution of (1.2).

The plan of the article is as follows: in section 2, we provide basic definitions
and some useful Lemmas; in section 3, we prove the existence of solution by using
topological degree theory and an example is also given.

2. Preliminaries
In this segment, we recall some essential definitions and fractional difference calcu-
lus. For more details, we refer to the literature [7].

Definition 2.1. For any x ∈ R, n ∈ N+, one definex
n

 ≜ x(x+ 1) · · · (x+ n− 1)

n!
.

Definition 2.2. The νth fractional sum of a function f is

∇−νf(n) =

ν
n

 ∗ f(n) =
n∑

r=0

 ν

n− r

f(r),
where ν > 0.

Definition 2.3. Assume that 0 ≤ m − 1 ≤ ν < m, the νth Caputo fractional
difference for ν > 0 defined by

c
a∇ν

nf(n) ≜a ∇−m+ν
n [∇mf(n)],

where a∇−α
n f(n) =

n∑
r=a

 α

n− r

 f(r) for α > 0.

Lemma 2.1. Assume m− 1 ≤ α < m, then the following relation holds

Z[c0∇α
nf(n)] = (

z − 1

z
)αF (z)−

m−1∑
k=0

(
z − 1

z
)α−k−1∇kf(−1),

where Z-Transform defined by Z[f(n− k)] =
∞∑

n=0
f(n− k)z−n.
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Definition 2.4. The discrete Mittag-Leffer type function is defined by

Fα, β(λ, n) =

∞∑
k=0

λk

αk + β

n

, (|λ| < 1),

where α, β ∈ R+, λ ∈ C.

Lemma 2.2. The Z-Transform of function Fα, β(λ, n) is

Z[Fα, β(λ, n)] =
sα−β

sα − λ
, (|λ| < |s|α),

where s = z−1
z .

Lemma 2.3. Assume α > 0, then

a∇−α
n [ca∇α

nf(n)] = f(n)−
[α]∑
k=0

∇kf(a− 1)

k + 1

n− α

.
3. Main Results
In the paper, we assume that the following conditions hold.
(H1) δ1 > γ1 > 0, γ2 > δ2 > 0.
(H2) f ∈ C([−1, N ]×R, R+).

Theorem 3.1. The eigenfunction of (1.1) is

u(n) = [Fα, 1(−λ, n) +
Fα, 2(−λ, n)(γ1 − δ1Fα,1(−λ,N))

δ1Fα,2(−λ,N)
]C,

(C is a constant) and the corresponding eigenvalue λ is the solution of equation(
1− δ2

γ2
Fα,1(−λ,N)

)(
γ1 − δ1Fα,1(−λ,N)

)
− δ1δ2

γ2
Fα,0(−λ,N)Fα,2(−λ,N) = 0.

Proof. For the equation of (1.1), we take Z-Transformation and get

Z(c0∇α
nu(n)) + λZ(u(n))

=(
z − 1

z
)αF (z)− (

z − 1

z
)α−1u(−1)− (

z − 1

z
)α−2∇u(−1) + λF (z) = 0,

which together with Lemma 2.2 yields

F (z) =
( z−1

z )α−1

( z−1
z )α + λ

u(−1) +
( z−1

z )α−2

( z−1
z )α + λ

∇u(−1)

=Z[Fα,1(−λ, n)]u(−1) + Z[Fα,2(−λ, n)]∇u(−1).

That is

u(n) = Fα, 1(−λ, n)u(−1) + Fα, 2(−λ, n)∇u(−1). (3.1)
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By (3.1) one has u(N) = Fα, 1(−λ, N)u(−1)+Fα, 2(−λ, N)∇u(−1), which together
with the boundary condition γ1u(−1) = δ1u(N), we obtain

∇u(−1) =
γ1 − δ1Fα,1(−λ, N)

δ1Fα,2(−λ,N)
u(−1). (3.2)

Substituting (3.2) into (3.1), we have

u(n) =
(
Fα, 1(−λ, n) +

Fα,2(−λ, n)(γ1 − δ1Fα,1(−λ, N))

δ1Fα,2(−λ,N)

)
u(−1).

∇u(n) =
(
∇Fα, 1(−λ, n) +∇Fα,2(−λ, n)

γ1 − δ1Fα,1(−λ, N)

δ1Fα,2(−λ,N)

)
u(−1).

Further by using γ2∇u(−1) = δ2∇u(N), we get

γ2 ·
γ1 − δ1Fα,1(−λ,N)

δ1Fα,2(−λ,N)
u(−1)

=δ2

(
Fα,0(−λ,N) + Fα,1(−λ,N)

γ1 − δ1Fα,1(−λ,N)

δ1Fα,2(−λ,N)

)
u(−1).

So(
1− δ2

γ2
Fα,1(−λ,N)

)(
γ1 − δ1Fα,1(−λ,N)

)
− δ1δ2

γ2
Fα,0(−λ,N)Fα,2(−λ,N) = 0.

That is, the eigenvalues of (1.1) are the solution of the above equation. And the
corresponding eigenfunction is

u(n) = [Fα, 1(−λ, n) +
Fα, 2(−λ, n)(γ1 − δ1Fα,1(−λ,N))

δ1Fα,2(−λ,N)
]C,

where C is a constant.

Remark 3.1. In [13], the authors investigate the eigenvalues and eigenfunctions of
fractional differential equation as follows c

0D
α
t u(t) + λu(t) = 0, 0 < t < 1,

u(0) = au(1), u′(0) = bu′(1),

where 1 < α < 2, a ̸= 0, b ̸= 0, c
0D

α
t is the Caputo fractional derivative. The

Theorem 3.1 is a discrete form of the corresponding results in reference [13].

Using Lemma 2.3, we can get the following theorem.

Theorem 3.2. Let (H1) hold, 1 < α < 2, v ∈ C[−1, N ]. The solution of
c
0∇α

nu(n) + v(n) = 0, 0 ≤ n ≤ N,

γ1u(−1) = δ1u(N),

γ2∇u(−1) = δ2∇u(N),

(3.3)



Fractional boundary value problem 915

is given by u(n) =
N∑
r=0

G(n, r)v(r), where

G(n, r) =



(
(γ1+δ1N)δ2

(δ1−γ1)(γ2−δ2)
+ δ2n

δ2−γ2

)α− 1

N − r

+ δ1
δ1−γ1

 α

N − r

−

 α

n− r

,
0 ≤ r ≤ n,(

(γ1+δ1N)δ2
(δ1−γ1)(γ2−δ2)

+ δ2n
δ2−γ2

)α− 1

N − r

+ δ1
δ1−γ1

 α

N − r

, n ≤ r ≤ N,

and G(n, r) > 0.

Proof. Using Lemma 2.3 with a = 0, we can get

u(n) = c1 + c2n− ∇−α
n v(n).

Since u(−1) = c1 − c2, u(N) = c1 + c2N −∇−αf(N), γ1u(−1) = δ1u(N), we know

(γ1 − δ1)c1 − (γ1 + δ1N)c2 = −δ1∇−αf(N).

By ∇u(n)=c2−∇1−αf(n) and γ2∇u(−1)=δ2∇u(N), we obtain c2=
δ2∇−(α−1)f(N)

δ2−γ2
.

So

c1 =
1

δ1 − γ1

(
(γ1 + δ1N)

δ2∇−(α−1)f(N)

γ2 − δ2
+ δ1∇−αf(N)

)
.

That is

y(n) =(
(γ1 + δ1N)δ2

(δ1 − γ1)(δ2 − γ2)
+

δ2n

δ2 − γ2
)∇−(α−1)f(N)

+
δ1

δ1 − γ1
∇−αf(N)−∇−αf(n). (3.4)

So we know the Green’s function G(n, r) can be written as above. From (H1), we
obtain the following conclusions.

(i) γ1+δ1N
δ1−γ1

− n > 0;

(ii) δ1
δ1−γ1

 α

N − r

 >

 α

N − r

 >

 α

n− r

.
So G(n, r) > 0.

Let E = {y|y : [−1, N ] → R, γ1y(−1) = δ1y(N), γ2∇y(−1) = δ2∇y(N)}. It is
clear that E is a Banach space with the norm ||y|| = max

n∈[−1, N ]
|y(n)|. Now we define

the operator (Ty)(n) =
N∑
r=0

G(n, r)y(r), (Φy)(n) =
N∑
r=0

G(n, r)f(r, y(r)). It is easy

to see that u = u(n) is a solution of problem (1.2) if and only if u = u(n) is a fixed
point of Φ.
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Lemma 3.1 ( [9]). Let Ω be a bounded open set in infinite dimensional real Banach
space E, θ /∈ ∂Ω and A : Ω̄ → E be completely continuous. Suppose that ||Ax|| ≥
||x||, Ax ̸= x, ∀x ∈ ∂Ω. Then deg(I −A,Ω, θ) = 0.

Lemma 3.2 ( [11]). Let A be a completely continuous operator which is defined on
a Banach space E. Assume that 1 is not an eigenvalue of the asymptotic derivative.
The completely continuous vector field I − A is then nonsingular on spheres Sρ =
{x|||x|| = ρ} of sufficiently large radius ρ and deg(I−A,B(θ, ρ), θ) = (−1)k , where
k is the sum of the algebraic multiplicities of the real eigenvalues of A′(∞) in (1, ∞).

Theorem 3.3. Assume (H1) and (H2) hold. Moreover we assume that
(H3) there exists a constant c such that |f(n, u(n))| > c

A for |u| < c, where

A =

N∑
r=0

( (γ1 + δ1N)δ2
(δ1 − γ1)(γ2 − δ2)

+
δ2N

δ2 − γ2

)α− 1

N − r

;
(H4) β∞ := lim

x→∞
| f(x)x | is not the eigenvalues of (1.1).

Then (1.2) has at least one nontrivial solution.

Proof. We first prove Φ : E → E is completely continuous.
By (H2), it is easy to know Φ : E → E is continuous. Let O ⊂ B(θ,M) ⊂ E ,

for u ∈ O, we have ||u|| ≤ M. Using the continuous of f , there exists M ′ such that
|f(n, u(n))| < M ′. So

|(Φu)(n)| =
∣∣∣ 1

δ1 − γ1

( N∑
r=0

(γ1 + δ1N)δ2
γ2 − δ2

α− 1

N − r

f(r, u(r)) + δ1

 α

N − r

f(r, u(r)))

+
δ2

δ2 − γ2

N∑
r=0

α− 1

N − r

f(r, u(r))n−
n∑

r=0

 α

N − r

f(r, u(r))∣∣∣
≤ 1

δ1−γ1

N∑
r=0

( (γ1+δ1N)δ2
γ2 − δ2

α− 1

N − r

|f(r, u(r))|+δ1

 α

N − r

|f(r, u(r))|)

≤ M ′

δ1 − γ1

N∑
r=0

( (γ1 + δ1N)δ2
γ2 − δ2

α− 1

N − r

+ δ1

 α

N − r

).
This proves Φ is uniformly bounded on the space E. It is easy to know Φ is
equicontinuous. So Φ is completely continuous.

Similar to the proof of Lemma 3.3 of [13], we can obtain Φ is Fréchet differen-
tiable at ∞, and Φ′(∞) = β∞T .

Choose B(θ, c), from the above discussion, we know Φ : B(θ, c) → E is com-
pletely continuous. For ||u|| = c and n ∈ [0, N ]

|(Φu)(n)| =
∣∣∣ n∑
r=0

(
(

(γ1 + δ1N)δ2
(δ1 − γ1)(γ2 − δ2)

+
δ2n

δ2 − γ2
)

α− 1

N − r

+
δ1

δ1 − γ1

 α

N − r
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−

 α

N − r

)f(r, u(r)) + N∑
r=n

(
(

(γ1 + δ1N)δ2
(δ1 − γ1)(γ2 − δ2)

+
δ2n

δ2 − γ2
)

α− 1

N − r


+

δ1
δ1 − γ1

 α

N − r

)f(r, u(r))∣∣∣
>
∣∣∣ N∑
r=0

(
(

(γ1 + δ1N)δ2
(δ1 − γ1)(γ2 − δ2)

+
δ2n

δ2 − γ2
)

α− 1

N − r

+
δ1

δ1 − γ1

 α

N − r


−

 α

N − r

)f(r, u(r))∣∣∣
>

N∑
r=0

( (γ1 + δ1N)δ2
(δ1 − γ1)(γ2 − δ2)

+
δ2N

δ2 − γ2

)α− 1

N − r

f(r, u(r)) > c = ||u||.

That is ||Φu|| > ||u|| for u ∈ ∂(B(θ, c)). By Lemma 3.1,

deg(I − Φ, B(θ, c), θ) = 0. (3.5)

By Lemma 3.2, we get β∞
λ ̸= 1. So

deg(I − Φ, B(θ, ρ), θ) = (−1)k, k ≥ 1. (3.6)

Using (3.5) and (3.6), we have deg(I − Φ, B(θ, ρ)\B(θ, c), θ) = (−1)k.
So there exists at least one u ∈ B(θ, ρ)\B(θ, c) such that it is a fixed point of

Φ. The proof is complete.

Example 3.1. Consider
c
0∇

5
3
nu(n) + f(n, u(n)) = 0, 0 ≤ n ≤ N,

2u(−1) = 3u(N),

5∇u(−1) = 4∇u(N),

(3.7)

where

f(n, u(n)) =


−2u(n), u(n) ≤ − 1

A ,

2
A ,− 1

A ≤ u(n) ≤ 1
A ,

2u(n), u(n) ≥ 1
A ,

A =

N∑
r=0

( (γ1 + δ1N)δ2
(δ1 − γ1)(γ2 − δ2)

+
δ2N

δ2 − γ2

)α− 1

N − r

.
It is easy to know that f satisfy:

(i) f(n, u(n)) ∈ C([−1, N ]×R,R+);



918 Q. Li, Y. Liu & L. Zhou

(ii) β∞ = 2, and

2 /∈{λ|
(
1− δ2

γ2
Fα,1(−λ,N)

)(
γ1 − δ1Fα,1(−λ,N)

)
− δ1δ2

γ2
Fα,0(−λ,N)Fα,2(−λ,N) = 0};

(iii) Choose c = 3
2 such that |f(n, u(n))| > c

A . In fact, for − 1
A ≤ u(n) ≤ 1

A , we have
|f(n, u(n))| = 2

A > c
A and for |u(n)| ≥ 1

A , |f(n, u(n))| = |2u(n)| ≥ 2
A ≥ c

A .
By Theorem 3.3, we get the equation (3.7) has at least one nontrival solution.
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