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Abstract In this paper, we consider a diffusive predator-prey model with
Beddington-DeAngelis functional response. The Turing instability and Hopf
bifurcation of the coexisting equilibrium are investigated. We also use bifur-
cation parameters m, d2 to study the Turing-Hopf bifurcation. In addition,
we compute the normal form for the Turing-Hopf bifurcation. On the basis of
the corresponding normal form, there exists complex spatiotemporal dynamics
near Turing-Hopf bifurcation point. Finally, Some numerical simulations are
given to illustrate our theoretical results.
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1. Introduction
Ecosystem plays an important role in nature. The relationship between predators
and prey has been extensively studied in ecosystem [1, 14, 17, 19, 25]. The func-
tional response has a strong influence on the development of populations [6, 12, 13,
22]. One kind of functional response is prey-dependent type, such as Holling I-III
type functional responses [7]. Another kind of functional response is predator-
dependent type, such as Beddington-DeAngelis [2], Crowley-Martin [3], Hassel-
Varley [8]. Skalski and Gilliam [16] suggested that Beddington-DeAngelis functional
response is suitable for the case that predator feeding rate becomes independent of
predator density at high prey density. The Beddington-DeAngelis functional re-
sponse is with the following form

f (x, y) =
bx

1 + k1x+k2y
,

where x and y are prey and predator densities, respectively. b and k1 describe the
effects of capture rate and handling time, respectively. n is the birth rate of the
predator. k2y represents the interaction between predators and prey.
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A number of natural mechanisms can generate the Beddington-DeAngelis func-
tional response [5, 15, 18, 26], and it is worthy to study because of its rich dynamic
properties. Zhang et al. [26] investigated a discrete prey-predator system with har-
vesting of both species and Beddington-DeAngelis functional response. They es-
tablished that the system undergoes flip bifurcation and Hopf bifurcation by using
the center manifold theorem and bifurcation theory. In [5], the authors proposed
a intraguild predation model with predator interference and Beddington-DeAngelis
functional response. They mainly considered Hopf bifurcation and zero-Hopf bifur-
cation of the model. In [24], Yan and Zhang considered the following model



∂u(x,t)
∂t = d1∆u+ ru

(
1− u

K

)
− αuv

a+bu+cv

∂v(x,t)
∂t = d2∆v + v

(
−d+ mu

a+bu+cv

)
ux (x, t) = vx (x, t) = 0, x ∈ ∂Ω, t > 0

ux (x, 0) = u0 (x) ≥ 0, vx (x, 0) = v0 (x) ≥ 0, x ∈ Ω,

(1.1)

where u(x, t) and v(x, t) are prey and predator densities at the location x and time
t respectively. d1 and d2 are diffusion coefficients of prey and predator respectively.
r represents the intrinsic growth rate. K is carrying capacity of prey in the absence
of predation. αuv

a+bu+cv is the Beddington-DeAngelis response, and mu
a+bu+cv is preda-

tor’s growth rate. All parameters are positive. Yan and Zhang mainly discussed the
locally (globally) asymptotic stability and Turing instability of the positive constant
steady state [24]. Based on the model (1.1), Xu and Fu considered a new model
with the density-dependent death rate for the predator [23]. They mainly studied
the stability and Turing instability of positive equilibrium. They also investigated
the nonexistence (existence) of nonconstant positive steady state.

In predator-prey model, Turing bifurcation and Hopf bifurcation are two im-
portant research contents. Tian et al. [21] studed a Leslie-Gower predator-prey
model with Beddington-DeAngelis functional response. They mainly considered
stability, Turing instability and the Hopf bifurcation, and showed the existence of
Hopf bifurcation, steady state solution and Turing-Hopf bifurcation via numerical
simulations. Jiang and Tang [9] mainly studied the stability and Hopf bifurcation
in a diffusive delayed predator-prey model with herd behavior and prey harvest-
ing. Djilali [4] mainly investigated the existence of Hopf bifurcation and Turing
bifurcation, and showed the existence of Turing-Hopf bifurcation point.

As far as we know, there is few work to systematic analyze the Turing-Hopf
bifurcation for the model (1.1). Hence, we will give a complete and rigorous analysis
of the dynamics including the existence of Turing bifurcation, Hopf bifurcation and
Turing-Hopf bifurcation in this paper. We also give the normal form of Turing-Hopf
bifurcation, and some numerical simulations to show the rich dynamic phenomena
of the model (1.1).

The rest section of this paper is arranged. In Sect.2, we investigate the ex-
istence of the positive equilibrium of system (2.1). In Sect.3, we discuss a series
of bifurcations. In Sect.4, we get the normal form of Turing-Hopf bifurcation. In
Sect.5, some numerical simulations are given to verify our previous results. In Sect.
6, we give a conclusion.
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2. Equilibrium Analysis
We denote as β = α

r , δ =
d
m , system (1.1) can be rewritten as

∂u(x,t)
∂t = d1∆u+ ru

(
1− u

K − βv
a+bu+cv

)
, x ∈ Ω, t > 0,

∂v(x,t)
∂t = d2∆v +mv

(
−δ + u

a+bu+cv

)
, x ∈ Ω, t > 0,

ux (x, t) = vx (x, t) = 0, x ∈ ∂Ω, t > 0,

ux (x, 0) = u0 (x) ≥ 0, vx (x, 0) = v0 (x) ≥ 0, x ∈ Ω.

(2.1)

In this paper, we choose newman boundary condition, and consider the space
is one-dimensional Ω = (0, lπ), where l > 0 for convenience.

The first work is to analyze the existence of coexisting equilibrium, the system
without diffusion terms is given as follows ru

(
1− u

K − βv
a+bu+cv

)
= 0,

mv
(
−δ + u

a+bu+cv

)
= 0.

(2.2)

It is easy to get that the system (2.1) has boundary equilibria (0, 0) and (K, 0). But
we mainly focus on the coexisting equilibrium of the system (2.1). Now we assume
(u∗, v∗) is coexisting equilibrium of the system (2.1) and discuss the existence of
(u∗, v∗). From the second equation of (2.2), we get u = −aδ−cvδ

−1+bδ . Submitting it into
the first equation of (2.2), we obtain

h (v) = c2δv2 + v
[
2acδ + cK (−1 + bδ) +Kβ(−1 + bδ)

2
]
+ aK (−1 + bδ) + a2δ.

(2.3)
If bδ > 1, then h (0) = a2δ + aK (−1 + bδ) > 0, and the symmetrical axis of

h (v) is

h0 = −2acδ + cK (−1 + bδ)+Kβ(−1 + bδ)
2

2c2δ
< 0.

This indicates that system (2.1) has no coexisting equilibrium. Therefore bδ < 1
holds, there exist two cases as follow.

1. If h (0) < 0, we can get δ (a+ bK) < K, system (2.1) has a unique coexisting
equilibrium.

2. If h (0) > 0, we can get the symmetrical axis h0 < 0 of h (v), which means
system (2.1) has no coexisting equilibrium.

Based on the above analysis, we can get the following lemma.

Lemma 2.1. When δ < min
{

1
b ,

K
a+bK

}
, the system (2.1) has a unique coexisting

equilibrium (u∗, v∗).

3. Bifurcation analysis
In the work [24], Yan and Zhang have discussed the local stability and Turing
instability of the coexisting equilibrium (u∗, v∗). For the sake of completeness and
the convenience of analysis, we still do the following analysis process.
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In this paper, we mainly do some bifurcation analysis. Define the real-valued
Sobolev space

X :=
{
(u, v)T : u, v ∈ H2(0, lπ), (ux, vx)|x=0,lπ = 0

}
and its complexification is

XC := X ⊕ iX = {x1 + ix2| x1, x2 ∈ X} .

The linearlization of (2.1) near (u∗, v∗) has the form:

U̇(t) =

d1 0

0 d2

∆U(t) +

 a1 −a2

mb1 −mb2

U(t), (3.1)

where

a1 = ru∗

(
− 1

K + bv∗β
(a+bu∗+cv∗)

2

)
, a2 = − ru∗(a+bu∗)β

(a+bu∗+cv∗)
2 ,

b1 = mv∗(a+cv∗)

(a+bu∗+cv∗)
2 , b2 = − cmu∗v∗

(a+bu∗+cv∗)
2 .

(3.2)

Then the characteristic equation of Eq. (3.1) is given by

λy −D4y − Ly = 0, for some y ∈ dom(D4)\{0}, (3.3)

where

dom(D4) = {(u, v) ∈ X| ∂νu(t, x) = ∂νv(t, x) = 0, x = 0, lπ} .

It is well known that the operator u 7→ 4u with ∂νu = 0 at 0 and lπ has
eigenvalues −zn (zn = n2/l2, n ∈ N0) with corresponding eigenfunctions cos nx

l .
Let

ϕ =

∞∑
n=0

an
bn

 cos
nx

l

be an eigenfunction for 4+L with eigenvalue λ. Hence, we gain the characteristic
equation at E∗(u∗, v∗), that is

λ2 − tnλ+ θn = 0, n ∈ N0, (3.4)

where  tn = a1 −mb2 − (d1 + d2) zn,

θn = d1d2z
2
n + (b2d1m− a1d2) zn +m (a2b1 − a1b2) ,

(3.5)

and the eigenvalues are given by

λ
(n)
1,2 (r) =

tn ±
√
t2n − 4θn
2

, n ∈ N0 ≡ N ∪ 0. (3.6)

Then, we can get the Theorem 3.1 as follows.

Theorem 3.1. If a1 < 0, then the equilibrium E∗(u∗, v∗) is locally asymptotically
stable for system (2.1).

Proof. Notice that a1 < 0 which imply that t0 = a1 − mb2 < 0 and θ0 =
m (a2b1 − a1b2) > 0, then the eigenvalues of (3.4) have negative real parts. Hence,
this theorem has proved.
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3.1. Turing instability
To investigate Turing instability, we make the following hypothesis

(H1) a1 −mb2 < 0,

(H2) a2b1 − a1b2 > 0.

The equilibrium E∗(u∗, v∗) is locally asymptotically stable for the system (2.1)
without diffusion (d1 = d2 = 0) under hypothesis (H1) and (H2).

For θn = d1d2z
2
n + (b2d1m− a1d2) zn +m (a2b1 − a1b2), we can get the sym-

metrical axis z0 = a1d2−mb2d1

2d1d2
.

Divide the parameter m into the following two cases.

Case 1: m≥ a1d2
b2d1

, or m<
a1d2
b2d1

and (b2d1m−a1d2)2−4d1d2 (a2b1−a1b2)<0.

Case 2: m <
a1d2
b2d1

, and (b2d1m− a1d2)
2 − 4d1d2 (a2b1 − a1b2) > 0.

(3.7)

If z0 > 0 which means a1d2−mb2d1 > 0, we gain the parameter 0 < m < a1d2

b2d1
.

It also implies a1 > 0.

Theorem 3.2. Suppose (H1) and (H2) hold. Then for system (2.1), the following
statements are true.

(i) In Case 1, the equilibrium E∗(u∗, v∗) is locally asymptotically stable;
(ii) In Case 2, there does not exists a zk (k ∈ N0) such that θk < 0, then

E∗(u∗, v∗) is locally asymptotically stable;
(iii) In Case 2, there exists a zk (k ∈ N) such that θk < 0, then E∗(u∗, v∗) is

Turing unstable.

Proof. Notice that, (H1) implies that tn < 0 (n ∈ N0). (H1) implies that θn > 0
(n ∈ N0) when Case 1 holds. Then the eigenvalues of (3.4) have negative real parts,
implying statement (i) is true. Similarly, statement (ii) is true. If parameters in
Case 2, and there exist a k ∈ N such that θk < 0, then the eigenvalues of (3.4) have
positive real part λ(k)1 . This implies that E∗(u∗, v∗) is unstable for system (2.1).
Then statement (iii) is proved.

3.2. Hopf bifurcation
In this section, we make some Hopf bifurcation analysis. Denote

m = mn :=
a1 − (d1 + d2) zn

b2
, n ∈ N0. (3.8)

And θ0(m0) > 0 when hypothesis (H2) holds. Then, we have the following conclu-
sion of Hopf bifurcation.

Theorem 3.3. Suppose hypothesis (H2) holds. When m = mn, the system (2.1)
undergoes a Hopf bifurcation at equilibrium E∗(u∗, v∗) for 0 ≤ n ≤ n∗ − 1. In
addition, the bifurcating periodic solution is spatially homogeneous when m = m0

and spatially non-homogeneous when m = mn for 1 ≤ n ≤ n∗ − 1.
(n∗ = max{k ∈ |θn(mn) > 0 and mn > 0 for n = 0, 1, · · · , k − 1.)
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Proof. When m = mn, tn(mn) = 0 and θn(mn) > 0 for 0 ≤ n ≤ n∗ − 1, implying
that (3.4) has purely imaginary. Let

λn(s) = αn(m)± iωn(m), n = 0, 1, · · · , n∗ − 1

be the roots of Eq. (3.4) satisfying

αn(mn) = 0, ωn(mn) =
√
θn(mn).

Then, when m is near mn

αn(m) =
tn(m)

2
, ωn(m) =

√
θn − α2

n(m).

In (3.5), we obtain
α′
n(mn) = −b2

2
< 0. (3.9)

This implies that the transversal condition is satisfied at eachmn, n=0, 1, 2, · · · , n∗−
1. This completes the proof.

3.3. Turing-Hopf bifurcation
In this section, we suppose hypothesis (H2) always holds. From Theorem 3.3, we
know that when m∗ := a1/b2, system (2.1) undergoes hopf bifurcation, and the
bifurcating periodic solution is spatially homogeneous.

Due to the Turing-Hopf bifurcation is spatially codimension-2 bifurcation, it
may produce rich dynamic phenomenon [11, 20]. When system undergoes Turing-
Hopf bifurcation, the following conditions need to be satisfied.
(1) There are a pair of simple purely imaginary roots ±iω for Eq. (3.4) when n = 0;
(2) There is a simple zero root λ = 0 for Eq. (3.4) when n = j ∈ N.

We can get a series of Turing bifurcation curves dk2 :

dk2 =
b2d1mzk − (a2b1 − a1b2)m

zk (−a1 + d1zk)
, S =

{
k ∈ N0| dk2 > 0

}
. (3.10)

There exist k∗ ∈ N such that
dk∗
2 =

b2d1zk∗−(a2b1−a1b2)
zk∗ (−a1+d1zk∗ )

m∗ = min
k∈S

b2d1zk−(a2b1−a1b2)
zk(−a1+d1zk)

m∗.
Based on the above analysis, we give out following theorem about Turing-Hopf

bifurcation.

Theorem 3.4. Suppose (H2) holds. For system (2.1), the following statements are
true.

(i) If S = ∅, system (2.1) does not undergo Turing-Hopf bifurcation.
(ii) If S 6= ∅, the equilibrium E∗(u∗, v∗) is locally asymptotically stable for (m, d2) ∈

{(m, d2) | m > m∗, 0 < d2 <
b2d1zk∗−(a2b1−a1b2)

zk∗ (−a1+d1zk∗ )
m}, and system (2.1) under-

goes Turing-Hopf bifurcation at the point (m, d2) = (m∗, dk∗
2 ).

Proof. In m− d2 plane, the Hopf bifurcation curve is

H0 : m = m∗.
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We define the Turing bifurcation curves as follows:

Lk : dk2 =
b2d1zk − (a2b1 − a1b2)

zk (−a1 + d1zk)
m, k ∈ S.

1.If S = ∅, then Lk and H0 have no intersection in the first quadrant, so system
(2.1) does not undergo Turing-Hopf bifurcation.

2.If S 6= ∅, it’s clear that tn < 0 and θn > 0 for n ∈ N0, implying that the
equilibrium E∗(u∗, v∗) is locally asymptotically stable. For (m, d2) ∈ {(m, d2) | m >

m∗, 0 < d2 <
b2d1zk∗−(a2b1−a1b2)

zk∗ (−a1+d1zk∗ )
m, the Turing bifurcation curves Lk∗ intersects

with Hopf bifurcation curve H0 at Turing-Hopf bifurcation point (m∗, dk∗
2 ), with

real parts of all other eigenvalues of Eq. (3.4) (n 6= 0, k∗) being negative. Moreover,
suppose λ1(m) = α1(m) + iβ1(m) with α1(m

∗) = 0, β1(m∗) = ω > 0, and λ2(m) =
α2(m) + iβ2(m) with α2(m

∗) = 0, β2(m∗) = 0, then the transversality conditions
are as follows:

dRe(λ1(m))

dm
|m=

a1
b2

,H0
= −b2

2
< 0,

dRe(λ2(m))

dm
|m=

a1
b2

,Lk∗
=
b2d1zn + (a2b1 − a1b2)

Tn
< 0.

This completes the proof.

4. Normal forms for Turing-Hopf bifurcation
In this section, we calculate normal forms of Turing-Hopf bifurcation for system
(2.1) at equilibrium (u∗, v∗). We introduce µ1 and µ2 as perturbation parameters,
and let m = m∗ + µ1 and d2 = dk∗

2 + µ2, so that when µ1 = 0, µ2 = 0, the system
(2.1) can undergo Turing-Hopf bifurcation. Then the reaction-diffusion system (2.1)
can be transformed into

∂u(x,t)
∂t = d1∆u+ ru

(
1− u

K − βv
a+bu+cv

)
,

∂v(x,t)
∂t =

(
dk∗
2 + µ1

)
∆v + (m∗ + µ2) v

(
−δ + u

a+bu+cv

)
.

(4.1)

In this paper, we always let (u∗, v∗) is the coexistence equilibrium for system (4.1).
We apply the generic formulas developed from Jiang [10], and consider the trans-
formations ū = u − u∗, v̄ = v − v∗ and drop the bars, then system (4.1) can be
rewritten as

∂u(x,t)
∂t = d1∆u+ r (u+ u∗)

(
1− u+u∗

K − β(v+v∗)
a+b(u+u∗)+c(v+v∗)

)
,

∂v(x,t)
∂t =

(
dk∗
2 + µ1

)
∆v + (m∗ + µ2) (v + v∗)

(
−δ + u+u∗

a+b(u+u∗)+c(v+v∗)

)
.

(4.2)
Thus, according to Jiang [30], for system (4.2) we have,

D(µ) =

d1 0

0 dk∗
2 + µ1

 , L(µ) =

 a1 −a2

(m∗ + µ1) b1 − (m∗ + µ2) b2

 ,
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F (ϕ, µ) =

 r (ϕ1 + u∗)
(
1− ϕ1+u∗

K − β(ϕ2+v∗)
a+b(ϕ1+u∗)+c(ϕ2+v∗)

)
− a1ϕ1 + a2ϕ2

(m∗ + µ2) (ϕ2 + v∗)
(
−δ + ϕ1+u∗

a+b(ϕ1+u∗)+c(ϕ2+v∗)

)
− (m∗ + µ1) b1 + (m∗ + µ2) b2

 ,

(4.3)

where ϕ = (ϕ1, ϕ2)
T ∈ X.

Then, we have

D(0) =

d1 0

0 dk∗
2

 , D1(µ) =

 0 0

0 2µ1

 ,

L(0) =

 a1 −a2

m∗b1 −m∗b2

 , L1(µ) =

 0 0

2µ2b1 −2µ2b2

 ,

Q(ϕ, ψ) =

α11ϕ1ψ1 + α12(ϕ1ψ2 + ψ1ϕ2) + α13ϕ2ψ2

α21ϕ1ψ1 + α22(ϕ1ψ2 + ψ1ϕ2) + α23ϕ2ψ2

 ,

C(ϕ, ψ, υ) =

β11ϕ1ψ1υ1+β12(ϕ1ψ1υ2+ϕ1ψ2υ1+ϕ2ψ1υ1)+β13(ϕ1ψ2υ2+ϕ2ψ1υ2+ϕ2ψ2υ1)+β14ϕ2ψ2υ2

β21ϕ1ψ1υ1+β22(ϕ1ψ1υ2+ϕ1ψ2υ1+ϕ2ψ1υ1)+β23(ϕ1ψ2υ2+ϕ2ψ1υ2+ϕ2ψ2υ1)+β24ϕ2ψ2υ2

 ,

with

α11 = 2r

(
v∗ (ab+ bcv∗)β

(a+ bu∗ + cv∗)
3 − 1

K

)
, α12 = −

rβ
(
a2 + abu∗ + acv∗ + 2bcu∗v∗

)
(a+ bu∗ + cv∗)

3 ,

α13 =
2rcβu∗ (a+ bu∗)

(a+ bu∗ + cv∗)
3 , α21 = − 2mv∗b (a+ cv∗)

(a+ bu∗ + cv∗)
3 ,

α22 = −cmv∗ (a− bu∗ + cv∗)

(a+ bu∗ + cv∗)
3 , α23 =

2c2mv∗u∗

(a+ bu∗ + cv∗)
3 ,

β11 = −6brβv∗ (ab+ bcv∗)

(a+ bu∗ + cv∗)
4 , β12 = −

2
(
−a2brβ − ab2ruβ − 2b2cruvβ + bc2rv2β

)
(a+ bu+ cv)

4 ,

β13 =
2rβ

(
a2c− b2cu2∗ + ac2v∗ + 2bc2u∗v∗

)
(a+ bu∗ + cv∗)

4 , β14 = −6c2rβu∗ (a+ bu∗)

(a+ bu∗ + cv∗)
4 ,

β21 =
6b2mv∗ (a+ cv∗)

(a+ bu∗ + cv∗)
4 , β22 = −

2cmv
(
−2ab+ b2u∗ − 2bcv∗

)
(a+ bu∗ + cv∗)

4 ,

β23 =
2c2mv∗ (a− 2bu∗ + cv∗)

(a+ bu∗ + cv∗)
4 , β24 = − 6c3mv∗u∗

(a+ bu∗ + cv∗)
4 ,

and ϕ = (ϕ1, ϕ2)
T , ψ = (ψ1, ψ2)

T , υ = (υ1, υ2)
T ∈ X. The corresponding character-

istic matrices are given by

Γk(λ) =

λ+ d1zk − a1 a2

−m∗b1 λ+ dk∗
2 zk +m∗b2

 , k ∈ N.

Obviously, λ = ±iω with ω =
√
m∗ (a2b1 − a1b2), are eigenvalues of D0(λ), and

λ = 0 is a simple eigenvalue for Γk∗ (λ), with other eigenvalues having negative real
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parts, according to Theorem 3.4. Then, we have

ϕ1 =

 1

a1−d1zk∗
a2

 , ψ1 =

 −m∗b1
(a2b1−a1b2)m∗+(b2d1m∗−a1d2)zk∗+d1d2z2

k∗
a1−d1zk∗

(a2b1−a1b2)m∗+(b2d1m∗−a1d2)zk∗+d1d2z2
k∗


T

,

ϕ2 =

 1

a1−iω
a2

 , ψ2 =

 a2b1m
∗

a2b1m∗+(ω+a1i)
2

a2(iω−a1)

a2b1m∗+(ω+a1i)
2

T

.

Therefore, Φ = (ϕ1, ϕ2, ϕ̄2) andΨ = (ψ1, ψ2, ψ̄2)
T satisfying ΦΨ = I3, where I3 is

identity matrix. By [10], the following parameters can be computed.

a1(µ) =
1

2
ψ1 (L1(µ)ϕ1 − µk∗D1(µ)ϕ1) , a200 = a011 = b110 = 0,

b2(µ) =
1

2
ψ2(L1(µ)ϕ2 − 0D1(µ)ϕ2),

a300 =
1

4
ψ1Cϕ1ϕ1ϕ1

+
1

ω
ψ1Re[iQϕ1ϕ2

ψ2]Qϕ1ϕ1
+ ψ1Qϕ1(h0

200+
1√
2
h2k∗
200 ),

a111 = ψ1Cϕ1ϕ2ϕ̄2
+
2

ω
ψ1Re[iQϕ1ϕ2ψ2]Qϕ2ϕ̄2

+ψ1(Qϕ1(h0
011+

1√
2
h2k∗
011 )+Qϕ2h

k∗
101

+Qϕ̄2h
k∗
110

),

b210 =
1

2
ψ2Cϕ1ϕ1ϕ2 +

1

2iω
ψ2(2Qϕ1ϕ1ψ1Qϕ1ϕ2 + (−Qϕ2ϕ2ψ2 +Qϕ2ϕ̄2

ψ̄2)Qϕ1ϕ1)

+ ψ2(Qϕ1h
k∗
110

+Qϕ2h0
200

),

b021 =
1

2
ψ2Cϕ2ϕ2ϕ̄2

+
1

4iω
ψ2

(
2

3
Qϕ̄2ϕ̄2

ψ̄2Qϕ2ϕ2
+ (−2Qϕ2ϕ2

ψ2 + 4Qϕ2ϕ̄2
ψ̄2)Qϕ2ϕ̄2

)
+ ψ2(Qϕ2h0

011
+Qϕ̄2h0

020
),

where

h0200 =− 1

2
L−1(0)Qϕ1ϕ1

+
1

2ωi
(ϕ2ψ2 − ϕ̄2ψ̄2)Qϕ1ϕ1

,

h2k∗
200 =− 1

2
√
2
[L(0) + diag(−4µk∗ ,−4dk∗µk∗)]

−1
Qϕ1ϕ1 ,

h0011 =− L−1(0)Qϕ2ϕ̄2
+

1

ωi
(ϕ2ψ2 − ϕ̄2ψ̄2)Qϕ2ϕ̄2

,

h0020 =
1

2
[2iωI − L(0)]

−1
Qϕ2ϕ2 −

1

2ωi

(
ϕ2ψ2 +

1

3
ϕ̄2ψ̄2

)
Qϕ2ϕ2 ,

hk∗
110 = [iωI − (L(0)− diag(−µk∗ ,−dk∗µk∗))]

−1
Qϕ1ϕ2 −

1

ωi
ϕ1ψ1Qϕ1ϕ2 ,

h0002 =h0020, hk∗
101 = hk∗

110, h2k∗
011 = 0.

By [10], we get the following normal form restricted on center manifold up to order
3 for reaction-diffusion system (2.1).

ż1 = a1(µ)z1 + a200z
2
1 + a011z2z̄2 + a300z

3
1 + a111z1z2z̄2 + h.o.t.,

ż2 = iωz2 + b2(µ)z2 + b110z1z2 + b210z
2
1z2 + b021z

2
2 z̄2 + h.o.t.,

˙̄z2 = −iωz̄2 + b̄2(µ)z̄2 + b̄110z1z̄2 + b̄210z
2
1 z̄2 + b̄021z2z̄

2
2 + h.o.t.

(4.4)
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Let’s make the cylindrical coordinate transformation z1 = r, z2 = ρcosθ − iρsinθ,
the normal form for Eq. (4.4) can be written in real coordinates form :{

ṙ = a1(µ)r + a300r
3 + a111rρ

2,

ρ̇ = Re(b2(µ))ρ+ Re(b210)ρr2 + Re(b021)ρ3.
(4.5)

5. Numerical simulations

In order to verify our previous conclusions, numerical simulation is carried out here.
Taking β = 0.8,K = 10, b = 0.7, a = 0.2, c = 0.2, r = 5, δ = 1, d1 = 1, we have


∂u(x,t)

∂t = ∆u+ 5u
(
1− u

10 − 0.8v
0.2+0.7u+0.2v

)
, x ∈ (0, 4π), t > 0,

∂v(x,t)
∂t = d2∆v +mv

(
−1 + u

0.2+0.7u+0.2v

)
, x ∈ (0, 4π), t > 0.

(5.1)

By calculation, we obtain (u∗, v∗) = (2.0, 2.0) is a unique coexisting equilibrium.
And a1 = 1.8, a2 = 3.2, b1 = 0.3, b2 = 0.2, then hypothesis (H2) holds. In addition,
S = {1 2 3 4 5}, m∗ = 9.0, k∗ = 4, dk∗

2 = 9.0. The Hopf bifurcation curve in m− d2
plane is

H0 : m = m∗ = 9.0.

The Turing bifurcation curves are

Lk : dk2 =
b2d1zk − (a2b1 − a1b2)

zk (−a1 + d1zk)
m, k ∈ S.

The normal form restricted on center manifold for reaction-diffusion system
(5.1) at Turing-Hopf singularity is



ż1 =
(
1.1259× 1014µ1 − 1.1259× 1014µ2

)
z1 − 4.2567× 1014z31

− 1.0045× 1015z1z2z̄2 + h.o.t.,

ż2 = 2.3238iz2 + (−0.1000 + 0.12916i)µ2z2 + (−0.1953 + 0.1250i) z21z2

+ (−0.1335 + 0.1957i) z22 z̄2 + h.o.t.,

˙̄z2 = −2.3238iz̄2 + (−0.1000− 0.12916i)µ2z̄2 + (−0.1953− 0.1250i) z21 z̄2

+ (−0.1335− 0.1957i) z2z̄
2
2 + h.o.t.

Then we have{
ṙ =

(
1.1259× 1014µ1−1.1259× 1014µ2

)
r−4.2567× 1014r3−1.0045× 1015rρ2,

ρ̇ = −0.100µ2ρ− 0.1953ρr2 − 0.1335ρ3.

(5.2)
Considering ρ > 0, from [10], system (5.4) has coexistence equilibrium A0; spa-
tially inhomogeneous steady states A±

1 ; spatially homogeneous periodic solution
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A2; spatially inhomogeneous periodic solutions A±
3 . We calculate them as follows.

A0 = (0, 0),

A±
1 =

(
±
√
0.2645 (1.0000µ1 − 1.0000µ2), 0

)
, for µ1 < 1.0000µ2

A2 = (0,
√

−0.1146µ1), for µ1 > 0,

A±
3 =

(
±
√
−0.1079 (1.0000µ1 + 5.6821µ2),

√
0.1578 (1.0000µ1 + 0.9357µ2)

)
,

for 1.0000µ1 + 5.6821µ2 < 0, and 1.0000µ1 + 0.9357µ2 > 0.
(5.3)

Then, we can obtain the following critical bifurcation curves

H0 : µ2 = 0, T : µ2 = 1.0000µ1

T1 : µ2 = −0.1760µ1, µ1 ≥ 0,

T2 : µ2 = −1.0687µ1, µ1 ≥ 0.

(5.4)

From Fig.1 (right), we choose the first intersection point (m, d2) of Turing curve
Lk and Hopf curve H0 as the Turing-Hopf bifurcation point (m, d2) = (m∗, dk∗

2 ).
Therefore, system (5.1) undergoes Turing-Hopf bifurcation at the point (m∗, dk∗

2 ) =
(9.0, 9.0). Then, we can get the bifurcation diagram, see Fig.1(left).
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Figure 1. Left:the bifurcation diagram. Right:Stable region for (u∗, v∗), Turing-Hopf bifurcation point
(m∗, dk∗

2 ) in m − d2 plane.

For each region, we obtain the following conclusions.

Proposition 5.1. By bifurcation curves T , T1, T2, the parameter plane (µ1, µ2) is
divided into six regions. For every region, the system (2.1) can show different
dynamic phenomenon. We get the following main results:

1. When (µ1, µ2) ∈ D1, the equilibrium (u∗, v∗) of the system (2.1) is asymp-
totically stable (see Fig.2).

2. When (µ1, µ2) ∈ D2, there exist a pair of stable spatially inhomogeneous
steady states (see Fig.3).

3. When (µ1, µ2) ∈ D3, the system (2.1) has a pair of stable spatially inhomo-
geneous steady states and an unstable spatially homogeneous periodic solution (see
Fig.4).
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4. When (µ1, µ2) ∈ D4, the system (2.1) has a stable spatially homogeneous
periodic solution, a pair of stable spatially inhomogeneous steady states, and a pair
of unstable spatially inhomogeneous periodic solutions for system (2.1) (see Fig.5).

5. When (µ1, µ2) ∈ D5, there are a stable spatially homogeneous periodic so-
lution, and also has a pair of unstable spatially inhomogeneous steady states (see
Fig.6).

6. When (µ1, µ2) ∈ D6, the system (2.1) only has a stable spatially homogeneous
periodic solution (see Fig.7).

Figure 2. For (µ1, µ2) = (0.1, 1.0) ∈ D1, the positive equilibrium (u∗, v∗) of the system (2.1) is
asymptotically stable.

(a) The initial values are u (x, 0) = 2.0 + 0.1 cos (4x) , v (x, 0) = 2.0 − 0.1 cos (4x).

(b) The initial values are u (x, 0) = 2.0 − 0.1 cos (4x) , v (x, 0) = 2.0 + 0.1 cos (4x).

Figure 3. For (µ1, µ2) = (1.0, 0.1) ∈ D2, there is a pair of stable spatially inhomogeneous steady states.
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(a) The initial values are u (x, 0) = 2.0 + 0.1, v (x, 0) = 2.0 − 0.1.

(b) The initial values are u (x, 0) = 2.0 − 0.1, v (x, 0) = 2.0 + 0.1

Figure 4. For (µ1, µ2) = (1.0,−0.1) ∈ D3, the system (2.1) has a pair of stable spatially inhomogeneous
steady states and an unstable spatially homogeneous periodic solution.

6. Conclusion

In this article, we discuss a diffusive predator-prey model with Beddington-DeAngelis
functional response. Our main work is to do some bifurcation analysis including
Turing bifurcation, Hopf bifurcation, and Turing-Hopf bifurcation.

At first, we analysis the existence of the equilibrium. Then, we get the condi-
tions about Turing instability of the system (2.1). Under hypothesis (H2) holds,
the system (2.1) can undergo a Hopf bifurcation at E∗(u∗, v∗) when m = mn, for
0 ≤ n ≤ n∗ − 1. In addition, we choose m, d2 as bifurcation parameters, then
system (2.1) undergoes Turing-Hopf bifurcation at the point (m, d2) = (m∗, dk∗

2 ).
We also compute the normal form of Turing-Hopf bifurcation, and get some bifur-
cation curves which divide bifurcation diagram into six regions. For every region,
the system (2.1) can show different dynamic phenomena.
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(a) The initial values are u (x, 0) = 2.0 + 0.1 cos (4x) , v (x, 0) = 2.0 − 0.1 cos (4x).

(b) The initial values are u (x, 0) = 2.0 + 0.0001 cos (4x) , v (x, 0) = 2.0 − 0.00001 cos (4x).

(c) The initial values are u (x, 0) = 2.0 − 0.0001 cos (4x) , v (x, 0) = 2.0 + 0.0001 cos (4x).

Figure 5. When (µ1, µ2) = (1.0,−0.2) ∈ D4, there exists a stable spatially homogeneous periodic
solution and a pair of stable spatially inhomogeneous steady states, as well as a pair of unstable spatially
inhomogeneous periodic solutions.
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Figure 6. For (µ1, µ2) = (1.0,−2.0) ∈ D5, the system (2.1) has a stable spatially homogeneous
periodic solution and a pair of unstable spatially inhomogeneous steady states. The initial values are
u (x, 0) = 2.0 + 0.2 cos (4x) , v (x, 0) = 2.0 − 0.2 cos (4x).

Figure 7. When (µ1, µ2) = (−1.0,−0.5) ∈ D6, there is a stable spatially homogeneous periodic solution.
The initial values are u (x, 0) = 2.0 + 0.01, v (x, 0) = 2.0 − 0.01.
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