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BIFURCATION, A-PRIORI BOUND AND
NEGATIVE SOLUTIONS FOR THE COMPLEX

HESSIAN EQUATION∗
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Abstract This paper establishes global bifurcation and eigenvalue results for
the following complex k-Hessian equationSk

(
uij

)
= λkf(−u) in B,

u = 0 on ∂B.

The existence/nonexistence, uniqueness and multiplicity of radially symmet-
ric negative solutions are investigated. Moreover, a-priori bound of radially
symmetric negative solutions is also obtained.
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1. Introduction
In this paper, we study the following complex k-Hessian equationSk

(
uij

)
= λkf(−u) in B,

u = 0 on ∂B,
(1.1)

where the complex k-Hessian operator Sk

(
uij

)
is the k-th symmetric polynomial

of eigenvalues of the complex Hessian matrix
(
uij

)
=
(

∂2u
∂zi∂zj

)
, B is the unit ball

of CN with N ≥ 1, k ∈ {1, . . . , N}, λ is a nonnegative parameter and f : [0,+∞) →
[0,+∞) is a continuous function with f(s) > 0 for s > 0.

Notice that when k = N , the complex k-Hessian equation is reduced to the
complex Monge-Ampère equation, which have been studied by many famous math-
ematicians to obtain the existence, uniqueness, regularity and the qualitative prop-
erties of solutions; for example [3,4,7,9,13,14,17–20,31] and the references therein.
Meanwhile, some mathematicians have also got several celebrated results for the
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complex k-Hessian equation; see [5, 21, 29, 32] and the references therein. In [8, 28],
the authors studied the existence of the real k-Hessian equation. J. Sánchez [26]
studied asymptotic behavior of solutions of a k-Hessian evolution equation. The
authors of [23] investigated the existence for a k-Hessian equation involving super-
critical growth. The authors of [2] studied the existence for Polyharmonic k-Hessian
equations in RN . But so far we haven’t seen any systematic investigations on the
complex k-Hessian equation using bifurcation method. Here in this paper we study
the existence/nonexistence, uniqueness and multiplicity of radially symmetric neg-
ative solutions of the complex k-Hessian equation (1.1) by bifurcation method.

Let r = |z|, Cm
n = n!/((n − m)!m!) be the combinatorial constant. It is well

known that a radially symmetric solution of problem (1.1) is equivalent to a solution
of the following problem

(
r2N−k (w′)

k
)′

= λk N2k+1

Ck
N

r2N−1f(−w), r ∈ (0, 1),

w′(0) = w(1) = 0.
(1.2)

A solution to problem (1.2) is a function of C2[0, 1] that satisfies problem (1.2).
It is easy to verify that any solution of problem (1.2) is negative and strictly

increasing. Problem (1.2) can be transformed into the following equivalent problem
if we make v = −w,

(
r2N−k (−v′)k

)′
= λk N2k+1

Ck
N

r2N−1f(v), r ∈ (0, 1),

v′(0) = v(1) = 0.
(1.3)

Decompose f into f(s) = sk + g(s), we can set up a global bifurcation result for
problem (1.3),

(
r2N−k (−v′)k

)′
= λk N2k+1

Ck
N

r2N−1
(
vk + g(v)

)
, r ∈ (0, 1),

v′(0) = v(1) = 0,
(1.4)

where g : R+ → R with R+ = [0,+∞), and lims→0+ g(s)/s
k = 0. Obviously,

problem (1.4) always admits the trivial solution v ≡ 0.
To study problem (1.4), we need consider the following eigenvalue problem−

(
r2N−p+1 |v′|p−2

v′
)′

= λp−1N2k+1

Ck
N

r2N−1|v|p−2v, r ∈ (0, 1),

v′(0) = v(1) = 0
(1.5)

for any p ∈ [2, N + 1]. For problem (1.5), we have the following theorem.

Theorem 1.1. Problem (1.5) possesses a unique eigenvalue λ = λ1(p) such that the
corresponding eigenfunctions have one sign, which is unique up to a multiplication.
Moreover, λ1(p) is minimal, isolated and continuous with respect to p.

In particular, taking p = k + 1, it follows from Theorem 1.1 that the following
eigenvalue problem Sk

(
uij

)
= λk(−u)k in B,

u = 0 on ∂B
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has an eigenvalue λ1 := λ1(k + 1) such that the corresponding eigenfunction is
negative and radially symmetric, which has pointed out in [21, Remark 1] without
proof.

LetX be the Banach space C[0, 1] endowed with the norm ∥v∥ = maxr∈[0,1] |v(r)|,
X+ = {v ∈ X : v ≥ 0} with the deduced norm ofX and P+ be the set of functions in
X+ which are positive in [0, 1). Also, set K+ = R×P+ under the product topology.

For problem (1.4), we have the following theorem.

Theorem 1.2. The pair (λ1, 0) is a bifurcation point of problem (1.4). Moreover,
the associated bifurcation branch C is unbounded and such that C ⊆ (K+ ∪ {(λ1, 0)}).

Note that problem (1.5) is linear when p = 2. So by virtue of the index formula
of an isolated zero [12] and the invariance of the Leray-Shauder degree under a
compact homotopy, we can establish an index jumping result for problem (1.5).
Then by this index jumping result, we can prove an index jumping result involving
problem (1.4) which guarantees (λ1, 0) being a bifurcation point of problem (1.4).
This is the reason why we introduce problem (1.5).

If lims→+∞ f(s)/sk = +∞, we call that f is superlinear. From now on, when
f is superlinear, we always assume that f satisfies the following subcritical growth
condition

|f(s)| ≤ C (1 + |s|p)

for some p ∈ (k, k∗] and positive constant C, where

k∗ =


2k(N+1)+1−k2

2N−2k if k < N,

+∞ if k = N.

Note that problem (1.1) has no nontrivial non-positive solution (see [21, Theorem
2]) if λ = 1 and f(s) = sq with q ≥ k∗ and

k∗ =


(N+1)k
N−k if k < N,

+∞ if k = N,

where k∗ is the critical exponent for the complex k-Hessian operator which was
determined in [21]. It is easy to see that k < k∗ ≤ k∗. And then for convenience,
we call k∗ the lower critical exponent for the k-Hessian operator.

Now we have the following a-priori bound.

Theorem 1.3. Assume that f is superlinear and satisfies the lower subcritical
growth condition. Given a compact set Λ ⊂ [0,+∞), let u be any radially symmetric
negative solution of problem (1.1) with λ ∈ Λ. Then there exists a constant C,
independent of u, such that ∥u∥ ≤ C.

We use the blow up method introduced by Gidas and Spruck [15] in combination
with the Liouville-type Theorems in [27] to prove Theorem 1.3. And then from
Theorems 1.1–1.3, we get the intervals of the parameter λ, which guarantee the
existence/nonexistence of single or multiple radially symmetric negative solutions
of problem (1.1). To obtain the uniqueness, we propose an identity which is called
complex Hessian identity. Then by Implicit Function Theorem, under some more
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strict assumptions on f , we show that the radially symmetric negative solution
branch of problem (1.1) can be a smooth curve and that the radially symmetric
negative solution is decreasing with respect to λ.

The rest of this paper is arranged as follows. In Section 2, we present the proof of
Theorem 1.1 and an index jumping result. Section 3 is mainly devoted to the proofs
of Theorems 1.2–1.3. Meanwhile, we also introduce a complex Hessian identity and
establish a Sturm type comparison result in the same section. In Section 4, we find
the intervals for the parameter λ which ensure existence/nonexistence of single or
multiple radially symmetric negative solutions for problem (1.1) under some suitable
assumptions on f . In the last Section, under some more strict assumptions on f ,
we show the uniqueness of radially symmetric negative solutions for problem (1.1).

2. Proof of Theorem 1.1
Set E =

{
v ∈ C1[0, 1] : v(1) = 0

}
. Let Wp be the real Banach space obtained by

completing E under the following norm

∥v∥p =

(∫ 1

0

r2N+1−p |v′|p dr
) 1

p

.

Then, by [24, Example 6.8], we have the following Sobolev type inequality.

Proposition 2.1. There exists a constant C such that

C

(∫ 1

0

r2N+1−p |v′|p dr
)1/p

≥
(∫ 1

0

r2N−1|v|q dr
)1/q

for any v ∈Wp, where q ∈ [1,+∞).

For q ≥ 1, define

Lq
(
r2N−1 dr

)
=

{
v ∈ L1(0, 1) :

(∫ 1

0

r2N−1|v|q dr
)1/q

}
< +∞.

Then by Proposition 2.1, the following embedding result holds.

Proposition 2.2. Wp is continuously embedded in Lq
(
r2N−1 dr

)
for all 1 ≤ q <

+∞, further the embedding is compact for q < p∗. where

p∗ =


Np

N−p+1 if p < N + 1,

+∞ if p = N + 1.

Proof. The continuous embedding is the direct corollary of Proposition 2.1. So
it is sufficient to show the compact embedding. Let S ⊆Wp be a set bounded by a
positive constant C. For any v ∈ S, we have that

|v(r + t)− v(r)| ≤
∫ r+t

r

|v′(τ)| dτ

≤ C

(∫ 1

0

r2N+1−p |v′|p dr
)1/p ∣∣∣(r + t)

2(p−1)−2N
p−1 − r

2(p−1)−2N
p−1

∣∣∣ p−1
p

.
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If p = N + 1, then

|v(r + t)− v(r)| = 0.

Thus,∫ 1

0

r2N−1|v(r+t)−v(r)|q dr ≤ C

∫ 1

0

r2N−1
∣∣∣(r+t) 2(p−1)−2N

p−1 −r
2(p−1)−2N

p−1

∣∣∣ q(p−1)
p

dr = 0,

from which we get that S is relatively compact in Lq
(
r2N−1 dr

)
.

If p < N + 1, in view of q < p∗ and the Lebesgue dominated convergence
theorem, we obtain that∫ 1

0

r2N−1
∣∣∣(r + t)

2(p−1)−2N
p−1 − r

2(p−1)−2N
p−1

∣∣∣ q(p−1)
p

dr → 0

as t→ 0. Note that the limit should be understood as one-side limit when r = 0 or
r = 1. We thus have that∫ 1

0

r2N−1|v(r + t)− v(r)|q dr → 0

as t→ 0 uniformly in v∈S, which shows that S is relatively compact in Lq
(
r2N−1 dr

)
.

Moreover, we give the following inclusion relations.

Proposition 2.3. Wp1 ⊆ Wp2 and Lp1
(
r2N−1 dr

)
⊆ Lp2

(
r2N−1 dr

)
hold for any

p1, p2 ∈ [2, N + 1] with p2 ≤ p1.

Proof. For any v ∈Wp1 , letting Ω = {r ∈ (0, 1) : |v′| ≤ 1}, we obtain that∫ 1

0

r2N+1−p2 |v′|p2 dr =

∫
Ω

r2N+1−p2 |v′|p2 dr +

∫
(0,1)\Ω

rN+1−p2 |v′|p2 dr

≤ 1 +

∫
(0,1)\Ω

r2N+1−p2 |v′|p2 dr

≤ 1 +

∫
(0,1)\Ω

r2N+1−p1 |v′|p1 dr < +∞.

Thus u ∈Wp2
. The second inclusion can be proved similarly.

We call v ∈Wp the generalized solution of problem (1.5) if for any ϕ ∈Wp,∫ 1

0

r2N+1−p |v′|p−2
v′ϕ′ dr = λp−1N2k+1

Ck
N

∫ 1

0

r2N−1|v|p−2vϕ dr (2.1)

holds. The following result is the regularity of the generalized solution.

Proposition 2.4. Suppose v be any generalized solution of problem (1.5). Then
v ∈ C2[0, 1] satisfies problem (1.5) in the classical sense.

Proof. We first show that v is bounded. We define

Φ(z) =

 zs − 1 for z ∈ [1, ρ],

az + b for z > ρ
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for s ≥ 1 and ρ ≥ 1, where a, b are two constants such that Φ ∈ C1[1,+∞). It is
clear that |Φ′(t)| is increasing. Set v+ = max{v, 0}, and choose

∫ v++1

1
|Φ′(t)|p dt :=

φ as a test function. Substituting φ into (2.1) we can get that∫ 1

0

r2N+1−p

∣∣∣∣ ddrΦ (v+ + 1
)∣∣∣∣p dr ≤ C

∫ 1

0

r2N−1|v|p−2v
∣∣Φ′ (v+ + 1

)∣∣p v+ dr
by virtue of the monotonicity of |Φ′(t)|. Taking a fixed β > p, by Proposition 2.1,
2.3 and the above inequality, we obtaind that(∫ 1

0

Φβ
(
v+ + 1

)
r2N−1 dr

)1/β

≤ C

(∫ 1

0

(
Φ′ (v+ + 1

) (
v+ + 1

))p
r2N−1 dr

)1/p

for some positive constant C. Let ρ→ +∞, then∥∥v+ + 1
∥∥
Lsκp(r2N−1 dr)

≤ C(s)
∥∥v+ + 1

∥∥
Lsp(r2N−1 dr)

,

where κ = β/p > 1. Set s = κm, m ≥ 1, an iteration yields

sup v+ ≤ C(s)
(
1 + ∥v∥Lp(r2N−1 dr)

)
.

Similarly, if set v− = −min{v, 0}, we can also show the above estimate for v−. It
means that v is bounded.

For η being smooth, take φ =
∫ 1

r
η(t) dt as a test function in (2.1). We obtain

that

−
∫ 1

0

r2N+1−p |v′|p−2
v′η(r) dr = λp−1N2k+1

Ck
N

∫ 1

0

η(r)

∫ r

0

(
τ2N−1|v|p−2v

)
dτ dr

by an integration by parts. And

− r2N+1−p |v′|p−2
v′ = λp−1N2k+1

Ck
N

∫ r

0

(
τ2N−1|v|p−2v

)
dτ a.e.

The fact that v is bounded shows that
∫ r

0

(
τ2N−1|v|p−2v

)
dτ is continuous. Next,

by some simple calculations, we get that v ∈ C2[0, 1], v′(0) = limr→0+ v
′(r) = 0

and that v satisfies problem (1.5).
Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Define the functional

J(v) =

∫ 1

0

1

p
r2N+1−p |v′|p dr − λp−1N2k+1

pCk
N

∫ 1

0

r2N−1|v|p dr

on Wp. It is easy to see that the critical points of J are the generalized solutions of
problem (1.5). Taking

f1(v) =

∫ 1

0

1

p
r2N+1−p |v′|p dr and f2(v) =

N2k+1

pCk
N

∫ 1

0

r2N−1|v|p dr,

we consider the eigenvalue problem

A(v) = µB(v), (2.2)
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where A = ∂f1 and B = ∂f2 denote the sub-differential of f1 and f2, respectively.
According to Proposition 2.1, for any v ∈ Wp with v ̸≡ 0 and some positive

constant c, we have that
f1(v)

f2(v)
≥ c. (2.3)

Set µ1(p) = infv∈Wp,v ̸≡0 f1(v)/f2(v), then equation (2.2) has no nontrivial solution
for µ ∈ (0, µ1(p)).

We use the abstract results of [16] to prove the desired conclusions. Let Wp = V
and Ω = (0, 1), and denote by Φ(V ) the family of all proper lower semi-continuous
convex functions φ from V into (−∞,+∞]. Next we verify the conditions (A0)–(A4)
of [16].

Clearly f1(0) = f2(0) = 0. Then f1 and f2 are proper functions. It is easy
to see that f1 and f2 are lower semi-continuous. Furthermore, we get f1 and f2
are strictly convex functions by Lemma 2.27 of [1]. Thus f1, f2 ∈ Φ(V ). Since
D (f1) = D (f2) = V and V ⊂ L1

loc(0, 1) are clear, then we have verified condition
(Al). For v ̸= 0, let R(v) = f2(v)/f1(v). The fact that R is even gives that
R(|v|) ≥ R(v) for all v ∈ V . We can easily get that f1(v) ≥ 0 for all v ∈ V , and
f1(v) = 0 is equivalent to v = 0. Inequality (2.3) means that there exists u ∈ V
such that u ̸= 0 and R(u) = sup{R(v); v ∈ V, v ̸= 0}. It follows that condition
(A2) is verified. Let α = p, we have fi(tv) = tαfi(v) for all v ∈ V + = {w ∈
V ;w(r) ≥ 0 a.e. r ∈ (0, 1)}, ∀t > 0, i = 1, 2. Naturally condition (A3) is verified.
Set (u ∨ w)(r) = max{u(r), w(r)}, (u ∧ w)(r) = min{u(r), w(r)}, I1 = {r ∈ [0, 1] :
u(r) ≥ w(r)}, and I2 = {r ∈ [0, 1] : u(r) < w(r)} for any u, v ∈ V +, then

f1(u ∨ w)+f1(u ∧ w)=
∫ 1

0

1

p
r2N+1−p |(u ∨ w)′(r)|p dr+

∫ 1

0

1

p
r2N+1−p |(u∧w)′(r)|p dr

=

∫
I1

1

p
r2N+1−p |u′|p dr +

∫
I2

1

p
r2N+1−p |w′|p dr

+

∫
I1

1

p
r2N+1−p |w′|p dr +

∫
I2

1

p
r2N+1−p |u′|p dr

=

∫ 1

0

1

p
r2N+1−p |u′|p dr +

∫ 1

0

1

p
r2N+1−p |w′|p dr

= f1(u) + f1(w).

Similarly, f2(u∨w) + f2(u∧w) = f2(u) + f2(w) holds. Condition (A4) is therefore
verified. The last one is condition (A0). For φp(s) = |s|p−2s, we have that

r2N+1−pφp (v
′) = −µN2k+1

Ck
N

∫ r

0

τ2N−1vp dτ < 0 (2.4)

for the nonnegative nontrivial solution v of equation (2.2). So v(r) > 0, r ∈ [0, 1).
According to Proposition 2.4, v ∈ C(0, 1)∩L∞(0, 1). Final condition (A0) is verified.

From Theorem I in [16], we know that µ1(p) is simple, that is equation (2.2) has
an one-sign solution which is unique up to multiplication by a number. Meanwhile,
w ∈ C1[0, 1] and w′(1) < 0 for every positive solution w of equation (2.2) on the basis
of (2.4) and Proposition 2.4. Further B is a monotone operator. From [16, Theorem
II], we obtain that equation (2.2) has a positive solution if and only if µ = µ1(p).
Therefore, for λ ∈ (0, λ1(p)) with λ1(p) = µ

1/(p−1)
1 , problem (1.5) has no nontrivial

solution, but has an one-sign solution if and only if λ = λ1(p). And λ1(p) is simple.
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Next we show that λ1(p) is the unique eigenvalue in (0, δp) for some δp > λ1(p).
It is enough to show that λ1(p) is right-isolated. By contradiction, we assume that
there is a sequence of eigenvalues λn ∈ (λ1(p), δp) that converges to λ1(p). Let vn
be the corresponding eigenfunctions to λn. Set

ψn =
vn(

N2k+1

Ck
N

∫ 1

0
r2N−1 |vn|p dr

) 1
p

.

Then ∥ψn∥pp = λp−1
n . Thus ψn ∈ Wp is bounded. It follows that there is a subse-

quence, still denoted by ψn, such that ψn ⇀ ψ as n→ +∞ for some ψ ∈Wp. Since
f1 is sequentially weakly lower semi-continuous, then∫ 1

0

r2N+1−p |ψ′|p dr ≤ lim inf
n→+∞

∫ 1

0

r2N+1−p |ψ′
n|

p
dr = λp−1

1 (p).

As n→ +∞, we have that

1 =
N2k+1

Ck
N

∫ 1

0

r2N−1 |ψn|p dr →
N2k+1

Ck
N

∫ 1

0

r2N−1 |ψ|p dr

by Proposition 2.2. So one has that

N2k+1

Ck
N

∫ 1

0

r2N−1|ψ|p dr = 1.

We thus obtain that ∫ 1

0

r2N+1−p |ψ′|p dr = µ1(p).

It follows that ψ must be either positive or negative in (0, 1). Let us say without
loss of generality that ψ > 0 in (0, 1), then we get ψn ≥ 0 for n large enough, which
is a contradiction.

Finally, we prove that the eigenvalue function λ1 : [2, N +1] → R is continuous.
To do that we just have to prove that µ1(p) : [2, N + 1] → R is continuous. And
this can be obtained by the variational characterization of µ1(p) that

µ1(p) = sup

{
µ > 0 :

µN2k+1

Ck
N

∫ 1

0

r2N−1|v|p dr ≤
∫ 1

0

r2N+1−p |v′|p dr for v ∈ E

}
.

(2.5)
Suppose {pn}+∞

n=1 is a sequence in [2, N+1], and {pn}+∞
n=1 converges to p ∈ [2, N+1].

Then
µ1 (pn)

N2k+1

Ck
N

∫ 1

0

r2N−1|v|pn dr ≤
∫ 1

0

r2N+1−pn |v′|pn dr

for any v ∈ E by (2.5). The application of the Lebesgue dominated convergence
theorem gives that

lim sup
n→+∞

µ1 (pn)
N2k+1

Ck
N

∫ 1

0

r2N−1|v|p dr ≤
∫ 1

0

r2N+1−p |v′|p dr. (2.6)

Combining (2.6) and (2.5) we get

lim sup
n→+∞

µ1 (pn) ≤ µ1(p).
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Next we prove
lim inf
n→+∞

µ1 (pn) ≥ µ1(p). (2.7)

Suppose {pm}+∞
m=1 is a subsequence of {pn}+∞

n=1 that satisfies lim
m→+∞

µ1 (pm) =

lim inf
n→+∞

µ1 (pn). Choose ε0 > 0 : p − ε0 > 1, and p − ε < pm < p + ε < p∗ for each
0 < ε < ε0 and m ∈ N large enough. Select vm ∈Wpm

so that∫ 1

0

r2N+1−pm |v′m|pm dr = 1 (2.8)

and ∫ 1

0

r2N+1−pm |v′m|pm dr = µ1 (pm)
N2k+1

Ck
N

∫ 1

0

r2N−1 |vm|pm dr.

Then {vm}+∞
m=1 ∈ Wpm

is bounded. It follows from Proposition 2.3 that vm is
bounded in Wp−ε for m large enough. Up to a subsequence, assume vm ⇀ v in
Wp−ε as m → +∞. By Proposition 2.2, we have vm → v in Lp+ε

(
r2N−1 dr

)
as

m→ +∞. By the Minkowski inequality, we have that∫ 1

0

r2N−1 |vm|p dr →
∫ 1

0

r2N−1 |v|p dr.

Thus ∥vm∥pm

pm
→ ∥v∥pp as m→ +∞. Further,

lim inf
n→+∞

µ1 (pn)
N2k+1

Ck
N

∫ 1

0

r2N−1|v|p dr = 1. (2.9)

Using (2.8), we have that

∥v∥p−ε
p−ε ≤ lim inf

m→+∞
∥vm∥p−ε

p−ε ≤ 1.

Let ε→ 0+. We can obtain that

∥v∥p ≤ 1 (2.10)

by using the Fatou Lemma, immediately v ∈Wp. By (2.9) and (2.10),

lim inf
n→+∞

µ1 (pn)
N2k+1

Ck
N

∫ 1

0

r2N−1|v|p dr ≥
∫ 1

0

r2N+1−p |v′|p dr,

which means (2.7). Therefore

lim
n→+∞

µ1 (pn) = µ1(p). (2.11)

This proves the continuity of eigenvalue function λ1 : [2, N + 1] → R.

Define the map Tp : X → X as follows.

Tpv =

∫ r

1

φp′

(
N2k+1

Ck
N

sp−2N−1

∫ 0

s

τ2N−1φp(v) dτ

)
ds, 0 ≤ r ≤ 1,
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where p′ = p/(p − 1). By the Arzelà-Ascoli Theorem, we can easily prove that
Tp is continuous and compact. Now we can write problem (1.5) as the equivalent
problem v = λTpv. Let

λ2(p) = inf {λ > λ1(p) : λ is an eigenvalue of problem (1.5)} .

By Theorem 1.1, we see that λ1(p) < λ2(p).

Lemma 2.1. For any interval [a, b] that belongs to [2, N + 1], there exists δ > 0
such that problem (1.5) has no eigenvalue in (λ1(p), λ1(p) + δ] for all p ∈ [a, b].

Proof. Instead, assume that there are sequences {pn}+∞
n=1 in [2, N+1], {λn}+∞

n=1 in
R+, and {un}+∞

n=1 in X \{0} that satisfy limn→+∞ pn = p ∈ [2, N+1], λn > λ1 (pn),
limn→+∞ (λn − λ1 (pn)) = 0, and

un = λnTpn
(un) , n ∈ N.

Now set wn = un/ ∥un∥. Then

wn = λn
∫ r

1
φp′

n

(
N2k+1

Ck
N

spn−2N−1
∫ 0

s
τ2N−1φpn

(wn) dτ
)
ds := λnT (wn) , 0 ≤ r ≤ 1.

It is not difficult to show that T (wn) is completely continuous via the Arzelà-Ascoli
theorem. So, up to a subsequence, we have that wn → w in X as n → +∞. It
follows from Theorem 1.1 that

w = λ1(p)

∫ r

1

φp′

(
N2k+1

Ck
N

sp−2N−1

∫ 0

s

τ2N−1φp (w) dτ

)
ds, 0 ≤ r ≤ 1.

Thus w must have one sign in (0, 1). Therefore, un has one sign for n large enough,
which contradicts the conclusions of Theorem 1.1.

Clearly, for arbitrary R-ball BR(0) and λ ∈ (0, λ1(p) + δ) \ {λ1(p)}, the Leray-
Schauder degree deg (I − λTp, BR(0), 0) is well defined, where δ is given as Lemma
2.1. We end this section by showing an index jumping result, which will be used
later.

Theorem 2.1. For any R > 0 and p ∈ [2, N + 1], there is

deg (I − λTp, BR(0), 0) =

 1, if λ ∈ (0, λ1(p)) ,

−1, if λ ∈ (λ1(p), λ1(p) + δ) .

Proof. First consider the case of λ > λ1(p). Note that λ1(p) is continuous, then
we have a continuous function χ : [2, N + 1] → R and q ∈ [2, N + 1] make λ1(q) <
χ(q) < λ1(q) + δ and λ = χ(p) by Lemma 2.1. Let

d(q) = deg (I − χ(q)Tq, BR(0), 0) .

Then d(2) = −1 from the fact of T2 is compact and linear according to [12, Theorem
8.10]. If we define

G(q, v) = χ(q)Tq(v).

Then G : [2, N+1]×X → X is completely continuous by the Arzelà-Ascoli theorem.
Now we use the invariance of the Leray-Shauder degree under a compact homotopy
and get d(q) ≡constant, q ∈ [2, N + 1]. Further deg (I − λTp, BR(0), 0) = d(2) =
−1. The proof of the case of λ < λ1(p) is exactly the same, so we omit it.
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3. Proofs of Theorems 1.2–1.3
Let Tg : X+ → X+ be as follows.

Tgv(r) =

∫ r

1

(
N2k+1

Ck
N

sk−2N

∫ 0

s

τ2N−1
(
vk + g(v)

)
dτ

)1/k

ds, 0 ≤ r ≤ 1.

Then Tg is completely continuous. Write problem (1.4) as the equivalent equation
v = λTgv. We can see that if v is a fixed point of λTg in X+, then v belongs to
C2[0, 1] and is a solution to problem (1.4) in the classical sense.

Lemma 3.1. Suppose (λ, v) is a solution to problem (1.4) in R ×X+, and v has
a double zero. Then v ≡ 0.

Proof. The desired conclusion can be obtained directly from the expressions of
−v′(r) and v(r) using the monotonicity of v.

Consider the problem
(
r2N−k (−v′)k

)′
= λk N2k+1

Ck
N

r2N−1vk, r ∈ (0, 1),

v′(0) = v(1) = 0.
(3.1)

Taking p = k + 1 in Section 2, we know that problem (3.1) possesses the unique
principal eigenvalue λ1(k + 1) := λ1 which is positive, simple and isolated. Define
Tk : X+ → X+ by

Tkv =

∫ r

1

(
N2k+1

Ck
N

sk−2N

∫ 0

s

τ2N−1vk dτ

)1/k

ds, 0 ≤ r ≤ 1.

We can easily know that I−λTk is a completely continuous vector field in X+. Thus
for arbitrary R-ball BR(0) of X+ and λ ∈ (0, λ1 + δ] \ {λ1}, the Leray-Schauder
degree deg (I − λTk, BR(0), 0) is well defined, where δ can be found in Lemma 2.1.

Lemma 3.2. For λ ∈ (0, λ1 + δ] \ {λ1} and any R > 0, we have

deg (I − λTk, BR(0), 0) =

1, if λ ∈ (0, λ1) ,

−1, if λ ∈ (λ1, λ1 + δ] .

Proof. For any v ∈ X+, it is clear that Tk(v) = Tp−1(v) . we can get the desired
conclusion right away as long as we take p = k + 1 in Theorem 2.1.

Next, we present a Rabinowitz type global bifurcation result [25]. Let E be a
real Banach space with the norm ∥ · ∥, O be an open subset of R × E, prE (O) be
the projection of O on E and prR (O) be the projection of O on R. Consider the
following equation

u = L(λ)u+H(λ, u) := G(λ, u), (3.2)
where λ varies in prR

(
O
)
, the map λ → L(λ) is continuous, L(·) : prE

(
O
)
→

prE
(
O
)

is a homogeneous completely continuous operator and H : O → E is
compact with H = o(∥u∥) at u = 0 uniformly on bounded λ intervals in O. Let

S = {(λ, u) : (λ, u) satisfies equation (3.2) and u ̸≡ 0 }
O
.
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µ is called an eigenvalue of
u = L(µ)u, u ∈ E (3.3)

if there exists φ ∈ E \ {0} such that φ = L(µ)φ. Let Σ denote the set of real
eigenvalues of equation (3.3). So the Leray-Schauder degree deg (I − L(λ), BR(0), 0)
is well defined for arbitrary r-ball BR(0) in O and λ ̸∈ Σ. By an arguments similar
to that of [11, Lemma 2.1] with obvious changes, we can show the following result.

Lemma 3.3. If µ ∈ prR (O) ∩ Σ such that the Leray-Schauder degree
deg (I − L(λ), BR(0)) changes when λ passes µ, then S possesses a maximal sub-
continuum Cµ ⊂ O such that (µ, 0) ∈ Cµ and one of the following three properties
is satisfied by Cµ:

(i) Cµ is unbounded in O;
(ii) meets ∂O \ {(µ, 0)};

(iii) meets (µ, 0), where µ ∈ prR
(
O
)
∩ Σ with µ ̸= µ.

Now, we give the proofs of Theorems 1.2–1.3.
Proof of Theorem 1.2. For any v ∈ X+, set H(v) = Tg(v) − Tk(v). Problem
(1.4) is therefore equivalent to

v = λTkv + λH(v).

Define
g̃(u) = max

0≤s≤u
|g(s)|.

Then g̃ is nondecreasing with respect to u and

lim
u→0+

g̃(u)

uk
= 0. (3.4)

By (3.4), we have that

|g(v)|
∥v∥k

≤ g̃(v)

∥v∥k
≤ g̃(∥v∥)

∥v∥k
→ 0 as ∥v∥ → 0, (3.5)

which implies H(v) = o(∥v∥) near v = 0 in X+.
By Lemmas 3.2–3.3, we obtain that (λ1, 0) is a bifurcation point of problem

(1.4) and the associated bifurcation branch C in R × X+ whose closure contains
(λ1, 0) is either unbounded or contains a pair

(
λ, 0
)

where λ is another eigenvalue
of problem (3.1). For any (λ, v) ∈ C, Lemma 3.1 implies that either v ≡ 0 or v > 0
in (0,1). We claim that the first alternatives is the only possibility. Suppose by
contradiction that there exists (λn, vn) →

(
λ, 0
)

when n → +∞ with (λn, vn) ∈ C
and vn ̸≡ 0. Set wn = vn/ ∥vn∥, then wn solves the problem

w = λn

∫ r

1

(
N2k+1

Ck
N

sk−2N

∫ 0

s

τ2N−1

(
wk +

g (vn)

∥vn∥k

)
dτ

)1/k

ds.

From the fact that Tg is compact, we get some convenient subsequence subsequence
wn → w0 as n → +∞. By (3.5), one can get that

(
λ,w0

)
solves problem (3.1)

with ∥w0∥ = 1. From Theorem 1.1, we know that w0 must change its sign. This
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contradicts vn ∈ P+. So we have C ⊆ (K+ ∪ {λ1, 0}).

Proof of Theorem 1.3. We argue by contradiction. Let vn be a sequence of
positive solutions to problem (1.3) with λ = λn such that λn → λ∗ and ∥vn∥ → +∞
as n→ +∞. Define

wn(r) =
1

Mn
vn

(
rM

k−p
2k

n

)
,

where Mn = ∥vn∥ = vn(0). Then, by some elementary calculations, we can show
that

wn(r) = λn

∫ r

M
p−k
2k

n

(
N2k+1

Ck
N

sk−2N

∫ 0

s

τ2N−1 f (vn)

Mp
n

dτ

)1/k

ds

= λn

∫ r

M
p−k
2k

n

(
N2k+1

Ck
N

sk−2N
∫ 0

s

τ2N−1 f (vn)

vpn
wp

n dτ

)1/k

ds, r∈
[
0,M

p−k
2k

n

]
.

(3.6)

From the lower subcritical growth condition, we see that there exist p ∈ (k, k∗] and
positive constant c such that

lim
s→+∞

f(s)

sp
= c.

It implies that
lim

n→+∞

f (vn)

vpn
= c. (3.7)

By (3.6) and (3.7), we get that for some constant M , which is independent of n,

0 ≤ −w′
n = λn

(
N2k+1

Ck
N

rk−2N

∫ r

0

τ2N−1 f (vn)

vpn
wp

n dτ

)1/k

≤ λn

(
N2k+1

Ck
N

∫ r

0

τk−1 f (vn)

vpn
wp

n dτ

)1/k

≤ M.

For any R > 0, it can be seen that ∥wn∥C1[0,R] is uniformly bounded. Thus there
is a subsequence, which we still denote by wn, such that wn → w in C[0, R]. We
can easily see w(0) = 1. By an argument similar to that of [15], we get that

w(r) = λ∗

∫ r

+∞

(
N2k+1

Ck
N

sk−2N

∫ 0

s

τ2N−1cwp dτ

)1/k

ds, 0 ≤ r < +∞,

i.e.
−
(
r2N−k |w′|k−1

w′
)′

= cλk∗
N2k+1

Ck
N

r2N−kwp.

So w is a nontrivial solution of

−∆k+1u = cλk∗
N2k+1

Ck
N

up in R2N−k+1, (3.8)

where ∆mu = div
(
|∇u|m−2∇u

)
is the well-known m-Laplace operator, m > 1.

While, by Theorem I and I′ of [27], we know that equation (3.8) has only the trivial
solution u ≡ 0 when p ≤ k∗. So we deduce a contradiction.
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Lemma 3.4. Suppose ui are two solutions of the problems
(
r2N−k (−u′)k

)′
= biu

k, i = 1, 2,

u′(0) = u(1) = 0,
(3.9)

respectively when bi ∈ C[0, 1](i = 1, 2) satisfy b2(r) ≥ b1(r) > 0 for r ∈ (0, 1). If
u1 ̸= 0 in (0, 1), then either ∃ τ ∈ (0, 1) : u2(τ) = 0, or b2 ≡ b1 and ∃µ ̸= 0 : u2 ≡
µu1.

Proof. We know u1 ̸= 0 in (0, 1). If u2 ̸= 0 in (0, 1), and without losing generality
to assume that u1 > 0, u2 > 0 in (0, 1). Then for i = 1, 2, we have

u′i = −
(
rk−2N

∫ r

0

bi(τ)u
k
i dτ

)1/k

< 0

and

ui =

∫ 1

r

(
sk−2N

∫ s

0

bi(τ)u
k
i dτ

)1/k

ds

from (3.9). Clearly u1 and u2 are strictly decreasing in (0, 1]. Thus ui(0) > 0 and
u′i(r) < 0, r ∈ (0, 1], i = 1, 2.

Set w = b2 − b1, by some calculation, it’s easy to get that(
uk+1
1 r2N−k (−u′2)

k

uk2
− u1r

2N−k (−u′1)
k

)′

=wuk+1
1 + r2N−k

(
(−u′1)

k+1
+ k

(
−u1u′2
u2

)k+1

− (k + 1)uk1u
′
1

(
−u′2
u2

)k
)
. (3.10)

Integrate both sides of the above inequality from 0 to 1 and we have∫ 1

0

(
uk+1
1 r2N−k (−u′2)

k

uk2
− u1r

2N−k (−u′1)
k

)′

dr

=

∫ 1

0

(
wuk+11 +r2N−k

(
(−u′1)

k+1
+k

(
−u1u′2
u2

)k+1

−(k+1)uk1u
′
1

(
−u′2
u2

)k
))

dr.

(3.11)

Note that the left-hand side of (3.11) is equal to

L := lim
r→1−

uk+1
1 r2N−k (−u′2)

k

uk2
.

In view of the L’Hospital rule, one has that

L = lim
r→1−

uk+11 r2N−k (−u′2)
k

uk2
= lim

r→1−

(k+1)uk1u
′
1r

2N−k (−u′2)
k
+uk+11

(
r2N−k (−u′2)

k
)′

kuk−1
2 u′2

= lim
r→1−

(k + 1)uk1u
′
1r

2N−k (−u′2)
k
+ uk+1

1 b2u
k
2

kuk−1
2 u′2
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= lim
r→1−

(k + 1)uk1u
′
1r

2N−k (−u′2)
k

kuk−1
2 u′2

+ lim
r→1−

uk+1
1 b2u

k
2

kuk−1
2 u′2

= lim
r→1−

(k + 1)u′1r
2N−k (−u′2)

k

ku′2
lim

r→1−

uk1
uk−1
2

.

Now we can show L = 0. For k = 1, L = 0 holds. If k = 2, L = 0 follows from

lim
r→1−

uk1
uk−1
2

= lim
r→1−

ku′1
(k − 1)u′2

lim
r→1−

uk−1
1

uk−2
2

.

Further we can continue this process i − 2 times to get L = 0 for any k = i, i ∈
{3, . . . , N}.

As discussed above, the right-hand side of (3.11) is equal to zero, too. By using
the Young inequality we can get that

(−u′1)
k+1

+ k

(
−u1u′2
u2

)k+1

− (k + 1)uk1u
′
1

(
−u′2
u2

)k

≥ 0,

and the equals sign above is true if and only if(
−u′1
u1

)k+1

=

(
−u′2
u2

)k+1

.

And then naturally we get that there is a constant µ ̸= 0 that u2 ≡ µu1 and b2 ≡ b1.

The identity (3.10) will be used later. For simplicity, we call it complex Hes-
sian identity. As a corollary of Lemma 3.4, we obtain the following Sturm type
comparison lemma.

Lemma 3.5. Suppose ui(i = 1, 2) be two solutions of problem (3.9), respectively
when bi ∈ C[0, 1](i = 1, 2) satisfy b2 ≥ b1 > 0 and b2 ̸≡ b1 on [0, 1]. If u1 ̸= 0 in
(0, 1), then u2 has at least one zero in (0, 1).

4. Negative solutions
Define the map Tf : X+ → X+ as follows.

Tfv(r) =

∫ r

1

(
N2k+1

Ck
N

sk−2N

∫ 0

s

τ2N−1f(v) dτ

)1/k

ds, 0 ≤ r ≤ 1.

Then Tf is completely continuous. Then problem (1.3) can be equally rewritten as
as v = λTfv. Let f0, f∞ ∈ R+ be such that

fk0 = lim
s→0+

f(s)/sk and fk∞ = lim
s→+∞

f(s)/sk.

We firstly give the nonexistence results.

Lemma 4.1. If ∃ ρ > 0 satisfying

f(s)/sk ≥ ρ

for any s > 0. Then ∃ ξ∗ > 0 such that ∀λ ∈ (ξ∗,+∞), problem (1.1) has no
radially symmetric negative solution.
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Proof. By contradiction, assume that v is a positive solution of problem (1.3).
Then we have that(

r2N−k (−v′(r))k
)′

= λk
N2k+1

Ck
N

r2N−1 f (v)

vk
vk.

By Lemma 3.5, we have λ ≤ λ1/ρ
1/k.

Lemma 4.2. If ∃ ϱ > 0 satisfying

f(s)/sk ≤ ϱ

for any s > 0. Then ∃ η∗ > 0 such that ∀λ ∈ (0, η∗), problem (1.1) has no radially
symmetric negative solution.

Proof. Assume the opposite that v is a positive solution of problem (1.1). If we
set w = v/ ∥v∥, then

1 = ∥w∥ = λ

∥∥∥∥∥∥
∫ r

1

(
N2k+1

Ck
N

sk−2N

∫ 0

s

τ2N−1

(
f (v)

∥v∥k

)
dτ

)1/k

ds

∥∥∥∥∥∥ ≤ 2

(
ϱ

Ck
N

)1/k

λ,

which implies that λ ≥ 1/
(
2
(
Ck

N/ϱ
)1/k).

Theorem 4.1. If f0, f∞ ∈ (0,+∞) and f∞ ̸= f0, then for any
λ ∈ (min {λ1/f∞, λ1/f0} , max {λ1/f0, λ1/f∞}), problem (1.1) has at least one
radially symmetric negative solution.

Proof. We just need to show that problem (1.3) has at least one solution v such
that it is positive in [0, 1). Letting ζ(s) = f(s)− fk0 s

k, then we have
lims→0+ ζ(s)/s

k = 0. By Theorem 1.2, we know that there is an unbounded con-
tinuum C emanating from (λ1/f0, 0) such that

C ⊆
(
{(λ1/f0, 0)} ∪

(
R× P+

))
.

It suffices to show that C joins (λ1/f0, 0) to (λ1/f∞,+∞). Suppose (λn, vn) ∈ C
with λn + ∥vn∥ → +∞ as n → +∞. Because (0, 0) is the only solution of problem
(1.3), in view of Lemma 4.2, we have that C ∩ ({0} ×X+) = ∅ and λn > 0 for
all n ∈ N. Our assumptions imply that there is a positive constant ϱ such that
f (vn) /v

k
n ≥ ϱ for any r ∈ (0, 1). By Lemma 4.1, there exists a constant M such

that λn ∈ (0,M ] for n ∈ N large enough. Therefore ∥vn∥ → +∞ as n→ +∞.
Let ξ(s) = f(s)− fk∞s

k. We have lims→+∞ ξ(s)/sk = 0.
Set ξ̃(v) = max0≤s≤v |ξ(s)|. We have ξ̃ is nondecreasing.
Set ξ(v) = maxv/2≤s≤v |ξ(s)|, then

lim
v→+∞

ξ(v)/vk = 0 and ξ̃(v) ≤ ξ̃ (v/2) + ξ(v).

Thus limv→+∞ ξ̃(v)/vk = 0. Furthermore, we have that

|ξ (vn) |/ ∥vn∥k ≤ ξ̃ (|vn|) / ∥vn∥k ≤ ξ̃ (∥vn∥) / ∥vn∥k → 0 (4.1)

as n→ +∞. Divide the equation(
r2N−k (−v′n)

k
)′

− λknf
k
∞
N2k+1

Ck
N

r2N−1vkn = λkn
N2k+1

Ck
N

r2N−1ξ (vn)
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by ∥vn∥k and set vn = vn/ ∥vn∥. Because vn is bounded in X+, up to a subsequence,
we have vn ⇀ v for some v ∈ X+ as n→ +∞. Then(

r2N−k (−v′)k
)′

− λ
k
fk∞

N2k+1

Ck
N

r2N−1vk = 0,

by the continuity and compactness of Tf , where λ = lim
n→+∞

λn, choosing a subse-

quence and relabeling it if necessary. It is obvious that λ = λ1/f∞. Finally we get
that C joins (λ1/f0, 0) to (λ1/f∞,+∞).

Theorem 4.2. If f0 ∈ (0,+∞) and f∞ = 0, then for any λ ∈ (λ1/f0,+∞),
problem (1.1) has at least one radially symmetric negative solution.

Proof. It is sufficient to show that C joins (λ1/f0, 0) to (+∞,+∞). Firstly we
prove that C is unbounded in the direction of X+. Suppose, by contradiction, that
there exists M > 0 such that ∥v∥ ≤ M for any (λ, v) ∈ C \ {(λ1/f0, 0)}. From
f(s) > 0 for s > 0, f0 ∈ (0,+∞) and ∥v∥ ≤ M , we get that f(v)/vk ≥ ρ for some
positive constant ρ and any r ∈ (0, 1). By Lemma 4.1, C is also bounded in the
direction of λ, which is a contradiction. Suppose, on the contrary, that there exists
µ such that (µ, 0) is a blow up point and µ < +∞. Then there exists a sequence
{(λn, vn)} such that lim

n→+∞
λn = µ and lim

n→+∞
∥vn∥ = +∞ as n → +∞. Then

wn := vn/ ∥vn∥ satisfies the following equation

w = λn

∫ r

1

(
N2k+1

Ck
N

sk−2N

∫ 0

s

τ2N−1

(
f (vn)

∥vn∥k

)
dτ

)1/k

ds.

Similar to that of (4.1), we can get that limn→+∞ f (vn(r)) / ∥vn∥k = 0. Since
Tf is compact, then we obtain that for some convenient subsequence wn → w0 as
n→ +∞. So w0 ≡ 0, and that contradicts ∥w0∥ = 1.

Theorem 4.3. If f0 ∈ (0,+∞) and f∞ = +∞, then for any λ ∈ (0, λ1/f0),
problem (1.1) has at least one radially symmetric negative solution.

Proof. In view of the proof of Theorem 4.1, it suffices to show that C joins
(λ1/f0, 0) to (0,+∞). Lemma 4.1 implies that C is bounded in the parameter
direction. By Theorem 1.3, we know that the unique blow up point of C is at λ = 0.

Theorem 4.4. If f0 = 0 and f∞ ∈ (0,+∞), then for any λ ∈ (λ1/f∞,+∞),
problem (1.1) has at least one radially symmetric negative solution.

Proof. If (λ, v) solves problem (1.3) with ∥v∥ ̸≡ 0, then we can get
(
r2N−k (−w′(r))

k
)′

= λk N2k+1

Ck
N

r2N−1 f(v)
∥v∥2k , r ∈ (0, 1),

w′(0) = w(1) = 0
(4.2)

through dividing problem (1.3) by ∥v∥2k and setting w = v/∥v∥2. Let

ξ̃(w) =

∥w∥2kξ
(
w/∥w∥2

)
ifw ̸= 0,

0 if w = 0,
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where ξ is given in the proof of Theorem 4.1.
Now we can write problem (4.2) equably as

(
r2N−k (−w′(r))

k
)′

= λk N2k+1

Ck
N

r2N−1
(
fk∞w

k + ξ̃(w)
)
, r ∈ (0, 1),

w′(0) = w(1) = 0.
(4.3)

By (4.1), we see that lim∥w∥→0 ξ̃(w)/∥w∥ = 0. For problem (4.3), the same to the
proof of Theorem 1.2, we can get an unbounded continuum D, which emanates from
(λ1/f∞, 0) such that

D ⊆
(
{(λ1/f∞, 0)} ∪

(
R× P+

))
.

By the inversion w → w/∥w∥2 = v, we obtain a continuum C of solutions to problem
(1.3) emanating from (λ1/f∞,+∞). C is either unbounded in the direction of λ, or
it meets {(λ, 0) : λ ∈ R}. In combination with f0 = 0, just like the discussion of
Theorem 4.2, we know that it is impossible that C meets {(λ, 0) : λ ∈ R}. Thus C
is unbounded in the direction of λ.

Next we only need to claim that C joins to (+∞, 0). Suppose on the contrary
that there exists a positive constant ρ and (λn, vn) ∈ C such that λn → +∞ as
n → +∞ and ∥vn∥ ≥ ρ for any n ∈ N. Note that vn is strictly decreasing on
[0, 1]. Select a τn ∈ (0, 1] such that vn(x) ≥ ρ/2 for any x ∈ [0, τn]. Combined with
f∞ ∈ (0,+∞), it is true that there is a positive constant δ such that f (vn) /vkn ≥ δ
for any x ∈ (0, τn) and all n ∈ N. Suppose (γ1, φ1) is the principal eigenpair of

(
r2N−k (−v′)k

)′
= λk N2k+1

Ck
N

r2N−1vk, r ∈ (0, τn) ,

v′(0) = v (τn) = 0.

Then for n large enough and any x ∈ (0, τn), we have

λkn
f (vn)

vkn
> γk1 .

According to Lemma 3.5, we know that vn has at least one zero in (0, τn) for
sufficiently large n. This contradiction completes the proof.

Theorem 4.5. If f0 = 0 and f∞ = 0, then for any λ ∈ (λ∗,+∞), there exists
λ∗ > 0 such that problem (1.1) has at least two radially symmetric negative solutions.

Proof. Let

fn(s) =


sk/nk, s ∈ [0, 1/n] ,(
f (2/n)− 1/n2k

)
ns+ 2/n2k − f (2/n) , s ∈ (1/n, 2/n) ,

f(s), s ∈ [2/n,+∞)

and consider 
(
r2N−k (−v′)k

)′
= λk N2k+1

Ck
N

r2N−1fn(v), r ∈ (0, 1),

v′(0) = v(1) = 0.
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Firstly limn→+∞ fn(s) = f(s), fn0 = 1/n and fn∞ = f∞ = 0. From Theorem 4.2,
we have a sequence of unbounded continua Cn emanating from (nλ1, 0) and joining
to (+∞,+∞) := z∗. Let C = lim supn→+∞ Cn. For any (λ, v) ∈ C, the definition
of superior limit (see [30]) shows that there exists a sequence (λn, vn) ∈ Cn such
that (λn, vn) → (λ, v) as n → +∞. Then a continuity argument shows that v is a
solution of problem (1.3).

By Proposition 2 of [11], for each ϵ > 0 there exists an N0 such that for every
n > N0, Cn ⊂ Vϵ (C), where Vϵ (C) denote the ϵ-neighborhood of C. It follows that

(nλ1,+∞) ⊆ Proj (Cn) ⊆ Proj (Vϵ (C)) ,

where Proj (Cn) is the projection of Cn on R. So (nλ1 + ϵ,+∞) ⊆ Proj (C). Further
C \ {∞} ̸= ∅.

Let
S1 = {(+∞, u) : 0 < ∥u∥ < +∞} .

For any fixed n ∈ N, we claim that Cn ∩ S1 = ∅. Otherwise, there exists a sequence
(λm, vm) ∈ Cn such that (λm, vm) → (+∞, v∗) ∈ S1 with ∥v∗∥ < +∞. It follows
that ∥vm∥ ≤ Mn for some constant Mn > 0. It implies that fn (vm) /vm ≥ δn for
some positive constant δn and all m ∈ N. From Lemma 4.1 we have that vm ≡ 0
for m large enough, which contradicts the fact of ∥v∗∥ > 0. Thus

(
∪+∞
n=1Cn

)
∩ S1 =

∪+∞
n=1 (Cn ∩ S1) = ∅. Since C ⊆

(
∪+∞
n=1Cn

)
, one has that C ∩ S1 = ∅. Set

S2 := {(λ,+∞) : 0 ≤ λ < +∞} .

For any fixed n ∈ N, by f∞ = 0 and an argument similar to that of Theorem 4.2,
we have that Cn ∩ S2 = ∅. Then reasoning as the above, we have that C ∩ S2 = ∅.
Hence, C ∩ (S1 ∪ S2) = ∅. Taking z∗ = (+∞, 0), we have z∗ ∈ lim infn→+∞ Cn with
∥z∗∥R×X+ = +∞. Therefore, we obtain that C ∩ {∞} = {z∗, z∗}.

The compactness of Tf implies that
(
∪+∞
n=1Cn

)
∩BR is pre-compact. So Lemma

3.1 of [10] implies that C is connected. By an argument similar to that of Theorem
4.2, we can show that C ∩ ([0,+∞)× {0}) = ∅. Now the desired conclusion can be
deduced from the global structure of C immediately.

Theorem 4.6. If f0 = 0 and f∞ = +∞, then for any λ ∈ (0,+∞), problem (1.1)
has at least one radially symmetric negative solution.

Proof. In view of Theorem 1.3, by an argument similar to that of Theorem 4.5
and the conclusion of Theorem 4.3, we can obtain the desired conclusion.

Theorem 4.7. If f0 = +∞ and f∞ = 0, then for any λ ∈ (0,+∞), problem (1.1)
has at least one radially symmetric negative solution.

Proof. Let

fn(s) =


nksk, s ∈ [0, 1/n] ,

(f (2/n)− 1)ns+ 2− f (2/n) , s ∈ (1/n, 2/n) ,

f(s), s ∈ [2/n,+∞)

and consider 
(
r2N−k (−v′)k

)′
= λk N2k+1

Ck
N

r2N−1fn(v), r ∈ (0, 1),

v′(0) = v(1) = 0.
(4.4)
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Firstly limn→+∞ fn(s) = f(s), fn0 = n and fn∞ = f∞ = 0. We have from Theorem
4.2 that there is a sequence of unbounded continua Cn, which emanate from (λ1/n, 0)
and join to (+∞,+∞) := z∗.

Set z∗ = (0, 0), then one has z∗ ∈ lim infn→+∞ Cn. Since Tf is compact, we have
that

(
∪+∞
n=1Cn

)
∩BR is pre-compact. By Lemma 3.5 of [11], C = lim supn→+∞ Cn is

connected and z∗, z
∗ ∈ C. The conclusion is proved.

Theorem 4.8. If f0 = +∞ and f∞ ∈ (0,+∞), then for any λ ∈ (0, λ1/f∞),
problem (1.1) has at least one radially symmetric negative solution.

Proof. By combining the conclusion of Theorem 4.1 and the same argument of
Theorem 4.7, the required conclusion can be obtained.

Theorem 4.9. If f0 = +∞ and f∞ = +∞, then for any λ ∈ (0, λ∗), there exists
λ∗ > 0 such that problem (1.1) has at least two radially symmetric negative solutions.

Proof. Consider problem (4.4) again. By Theorem 4.3, there exists a sequence
of unbounded continua Cn, which bifurcate from (λ1/n, 0) and join to (0,+∞).
Reasoning as that of Theorem 4.7, we have that C := lim supn→+∞ Cn is connected,
which joins (0, 0) to (0,+∞). Next we show that C ∩ ((0,+∞) × {0}) = ∅. If
there exists a sequence {(λn, vn)} with vn ∈ P+ such that lim

n→+∞
λn = µ > 0 and

lim
n→+∞

∥vn∥ = 0 as n → +∞. By Lemma 4.1 we have µ < +∞. And f0 = +∞
implies that

λkn
f (vn)

vkn
> λk1 for any r ∈ (0, 1)

and n large enough. From Lemma 3.5, we know that vn must change its sign for n
large enough, which is a contradiction.

Example 4.1. Consider the specific case of f(s) = sq with q ∈ (0, k∗]. According to
Theorem 4.6 or Theorem 4.7, we have that problem (1.1) has at least one radially
symmetric negative solution for any λ ∈ (0,+∞). It is just the corresponding
conclusion of [21, Theorem 2] when λ = 1. Therefore our Theorem 4.1–4.9 improve
and extend the corresponding results of [21] except the case of q ∈ (k∗, k

∗).

5. Uniqueness
We get from Theorem 1.2 a bifurcation branch C. Now we study its local structure
near (λ1, 0). Let X = R×X+, Φ(λ, v) = v − λTg(v) and

S = {(λ, v) ∈ X : Φ(λ, v) = 0, v ̸= 0}
X
.

For λ ∈ R and 0 < s < +∞, define an open neighborhood of (λ1, 0) in X as follows.

Bs (λ1, 0) = {(λ, v) ∈ X : ∥v∥+ |λ− λ1| < s} .

Let X0 be a closed subset of X satisfying X = span {ψ1} ⊕ X0, where ψ1 is an
eigenfunction corresponding to λ1 with ∥ψ1∥ = 1. According to the Hahn-Banach
theorem, we have l ∈ X∗ satisfying

l (ψ1) = 1 and X0 = {v ∈ X : l(v) = 0} ,
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where X∗ denotes the dual space of X. Note that X+ ⊆ X, so l ∈ (X+)
∗. Then

K+
ε,η = {(λ, v) ∈ X : |λ− λ1| < ε, l(v) > η∥v∥}

is well defined for any 0 < ε < +∞ and 0 < η < 1.
Similar to that of [22, Lemma 6.4.1], we can show the following lemma.

Lemma 5.1. Let η ∈ (0, 1), there is δ0 > 0 such that for each δ : 0 < δ < δ0, it
holds that

((S \ {(λ1, 0)}) ∩ Bδ (λ1, 0)) ⊂ K+
ε,η.

And there exist s ∈ R and a unique y ∈ X0 such that

v = sψ1 + y and s > η∥v∥

for each (λ, v) ∈ (S \ {(λ1, 0)}) ∩ (Bδ (λ1, 0)) . Further, λ = λ1 + o(1) and y = o(s)
as s→ 0+ for these solutions (λ, v).

The following are the main results of this section.

Theorem 5.1. Let f ∈ C1 (R+,R+) such that f(s)/sk is decreasing for s > 0.
Then

(a) f0, f∞ ∈ (0,+∞) (b) f0 ∈ (0,+∞), f∞ = 0 (c) f0 ∈ (0,+∞), f∞ = +∞

(d) f0 = 0, f∞ ∈ (0,+∞) (e) f0 = f∞ = 0 (f) f0 = 0, f∞ = +∞

(g) f0 = +∞, f∞ = 0 (h) f0 = +∞, f∞ ∈ (0,∞) (i) f0 = +∞, f∞ = +∞

Figure 1. Bifurcation diagrams of Theorems 4.1–4.9 and Theorem 5.1.
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(i) if f0 ∈ (0,+∞) and f∞ = 0, problem (1.1) has a unique radially symmet-
ric negative solution for any λ ∈ (λ1/f0,+∞) and has only the trivial radially
symmetric solution for any λ ∈ (0, λ1/f0];

(ii) if f0 ∈ (0,+∞) and f∞ ∈ (0,+∞) with f∞ ̸= f0, problem (1.1) has a unique
radially symmetric negative solution for any λ ∈ (λ1/f0, λ1/f∞) and has only the
trivial radially symmetric solution for any λ ∈ (0, λ1/f0] ∪ [λ1/f∞,+∞);

(iii) if f0 = +∞ and f∞ ∈ (0,+∞), problem (1.1) has a unique radially sym-
metric negative solution for any λ ∈ (0, λ1/f∞) and has only the trivial radially
symmetric solution for any λ ∈ [λ1/f∞,+∞];

(iv) if f0 = +∞ and f∞ = 0, problem (1.1) has a unique radially symmetric
negative solution for any λ ∈ (0,+∞).

Let
Y =

{
v ∈ C2(0, 1) : v′(0) = v(1) = 0

}
.

For any ϕ ∈ Y and positive solution v of problem (1.3), we can calculate that the
linearized eigenvalue problem of (1.3) at the direction ϕ is

(
−ϕ′r2N−k (−v′)k−1

)′
− λk N2k+1

kCk
N

r2N−1f ′(v)ϕ = µ
kϕ, r ∈ (0, 1),

ϕ′(0) = ϕ(1) = 0.
(5.1)

Next is the introduction to the stability property of solutions.
Suppose v is a solution of problem (1.3). The linear stability of v can be de-

termined by the linearized eigenvalue problem (5.1). If all eigenvalues of problem
(5.1) are positive, then we call v is stable, otherwise we call it unstable.

The Morse index M(v) of v is defined as the number of negative eigenvalues of
problem (5.1). Call v is degenerate if 0 is an eigenvalue of problem (5.1), otherwise
it is non-degenerate.

Lemma 5.2. If f satisfies the conditions of Theorem 5.1, then any solution v of
problem (1.3) is stable and non-degenerate, and their Morse index are M(v) = 0.

Proof. Let v be a solution of problem (1.3), and let (µ1, φ1) be the corresponding
principal eigenpair of problem (5.1) with φ1 > 0 in (0, 1). Notice that v and φ1

satisfy 
(
r2N−k (−v′)k

)′
− λk N2k+1

Ck
N

r2N−1f(v) = 0, r ∈ (0, 1),

v′(0) = v(1) = 0
(5.2)

and
(
−φ′

1r
2N−k (−v′)k−1

)′
− λk N2k+1

kCk
N

r2N−1f ′(v)φ1 = µ1

k φ1, r ∈ (0, 1),

φ′
1(0) = φ1(1) = 0.

(5.3)

By multiplying the first equation of problem (5.3) by −v, and the first equation of
problem (5.2) by −φ1, subtracting and then integrating, we get that

µ1

∫ 1

0

φ1v dr =
λkN2k+1

Ck
N

∫ 1

0

r2N−1φ1 (kf(v)− f ′(v)v) dr.

Note that f ′(s) ≤ kf(s)/s and f ′(s) ̸≡ kf(s)/s for s > 0, and we know v > 0 and
φ1 > 0 in (0, 1), so µ1 > 0. It follows that v is stable.
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Next we give the proof of Theorem 5.1.

Proof of Theorem 5.1. (i) Review C in Theorem 4.2, we know from Lemma
5.1 that C near (λ1, 0) is a curve (λ(s), v(s)) = (λ1 + o(1), sψ1 + o(s)). Let F :
R×X+ → X+ be defined as

F (λ, v) =
(
r2N−k (−v′)k

)′
− λk

N2k+1

Ck
N

r2N−1f(v).

It follows from Lemma 5.2 that any solution v of problem (1.3) is stable. So, at any
solution (λ∗, v∗), we can use the Implicit Function Theorem to F (λ, v) = 0, and all
the solutions of F (λ, v) = 0 near (λ∗, v∗) are on a curve (λ, v(λ)) with |λ− λ∗| ≤ ε
for some small ε > 0. Hence, the unbounded continuum C is a curve.

We claim that any solution uλ is decreasing with respect to λ. That is if
(
λ1, v1

)
and

(
λ2, v2

)
are two positive solution pairs of problem (1.3) and λ1 < λ2, we need

show v1 ≤ v2. Suppose, on the contrary, that ∃ r0 ∈ [0, 1) : v1 (r0) > v2 (r0). Set I
is the connected component of {r ∈ [0, 1) : v1 (r) > v2 (r)} containing r0.

For the case of 0 ∈ I, there exists r1 > 0 such that I = [0, r1). Using the
complex Hessian identity, we can get that

∫ r1

0

(
vk+1
1 r2N−k (−v′2)

k

vk2
− v1r

2N−k (−v′1)
k

)′

dr = L1 + L2,

where

L1 =

∫ r1

0

(
λk2
f (v2)

vk2
− λk1

f (v1)

vk1

)
N2k+1

Ck
N

r2N−1vk+1
1 dr

and

L2 =

∫ r1

0

r2N−k

(
(−v′1)

k+1
+ k

(
−v1v′2
v2

)k+1

− (k + 1)vk1v
′
1

(
−v′2
v2

)k
)
dr.

Further ∫ r1

0

(
vk+1
1 r2N−k (−v′2)

k

vk2
− v1r

2N−k (−v′1)
k

)′

dr

= v1 (r1) r
2N−k
1

(
(−v′2 (r1))

k − (−v′1 (r1))
k
)

≤ 0. (5.4)

It follows that L1 + L2 ≤ 0, then L2 ≥ 0 from the Young inequality. Combine
the monotonicity of f(s)/sk and our assumptions, we get that L1 > 0, which is a
contradiction.

For the case of 1 ∈ I, there exists r2 > 0 such that I = (r2, 1). Using the
complex Hessian identity again, we get that

∫ 1

r2

(
vk+1
1 r2N−k (−v′2)

k

vk2
− v1r

2N−k (−v′1)
k

)′

dr = L′
1 + L′

2, (5.5)
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where

L′
1 =

∫ 1

r2

(
λk2
f (v2)

vk2
− λk1

f (v1)

vk1

)
N2k+1

Ck
N

r2N−1vk+1
1 dr

and

L′
2 =

∫ 1

r2

r2N−k

(
(−v′1)

k+1
+ k

(
−v1v′2
v2

)k+1

− (k + 1)vk1v
′
1

(
−v′2
v2

)k
)
dr.

We can see from the argument of Lemma 3.4 that the left-hand side of (5.5) is equal
to

− v1 (r2) r
2N−k
2

(
(−v′2 (r2))

k − (−v′1 (r2))
k
)
≤ 0.

Then a contradiction like the one above emerges.
For the case where I does not contain 0 and 1, there exist r3, r4 ∈ (0, 1) such

that I = (r3, r4). We use the complex Hessian identity once again and obtain that∫ r4

r3

(
vk+1
1 r2N−k (−v′2)

k

vk2
− v1r

2N−k (−v′1)
k

)′

dr = L′′
1 + L′′

2 ,

where

L′′
1 =

∫ r4

r3

(
λk2
f (v2)

vk2
− λk1

f (v1)

vk1

)
N2k+1

Ck
N

r2N−1vk+1
1 dr

and

L′′
2 =

∫ r4

r3

r2N−k

(
(−v′1)

k+1
+ k

(
−v1v′2
v2

)k+1

− (k + 1)vk1v
′
1

(
−v′2
v2

)k
)
dr.

Further∫ r4

r3

(
vk+1
1 r2N−k (−v′2)

k

vk2
− v1r

2N−k (−v′1)
k

)′

dr

= r2N−k

(
vk+11 (−v′2)

k

vk2
−v1 (−v′1)

k

)
(r4)−r2N−k

(
vk+11 (−v′2)

k

vk2
−v1 (−v′1)

k

)
(r3)

= v1 (r4) r
2N−k
4

(
(−v′2)

k
(r4)−(−v′1)

k
(r4)

)
−v1 (r3) r2N−k

3

(
(−v′2)

k
(r3)−(−v′1)

k
(r3)

)
≤ 0.

Then reasoning as the above, we can obtain a contradiction again.
Next we prove the uniqueness of radially symmetric negative of problem (1.1).

Suppose on the contrary that there exist two solutions v1 and v2 with v1 ∈ C for
λ ∈ (λ1/f0,+∞). for ϵ > 0, take (λ− ε, vλ−ε), (λ+ ε, vλ+ε) ∈ C, then vλ±ε → v1
as ε → 0. By the monotonicity of v2 with respect to λ, we get vλ−ε ≤ v2 ≤ vλ+ε.
Then v2 = v1.

Through the same discussion as above, we know that problem (1.1) with λ =
λ1/f0 has only the trivial solution. So next we only need to show that problem (1.1)
has only the trivial solution for any λ ∈ (0, λ1/f0). Suppose, by contradiction, that
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problem (1.1) has a radially symmetric negative solution u for some λ ∈ (0, λ1/f0).
Then 

(
r2N−k (−v′)k

)′
= λk N2k+1

Ck
N

r2N−1 f(v)
vk vk, ∈ (0, 1),

v′(0) = v(1) = 0,

where v = −u. From λ < λ1/f0, it is clear that

λk
f(v)

vk
< λk1 .

According to Lemma 3.5, ψ1 changes its sign. This is a contradiction.
(ii) If u is a radially symmetric negative solution of problem (1.1) for a

λ ∈ (λ1/f∞,+∞), then
(
r2N−k (−v′)k

)′
= λk N2k+1

Ck
N

r2N−1 f(v)
vk vk, ∈ (0, 1),

v′(0) = v(1) = 0.

Since λ > λ1/f∞, we have that

λk
f(v)

vk
> λk1 .

By Lemma 3.5, v changes its sign, which is a contradiction. The next proof is the
same as that of (i).

(iii) From (ii), we know that problem (1.1) has only the trivial solution for any
λ ∈ [λ1/f∞,+∞). The existence can be got from Theorem 4.8. The uniqueness
can be obtained similarly as that of (i).

(iv) In view of Theorem 4.7 and the argument of (i), the desired conclusion can
be obtained immediately.

See Figure 1 for bifurcation diagrams of Theorems 4.1–4.9 and Theorem 5.1.
For Example 4.1 with q ∈ (0, k), Theorem 5.1 implies that problem (1.1) has

a unique radially symmetric negative solution, which improves the corresponding
results of [21, Theorem 2] even in the case of λ = 1, where only the existence was
proved. In addition, if q ∈ (k, k∗), Theorem 4.6 combining with Corollary 4.5 of [29]
shows that problem (1.1) has a unique radially symmetric negative solution.
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