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BIFURCATION, A-PRIORI BOUND AND
NEGATIVE SOLUTIONS FOR THE COMPLEX
HESSTAN EQUATION*

Hua Luo! and Guowei Dai?t

Abstract This paper establishes global bifurcation and eigenvalue results for
the following complex k-Hessian equation

Sk (u;3) = A f(—u) in B,
u=0 on 0B.
The existence/nonexistence, uniqueness and multiplicity of radially symmet-

ric negative solutions are investigated. Moreover, a-priori bound of radially
symmetric negative solutions is also obtained.
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1. Introduction

In this paper, we study the following complex k-Hessian equation

S (u;) — M f(—u) in B,
u=20 on 0B,

(1.1)

where the complex k-Hessian operator Sk (uﬁ> is the k-th symmetric polynomial

of eigenvalues of the complex Hessian matrix (uﬁ) = (%), B is the unit ball
of CN with N > 1, k € {1,..., N}, \ is a nonnegative parameter and f : [0, +00) —
[0, +00) is a continuous function with f(s) > 0 for s > 0.

Notice that when k& = N, the complex k-Hessian equation is reduced to the
complex Monge-Ampeére equation, which have been studied by many famous math-
ematicians to obtain the existence, uniqueness, regularity and the qualitative prop-
erties of solutions; for example [3,4,7,9,13,14,17-20,31] and the references therein.
Meanwhile, some mathematicians have also got several celebrated results for the
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complex k-Hessian equation; see [5,21,29,32] and the references therein. In [8,28],
the authors studied the existence of the real k-Hessian equation. J. Sdnchez [26]
studied asymptotic behavior of solutions of a k-Hessian evolution equation. The
authors of [23] investigated the existence for a k-Hessian equation involving super-
critical growth. The authors of [2] studied the existence for Polyharmonic k-Hessian
equations in RY. But so far we haven’t seen any systematic investigations on the
complex k-Hessian equation using bifurcation method. Here in this paper we study
the existence/nonexistence, uniqueness and multiplicity of radially symmetric neg-
ative solutions of the complex k-Hessian equation (1.1) by bifurcation method.

Let r = |z|, C" = n!/((n — m)!m!) be the combinatorial constant. It is well
known that a radially symmetric solution of problem (1.1) is equivalent to a solution
of the following problem

_ N k1 _
(2 (@)) = NAZE 2N (), € (0,1), "

A solution to problem (1.2) is a function of C?[0,1] that satisfies problem (1.2).

It is easy to verify that any solution of problem (1.2) is negative and strictly
increasing. Problem (1.2) can be transformed into the following equivalent problem
if we make v = —w,

(7,2ka (_U/)k>' — )\kNéi'glr?N*f(v), re(0,1), (13)
V'(0) = v(1) = 0,

Decompose f into f(s) = s* + g(s), we can set up a global bifurcation result for
problem (1.3),

/
p2N=k k) = \ENZTL N1 (0 4 o)) | € (0,1),
() LN ) re 0,

where g : R, — R with R, = [0,+0c0), and lim,_,¢+ g(s)/s* = 0. Obviously,
problem (1.4) always admits the trivial solution v = 0.
To study problem (1.4), we need consider the following eigenvalue problem

_ (7“2N—P+1 ‘U/|p_2 U/>/ = /\p_lNziTlTQN_”mp_zvv re(0,1),
ck (1.5)
U/(O) = ’U(l) =0

for any p € [2, N 4+ 1]. For problem (1.5), we have the following theorem.

Theorem 1.1. Problem (1.5) possesses a unique eigenvalue A = A1 (p) such that the
corresponding etgenfunctions have one sign, which is unique up to a multiplication.
Moreover, M\1(p) is minimal, isolated and continuous with respect to p.

In particular, taking p = k + 1, it follows from Theorem 1.1 that the following
eigenvalue problem

Sk (uﬁ) = M(—u)k in B,
u=>0 on 0B
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has an eigenvalue A\; := A;(k + 1) such that the corresponding eigenfunction is
negative and radially symmetric, which has pointed out in [21, Remark 1] without
proof.

Let X be the Banach space C[0, 1] endowed with the norm [|v|| = max,.cjo 1) [v(r)],
Xt ={ve X :v >0} with the deduced norm of X and PT be the set of functions in
X T which are positive in [0,1). Also, set KT = Rx PT under the product topology.

For problem (1.4), we have the following theorem.

Theorem 1.2. The pair (A1,0) is a bifurcation point of problem (1.4). Moreover,
the associated bifurcation branch C is unbounded and such that C C (Kt U {(A\1,0)}).

Note that problem (1.5) is linear when p = 2. So by virtue of the index formula
of an isolated zero [12] and the invariance of the Leray-Shauder degree under a
compact homotopy, we can establish an index jumping result for problem (1.5).
Then by this index jumping result, we can prove an index jumping result involving
problem (1.4) which guarantees (A1,0) being a bifurcation point of problem (1.4).
This is the reason why we introduce problem (1.5).
If lim, 4 o0 f(8)/s® = 400, we call that f is superlinear. From now on, when
f is superlinear, we always assume that f satisfies the following subcritical growth
condition
(&) < C(1+|sl?)

for some p € (k, k.| and positive constant C', where

o [Ee ko,

400 if k= N.
Note that problem (1.1) has no nontrivial non-positive solution (see [21, Theorem
2))if A=1and f(s) = s? with ¢ > k* and

(N+Dk
g ) ek RSN
400 if k=N,

where k* is the critical exponent for the complex k-Hessian operator which was
determined in [21]. Tt is easy to see that k < k., < k*. And then for convenience,
we call k, the lower critical exponent for the k-Hessian operator.

Now we have the following a-priori bound.

Theorem 1.3. Assume that f is superlinear and satisfies the lower subcritical
growth condition. Given a compact set A C [0, +00), let u be any radially symmetric
negative solution of problem (1.1) with A € A. Then there exists a constant C,
independent of u, such that |lul| < C.

We use the blow up method introduced by Gidas and Spruck [15] in combination
with the Liouville-type Theorems in [27] to prove Theorem 1.3. And then from
Theorems 1.1-1.3, we get the intervals of the parameter A, which guarantee the
existence/nonexistence of single or multiple radially symmetric negative solutions
of problem (1.1). To obtain the uniqueness, we propose an identity which is called
compler Hessian identity. Then by Implicit Function Theorem, under some more
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strict assumptions on f, we show that the radially symmetric negative solution
branch of problem (1.1) can be a smooth curve and that the radially symmetric
negative solution is decreasing with respect to A.

The rest of this paper is arranged as follows. In Section 2, we present the proof of
Theorem 1.1 and an index jumping result. Section 3 is mainly devoted to the proofs
of Theorems 1.2-1.3. Meanwhile, we also introduce a complex Hessian identity and
establish a Sturm type comparison result in the same section. In Section 4, we find
the intervals for the parameter A which ensure existence/nonexistence of single or
multiple radially symmetric negative solutions for problem (1.1) under some suitable
assumptions on f. In the last Section, under some more strict assumptions on f,
we show the uniqueness of radially symmetric negative solutions for problem (1.1).

2. Proof of Theorem 1.1

Set E = {ve C'0,1]: v(1) =0}. Let W, be the real Banach space obtained by
completing F under the following norm

1
1 »
ol = ([ 5o ar )
0

Then, by [24, Example 6.8], we have the following Sobolev type inequality.

Proposition 2.1. There exists a constant C such that

1 1
C (/ p2NFL=P P dr) > (/ T2N_1|qu7‘>
0 0

for any v € W, where q € [1,+00).

1/p 1/q

For ¢ > 1, define

1 1/q
L9 (r*Nhdr) = {v € L*(0,1): (/ r2N=ty|e dr) } < +o0.
0

Then by Proposition 2.1, the following embedding result holds.

Proposition 2.2. W, is continuously embedded in L1 (er*l dr) foralll < g <
+00, further the embedding is compact for q < p*. where

+o00 ifp=N+ 1.

Proof. The continuous embedding is the direct corollary of Proposition 2.1. So
it is sufficient to show the compact embedding. Let S C W), be a set bounded by a
positive constant C. For any v € S, we have that

r4+t
fo(r + 1) — v(r)] < / o' (7)] dr

1 b
/v 2(p—1)—2N 2(p—1)—2N pTl

1
<C (/ p2N+l-p |v’|p dr) ‘(7”—&—15) p—1  —qp  p-1
0
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If p= N +1, then
|v(r+t) —v(r)] =0.
Thus,

a(p—1)
P

dr =0,

2(p-1)-2N 2(p-1)—2N ‘

1 1
/ r2N_1|U(7°+t)—v(r)|qdr < C/ TQN_l’(r—i—t) -1 —p  p1
0 0

from which we get that S is relatively compact in L9 (er -1 dr).
If p < N+41, in view of ¢ < p* and the Lebesgue dominated convergence
theorem, we obtain that

a(p—1)

1
B 2(p—1)—2N 2(p—1)—2N >
/ PN 1‘(r+t) =1  —p 1 ‘ dr =0
0

as t — 0. Note that the limit should be understood as one-side limit when r = 0 or
r = 1. We thus have that

1
/ r2N=o(r + 1) —o(r)|%dr — 0
0

ast — 0 uniformly in v € S, which shows that S is relatively compact in L4 (7“2N—1 dr).
O
Moreover, we give the following inclusion relations.

Proposition 2.3. W, C W,, and L™ (r2N—1 dr) C L (TQN_l dr) hold for any
p1, P2 € (2, N + 1] with ps < py.

Proof. For any v € Wp,, letting Q = {r € (0,1) : |v'| < 1}, we obtain that
1
/ T2N+1_p2 ‘U/|;D2 dr = / T2N+1_p2 ‘U/|;D2 dr +/ rN+1—p2 ‘U/|;D2 dr
0 Q (0,1)\Q

S 1+/ T2N+1—p2 |v/|1)2 d?"
(0,1)\Q

< 1+/ p2NTL=P 1 P iy < 4oo0.
(0,D\Q

Thus v € Wp,. The second inclusion can be proved similarly. O
We call v € W, the generalized solution of problem (1.5) if for any ¢ € W,

! 5 Nok+L

/ PPN P e = NPT — / r2N =[P~ 2ue dr (2.1)
0 Cxy Jo

holds. The following result is the regularity of the generalized solution.

Proposition 2.4. Suppose v be any generalized solution of problem (1.5). Then
v € C?[0,1] satisfies problem (1.5) in the classical sense.

Proof. We first show that v is bounded. We define

z® =1 for z € [1,p],
B(z) = (1, p]
az+b for z>p
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for s > 1 and p > 1, where a, b are two constants such that ® € C![1,+o00). It is

/ .. . + vt41 / P L
clear that [®'(t)] is increasing. Set v = max{v,0}, and choose [, [®(¢)|" dt :==

© as a test function. Substituting ¢ into (2.1) we can get that

p

— (v+ + 1)

1
2N+1-p d
T
0 dr

by virtue of the monotonicity of |®’(¢)|. Taking a fixed 5 > p, by Proposition 2.1,
2.3 and the above inequality, we obtaind that

( /0 Lo (ot 4 1) p2 dr) P ( /O (@ (0t 1) (0 + 1)) 2N dr)

for some positive constant C. Let p — 400, then

1
dr < C/ N o2 |9 (v + 1) [P ot dr
0

1/p

vt +1

) < C(s) Hv+ +1|

stp(,,‘ZNfl dr Lsp(TZN—l d’l") )

where k = 8/p > 1. Set s = k™, m > 1, an iteration yields
supv < C(s) (L4 vl porav—1 ar)) -

Similarly, if set v~ = —min{v, 0}, we can also show the above estimate for v—. It
means that v is bounded.

For 1 being smooth, take ¢ = frl n(t) dt as a test function in (2.1). We obtain
that

. ! 2N+1—p |, 1P—2 1 __ yp—1 N2k " 2N -1y, |1p—2
r [ |7 "' n(r) dr = A 3 n(r) (7' |v] 11) dr dr
0 Cx Jo 0

by an integration by parts. And

B N2k+1 r
_ 2N P 20— )\pflik/ (72N Ho[P~20) dr ace.
cy Jo

The fact that v is bounded shows that fOT (7'2N—1|’U|p_2’l)) dr is continuous. Next,

by some simple calculations, we get that v € C?[0,1], v'(0) = lim,_,o+ v'(r) = 0

and that v satisfies problem (1.5). O
Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Define the functional
1 k+1 1
1 N2
J(v) = / Zp2N+l-p [v'|" dr — )\p—17k / T2N_1|v\p dr
o P PCN 0

on W,,. It is easy to see that the critical points of J are the generalized solutions of
problem (1.5). Taking

1y Nok+1 L
filv) = /0 ETQN'H_” [v'|” dr and fo(v) = oCF /0 r2N_1|v|p dr,
N

we consider the eigenvalue problem

A(v) = uB(v), (2.2)
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where A = 0f1 and B = 0fs denote the sub-differential of f; and fs, respectively.
According to Proposition 2.1, for any v € W, with v # 0 and some positive
constant ¢, we have that
[v)

h) = c.
Set p1(p) = infyew, vzo f1(v)/ f2(v), then equation (2.2) has no nontrivial solution
for p € (0, p1(p)).

We use the abstract results of [16] to prove the desired conclusions. Let W, =V
and Q = (0, 1), and denote by ®(V') the family of all proper lower semi-continuous
convex functions ¢ from V into (—oo, +00]. Next we verify the conditions (A0)—(A4)
of [16].

Clearly f1(0) = f2(0) = 0. Then f; and fy are proper functions. It is easy
to see that f; and fy are lower semi-continuous. Furthermore, we get f; and fo
are strictly convex functions by Lemma 2.27 of [1]. Thus fi, fo € ®(V). Since
D(f1) =D (f2) =V and V C L, (0,1) are clear, then we have verified condition
(Al). For v # 0, let R(v) = fo(v)/fi(v). The fact that R is even gives that
R(Jv]) > R(v) for all v € V. We can easily get that f1(v) > 0 for all v € V, and
f1(v) = 0 is equivalent to v = 0. Inequality (2.3) means that there exists u € V
such that u # 0 and R(u) = sup{R(v);v € V,v # 0}. It follows that condition
(A2) is verified. Let @ = p, we have f;(tv) = t*f;(v) for all v € Vt = {w €
Viw(r) > 0a.e.r € (0,1)}, Vt > 0, i = 1,2. Naturally condition (A3) is verified.
Set (uV w)(r) = max{u(r),w(r)}, (u A w)(r) = min{u(r),w(r)}, I = {r € [0,1] :
u(r) > w(r)}, and Iy = {r € [0,1] : u(r) < w(r)} for any u, v € V", then

(2.3)

1 1
1 1
filevwy+fienw= [ S vl () dr [ ) () dr
o P o P
:/ 1T2N+17P |ul|p dT’—I—/ 1T2N+17p‘w/‘17 dr
nbp P

—|—/ 1r2N+1*”|w'|p dr—|—/ ETQNH*]” |u' [ dr
nbp I, P

p
= f1(u) + fr(w).

Similarly, fa(uVw)+ fa(u Aw) = fa(u) + fo(w) holds. Condition (A4) is therefore
verified. The last one is condition (A0). For ¢,(s) = |s|P~2s, we have that

1 1
:/ 1,,,2N+1—p|u/|17 d7’+/ £T2N+1—p |w/|17 d?"
0 o P

N2kt 7
1"2N+1*pg0p (W)= —p : / 2N=LyPdr <0 (2.4)
cyo o

for the nonnegative nontrivial solution v of equation (2.2). So v(r) > 0, r € [0,1).
According to Proposition 2.4, v € C(0,1)NL>(0,1). Final condition (A0) is verified.

From Theorem I in [16], we know that u(p) is simple, that is equation (2.2) has
an one-sign solution which is unique up to multiplication by a number. Meanwhile,
w € C10,1] and w'(1) < 0 for every positive solution w of equation (2.2) on the basis
of (2.4) and Proposition 2.4. Further B is a monotone operator. From [16, Theorem
I1], we obtain that equation (2.2) has a positive solution if and only if u = u1(p).
Therefore, for A € (0, A\1(p)) with A\ (p) = ,ui/(pfl), problem (1.5) has no nontrivial
solution, but has an one-sign solution if and only if A = A1 (p). And A{(p) is simple.
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Next we show that A (p) is the unique eigenvalue in (0, é,) for some 6, > A1 (p).
It is enough to show that A;(p) is right-isolated. By contradiction, we assume that
there is a sequence of eigenvalues \,, € (A1(p),d,) that converges to A1(p). Let v,
be the corresponding eigenfunctions to A,. Set

Un

<Né’;+1 fol T2N—1 |Un‘p d?")
N

d)n =

=

Then [[¢,]7 = AP=1. Thus 1), € W, is bounded. It follows that there is a subse-
quence, still denoted by 1),,, such that v, = ¥ as n — +o0c for some 3 € W),. Since
f1 is sequentially weakly lower semi-continuous, then

1 1
/ r2NFLP 1 P dr < lim inf/ pNFL=P |l P g = AP ().
0 n—-+4oo 0

As n — 400, we have that

1 k+1
N2
/ p2N-1 [t | dr —
0

Cx

N2k+1

1=
cx

1
/ T2N71 |w|20 dr
0

by Proposition 2.2. So one has that

N2k+1 rt
/ NP dr = 1.
0

Cx

We thus obtain that )
/ PN P dr = i (p).
0

It follows that ¢ must be either positive or negative in (0,1). Let us say without
loss of generality that ¢» > 0 in (0,1), then we get 1, > 0 for n large enough, which
is a contradiction.

Finally, we prove that the eigenvalue function A\; : [2, N + 1] — R is continuous.
To do that we just have to prove that ui(p) : [2, N + 1] — R is continuous. And
this can be obtained by the variational characterization of pq(p) that

Nok+1 rl 1
”7k/ r?N = olP dr < / PP P dr for v e E} '
CN 0 0

(2.5)
Suppose {p, },/>7 is a sequence in [2, N +1], and {p, } 7> converges to p € [2, N +1].
Then

p1(p) = sup {u >0:

N2k+1
Cx
for any v € E by (2.5). The application of the Lebesgue dominated convergence

theorem gives that

1 1
H1 (pn) / 1"2N71|U|p" dr < / T2N+17pn |v/|pn dr
0 0

) N2k+1
lim sup 1 (pn)

1 1
oF / r2N=Hy|P dr < / r2NEL=P 1P (2.6)
n—-+oo N 0 0

Combining (2.6) and (2.5) we get

limsup i1 (pn) < pa(p)-

n——4oo
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Next we prove
lim inf py (pr) = p1(p). (2.7)

n—-+oo

Suppose {pm};;f1 is a subsequence of {p, :2 that satisfies lirﬂ w1 (pm) =
m——+00

limJirnf,ul (pn). Choose eg >0: p—eg >1,and p—e < p,, < p+e < p* for each
n—-+0oo
0 < e < ¢gp and m € N large enough. Select v,, € W), so that

1
/ ,',.2N+1_pm |U;n
0

1
[ e = o (o)
0

Prodr =1 (2.8)

and
N2k+1

o

1
/ 2N, [P dr,
0

Then {v,,}*%° € W, is bounded. Tt follows from Proposition 2.3 that v, is

m

bounded in W,_. for m large enough. Up to a subsequence, assume v,, — v in
Wp—e as m — +oo. By Proposition 2.2, we have vy, — v in LP*e (12N =1 dr) as
m — +o0o. By the Minkowski inequality, we have that

1 1
/ 2N =1y, [P dr%/ r2N=1 |P dr.
0 0
Thus [[vm [, =[]} as m — +oo. Further,

N2k+1
cx

1
lﬁgl}rg(f) w1 (pn) /0 2N dr = 1. (2.9)

Using (2.8), we have that
Joll275 < imind o 275 < 1.
Let € — 07. We can obtain that
Jvll, <1 (2.10)

by using the Fatou Lemma, immediately v € W,. By (2.9) and (2.10),

N2k+1
liminf uy (py)

1 1
: / er*l\v\pdT > / p2N+1-p |v’|p dr,
n—-+oo CN 0 0

which means (2.7). Therefore

Jm g (pa) = pu(p)- (211)
This proves the continuity of eigenvalue function A; : [2, N + 1] — R. O

Define the map 7}, : X — X as follows.

r N2k+1 0
Tyv = / Opr < : spszfl/ N1 (v) d7> ds, 0 <r <1,
1 CVN s
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where p’ = p/(p — 1). By the Arzela-Ascoli Theorem, we can easily prove that
T, is continuous and compact. Now we can write problem (1.5) as the equivalent
problem v = AT,v. Let

A2(p) = inf {A > A1(p) : A is an eigenvalue of problem (1.5)}.

By Theorem 1.1, we see that A;(p) < Aa2(p).

Lemma 2.1. For any interval [a,b] that belongs to [2, N + 1], there exists 6 > 0
such that problem (1.5) has no eigenvalue in (A1 (p), A1 (p) + 0] for all p € [a,b].

Proof. Instead, assume that there are sequences {p, }>5 in [2, N+1], {\,}/> in

R, and {un}:lrg in X\ {0} that satisfy lim,_, oo prn = pie 2, N+1], A\ > N1 zpn),
lim, 100 (A — A1 (pr)) =0, and

Up = ATy, (Un), n €N

Now set wy, = u,/ ||uy|. Then
Wn = A [ pr <7Né;1 gPn—2N—1 fso rN=1p, (wy) dr) ds .= M\T (wy,), 0<r<1.

It is not difficult to show that T (w,,) is completely continuous via the Arzela-Ascoli
theorem. So, up to a subsequence, we have that w, — w in X as n — 4oo. It
follows from Theorem 1.1 that

" N2M 1 0
“’:Al@)/ Pp < oF SHN’I/ N, (w) dT> ds, 0<r<1.
1 N s

Thus w must have one sign in (0, 1). Therefore, u,, has one sign for n large enough,
which contradicts the conclusions of Theorem 1.1. O

Clearly, for arbitrary R-ball Br(0) and A € (0, A1(p) + 0) \ {A1(p)}, the Leray-
Schauder degree deg (I — AT}, Br(0),0) is well defined, where 0 is given as Lemma
2.1. We end this section by showing an index jumping result, which will be used
later.

Theorem 2.1. For any R > 0 and p € [2, N + 1], there is
L if A e (0,A1(p)),
—Lif A€ (Ai(p), Ai(p) +6).

deg (I - )‘Tp7 BR(0)7 O) =

Proof. First consider the case of A > A;(p). Note that A;(p) is continuous, then
we have a continuous function x : [2, N + 1] — R and ¢ € [2, N + 1] make A\1(q) <
x(q) < A1(q) + 8 and A = x(p) by Lemma 2.1. Let

d(q) = deg (I — x(q)Ty, Br(0),0).
Then d(2) = —1 from the fact of T, is compact and linear according to [12, Theorem
8.10]. If we define
G(a,v) = x(9)T4(v).
Then G : [2, N+1]x X — X is completely continuous by the Arzela-Ascoli theorem.
Now we use the invariance of the Leray-Shauder degree under a compact homotopy

and get d(q) =constant, ¢ € [2, N + 1]. Further deg (I — AT, Bg(0),0) = d(2) =
—1. The proof of the case of A < A;(p) is exactly the same, so we omit it. O
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3. Proofs of Theorems 1.2-1.3

Let T, : X* — X be as follows.

1/k

T,u(r) = ' LWHI sh—2N 0T2N_1 (vk + (v)) dr ds, 0<r<1
L\ ok s g T T

Then T, is completely continuous. Write problem (1.4) as the equivalent equation
v = AT,v. We can see that if v is a fixed point of AT, in X, then v belongs to
C?[0,1] and is a solution to problem (1.4) in the classical sense.

Lemma 3.1. Suppose (A, v) is a solution to problem (1.4) in R x Xt and v has
a double zero. Then v =0.

Proof. The desired conclusion can be obtained directly from the expressions of
—'(r) and v(r) using the monotonicity of v. O
Consider the problem

2N—k (_, Nk /: kN2FTL oN-—1,k
(r (=v) ) A er T v®, r e (0,1), (3.1)
v'(0) = v(1) = 0.

Taking p = k + 1 in Section 2, we know that problem (3.1) possesses the unique
principal eigenvalue A\;(k + 1) := Ay which is positive, simple and isolated. Define
T - Xt X+ by

1/k

T N2k+1 0
Tiwv = / ( - sk'_QN/ FIN=1k dT) ds, 0 <r<1.
1 CN s

We can easily know that I — AT}, is a completely continuous vector field in X*. Thus
for arbitrary R-ball Br(0) of X and A € (0,A\; + 8] \ {\1}, the Leray-Schauder
degree deg (I — AT}y, Br(0),0) is well defined, where ¢ can be found in Lemma 2.1.

Lemma 3.2. For A € (0,A; + 0]\ {\} and any R > 0, we have

1, ifAe(0,A),
—1,if A € (A, AL + 0]

deg (I — ATy, Br(0),0) =

Proof. For any v € X7, it is clear that Ty (v) = T},—1(v) . we can get the desired

conclusion right away as long as we take p = k + 1 in Theorem 2.1. O
Next, we present a Rabinowitz type global bifurcation result [25]. Let E be a
real Banach space with the norm || - ||, O be an open subset of R x E, prg (O) be

the projection of O on E and pry (O) be the projection of O on R. Consider the
following equation

u=LNu+ H(\u) =G\ u), (3.2)
where X varies in prg (O), the map A — L(X) is continuous, L(-) : pry (O) —
pry (@) is a homogeneous completely continuous operator and H : O — E is
compact with H = o(||u||) at u = 0 uniformly on bounded X intervals in O. Let

& = {(A\u) : (A u) satisfies equation (3.2) and u #Z 0 }O.
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w is called an eigenvalue of
u=L(pu, ue E (3.3)

if there exists ¢ € E \ {0} such that ¢ = L(u)p. Let ¥ denote the set of real
eigenvalues of equation (3.3). So the Leray-Schauder degree deg (I — L()), Br(0),0)
is well defined for arbitrary r-ball Bg(0) in O and A ¢ ¥. By an arguments similar
to that of [11, Lemma 2.1] with obvious changes, we can show the following result.

Lemma 3.3. If p € prg (O) N'Y such that the Leray-Schauder degree
deg (I — L(A\), Br(0)) changes when X\ passes u, then % possesses a mazximal sub-

continuum C, C O such that (11,0) € C,, and one of the following three properties
is satisfied by C,,:

(i) C, is unbounded in O;

(i1) meets DO\ {(1,0)};
(iii) meets (i, 0), where fi € prg (O) NS with i # p.

Now, we give the proofs of Theorems 1.2-1.3.

Proof of Theorem 1.2. For any v € X7, set H(v) = Ty(v) — Ty(v). Problem
(1.4) is therefore equivalent to

v = ATpv + AH (v).

Define

g(u) = ax lg(s)].

Then g is nondecreasing with respect to u and
- g(u)
lim —= =0. 3.4
3 B4
By (3.4), we have that
9@ _ 3w _ @l

ol = flofi* = Joll*

— 0 as |Jv]]| = 0, (3.5)

which implies H(v) = o(||v]|) near v =0 in X .

By Lemmas 3.2-3.3, we obtain that (A1,0) is a bifurcation point of problem
(1.4) and the associated bifurcation branch C in R x X* whose closure contains
(A1, 0) is either unbounded or contains a pair (X, 0) where \ is another eigenvalue
of problem (3.1). For any (A,v) € C, Lemma 3.1 implies that either v =0 or v > 0
in (0,1). We claim that the first alternatives is the only possibility. Suppose by
contradiction that there exists (A,,v,) = (X,0) when n — 400 with (A,,v,) € C
and vy, # 0. Set wy, = v,/ ||vn]], then w, solves the problem

r N2k+1 0 g (’U ) 1/k
w = )\n/ Tsksz/ N1k nk dr ds.
1\ Cx s [[vn]|

From the fact that T} is compact, we get some convenient subsequence subsequence
w, — wy as n — +oo. By (3.5), one can get that (X, wg) solves problem (3.1)
with |Jwg|| = 1. From Theorem 1.1, we know that wy must change its sign. This
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contradicts v, € PT. So we have C C (KT U {\,0}). O

Proof of Theorem 1.3. We argue by contradiction. Let v, be a sequence of
positive solutions to problem (1.3) with A = A, such that A\,, — A, and ||v,,|| = +o0
as n — +o00o. Define

1 k—p
wy(r) = —uy, <rMn""“ > ,

M,
where M,, = ||v,]| = v,(0). Then, by some elementary calculations, we can show
that
r Nok+1 0 £ (o) 1/k
n _ )\n B k—2N/ 2N—-1 n d d
Wy (1) i ( ck s i T v s

1/k

-\ /T i (N2k+1 sh2N /0 T2N—1f(”n)wp d’T)
" M:J?;’“ C]Iil s Ufl "

From the lower subcritical growth condition, we see that there exist p € (k, k.| and
positive constant ¢ such that

p—k
ds, re [O,Mn""“} .
(3.6)

lim 1(s)

s—+oo SP

= C.

It implies that

lim f (vn) =c. (3.7

n—-4o0o vg

By (3.6) and (3.7), we get that for some constant M, which is independent of n,

k41 r 1/k
0< —w, =\, (N2 TkiZN/ TQN*lif (Un)wﬁ dT)
0

ck h
N2k+1 T n 1/k
< An ( - / Tkt / (1;, )wﬁ d’T)
cy Jo Un,
< M.

For any R > 0, it can be seen that ||wy[|c1( ) is uniformly bounded. Thus there
is a subsequence, which we still denote by w,, such that w, — w in C[0, R]. We
can easily see w(0) = 1. By an argument similar to that of [15], we get that
T N2k+1 0 1/k
w(r) = A (ksk_zN/ 2N =LeP dT) ds, 0 <r < 400,
+oo CN s

i.e.

k+1

_ k—1 ! N2 _

— (7’2N F || w’) = e\ —— 2Ny,
Cy

So w is a nontrivial solution of

2k+1

— Appu=c)\¥ uP in RZV-AFL

3.8
ek 7 (33)

where Apu = div (|Vu\m*2Vu) is the well-known m-Laplace operator, m > 1.
While, by Theorem I and I’ of [27], we know that equation (3.8) has only the trivial
solution u = 0 when p < k,. So we deduce a contradiction. O



950 H. Luo & G. Dai

Lemma 3.4. Suppose u; are two solutions of the problems

k li
(TQN—k (—u) ) =buf, i=1,2,
(3.9)

respectively when b; € C[0,1](i = 1,2) satisfy ba(r) > bi(r) > 0 for r € (0,1). If
up # 0 in (0,1), then either 37 € (0,1) : ua(7) =0, orbe =by and Ip#0: uy =
My .

Proof. We know u; # 01in (0,1). If ug # 0 in (0, 1), and without losing generality
to assume that u; > 0, ug > 0 in (0,1). Then for i = 1,2, we have

k

r 1/
= — (rk_QN/ bi(T)uf dT) <0
0
1 s 1/k
ui:/ <sk2N/ bi(T)ude> ds
r 0

from (3.9). Clearly u; and us are strictly decreasing in (0, 1]. Thus u;(0) > 0 and
ui(r) < 0,r € (0,1],i=1,2.
Set w = by — by, by some calculation, it’s easy to get that

k+1,2N—k 1k !
u T —U _ k
( 1 - ( 2) _ U1T2N k (_ull) )

Uz

k+1 2N —k 7y k41 —u1ug wH —uj :
=wuy" "+ (—uy) 4k | —= — (k4 Dubu) ” . (3.10)

U2 2

S~

and

Integrate both sides of the above inequality from 0 to 1 and we have

1 k+1, 2N —k 1k !
u; T —u
/ < 1 k( 2) _u1r2N—k(_ull)k> dr
0 Ua

(3.11)
Note that the left-hand side of (3.11) is equal to
uFtip2N—k 1k
L= lim 2" 2 (—u3)
r—1- Uy
In view of the L’Hospital rule, one has that
~ k)
PNk R (k+ D)k 2Nk () it (’I“QN R (—auby) )
L = lim = = lim —
r—1- Us r—1- kus ™~ ub
— lim (k + Dyubufr2N=F (—uf)F + ub T bguk

r—1- kuk 1 /
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k1 2N—k Ik k+lp .k
— lim (k + Dufujr (—us) T baug
= L k=1, T T
r—1 kug ub r—=1" kuy “up
/2N —k Ik k
— lim (k + uijr (—u3) i Uy
r—1- kb, rs1- yh !

Now we can show L =0. For k=1, L =0 holds. If k =2, L = 0 follows from

k / k—1
lim —— = lim kb il
_ o k—1 _ / _ k=2
r—1- r—1- (k — 1)ub r—1 us

Further we can continue this process i — 2 times to get L = 0 for any & = 4, i €
{3,...,N}.

As discussed above, the right-hand side of (3.11) is equal to zero, too. By using
the Young inequality we can get that

/

I\k+1 _ulul2 bt ko [ —Us ¥
(—uy) +k — (k4 Duju) >0,

Uz U2

and the equals sign above is true if and only if

] k+1 = k+1
uy - U9 '
And then naturally we get that there is a constant p # 0 that ue = puq and be = by.
O
The identity (3.10) will be used later. For simplicity, we call it complex Hes-

sian identity. As a corollary of Lemma 3.4, we obtain the following Sturm type
comparison lemma.

Lemma 3.5. Suppose u;(i = 1,2) be two solutions of problem (3.9), respectively
when b; € C[0,1](z = 1,2) satisfy bo > by > 0 and by # by on [0,1]. If u; # 0 in
(0,1), then uy has at least one zero in (0,1).

4. Negative solutions

Define the map Ty : Xt — X as follows.

1/k

T _ " N2k+1 k—2N 0 2N—1 d d 0< <1
ro(r) = : oF s T fv)dr s, 0<r<1.
N s

Then T is completely continuous. Then problem (1.3) can be equally rewritten as
as v = ATyv. Let fo, foo € Ry be such that

E_ 1 k E _ 1 k
JE = lim f(s)/sF and 5 = lim_f(s)/s".
We firstly give the nonexistence results.

Lemma 4.1. If 4p > 0 satisfying
f(s)/s" = p

for any s > 0. Then 3& > 0 such that VA € (&, 400), problem (1.1) has no
radially symmetric negative solution.
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Proof. By contradiction, assume that v is a positive solution of problem (1.3).
Then we have that

(TQN—k (—v’(r))k)/ O\ N2kt p2N-1 / (’U)Uk.

ck vk
By Lemma 3.5, we have A\ < \;/p'/*. O
Lemma 4.2. If 490 > 0 satisfying
f(s)/s" <o

for any s > 0. Then 31, > 0 such that YA € (0,n.), problem (1.1) has no radially
symmetric negative solution.

Proof. Assume the opposite that v is a positive solution of problem (1.1). If we
set w = v/ ||v]|, then

1/k
r N2k+1 0 1/k

1:\|w||:)\/ — sMN/ e EACK VR ) §2<Qk> A,
1\ Oy s o]l CN

which implies that A > 1/ (2 (C% /o) 1/k>. O

Theorem 4.1. If fo, foo € (0,400) and foo # fo, then for any
A € (min{A1/foo, A1/ fo}, max{\1/fo,\1/fs}), problem (1.1) has at least one

radially symmetric negative solution.

Proof. We just need to show that problem (1.3) has at least one solution v such
that it is positive in [0,1). Letting ¢(s) = f(s) — f¥s*, then we have

lim,_,o+ ¢(s)/s* = 0. By Theorem 1.2, we know that there is an unbounded con-
tinuum C emanating from (A1/fp,0) such that

C < ({(M/fo,0)}U (R x PT)).

It suffices to show that C joins (A\1/fo,0) to (A1/feo,+00). Suppose (A\n,v,) € C
with A, + [Jon|| = 400 as n — +00. Because (0,0) is the only solution of problem
(1.3), in view of Lemma 4.2, we have that C N ({0} x X*) = @ and A\, > 0 for
all n € N. Our assumptions imply that there is a positive constant g such that
f (vy) /vF > o for any € (0,1). By Lemma 4.1, there exists a constant M such
that A, € (0, M] for n € N large enough. Therefore |v,|| = +oc0 as n — +o0.

Let £(s) = f(s) — f& s*. We have limg_, . £(s)/s* = 0.
Set £(v) = maxo<s<y [£(5)]. We have € is nondecreasing.
Set £(v) = max, /2<s<, [£(s)], then

vginoog(v)/vk =0 and £(v) < €(v/2) +£(v).

Thus lim, 1« £(v) /v = 0. Furthermore, we have that

k_ g E_ ¢ k
1€ (n) |/ llonll™ < & (Jvnl) /llonll™ < Elvall) /llvall™ —0 (4.1)
as n — 4o00. Divide the equation
B N N2k+1 B N2k+1 B
(PN (—en)*) = AR =V T ok = A=Y e ()
N N
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k _ o .
by ||vn]|” and set U, = v,/ ||vn||- Because v, is bounded in X+, up to a subsequence,
we have v,, — ¥ for some v € X1 as n — +oo. Then

k-+1
oN—k k) vk ek V2 ON—1-k
(7“ (—v’))—/\ o " =0,
N
by the continuity and compactness of T, where A= lim \,, choosing a subse-

n—-+oo
quence and relabeling it if necessary. It is obvious that A = \1/fs. Finally we get
that C joins (A1/fo,0) to (A1/ feo, +00). O

Theorem 4.2. If fo € (0,400) and foo = 0, then for any A € (A\1/fo,+00),
problem (1.1) has at least one radially symmetric negative solution.

Proof. It is sufficient to show that C joins (A1/fo,0) to (400, +00). Firstly we
prove that C is unbounded in the direction of X*. Suppose, by contradiction, that
there exists M > 0 such that ||v]] < M for any (A, v) € C\ {(\M/fo,0)}. From
f(s) >0 for s >0, fo € (0,400) and ||v|| < M, we get that f(v)/v* > p for some
positive constant p and any r € (0,1). By Lemma 4.1, C is also bounded in the
direction of A, which is a contradiction. Suppose, on the contrary, that there exists
u such that (u,0) is a blow up point and g < +oo. Then there exists a sequence
{(An,v)} such that lim A, = g and lim ||lv,|| = 400 as n — 4o0o. Then
n—-+4o00 n—+00

Wy, := vy / ||vy|| satisfies the following equation

1/k
T N2kt 0 n
wz)xn/ ( " sksz/ r2N-1 (f(v 2) d7> ds.
1 N s [[vnl

Similar to that of (4.1), we can get that lim,_ s f (vn(r)) /|[vall® = 0. Since
Ty is compact, then we obtain that for some convenient subsequence w, — wq as
n — 400. So wg = 0, and that contradicts ||wgl|| = 1. O

Theorem 4.3. If fy € (0,+0) and fo = 400, then for any A € (0,\1/fo),
problem (1.1) has at least one radially symmetric negative solution.

Proof. In view of the proof of Theorem 4.1, it suffices to show that C joins
(M/f0,0) to (0,+00). Lemma 4.1 implies that C is bounded in the parameter

direction. By Theorem 1.3, we know that the unique blow up point of C is at A = 0.
O

Theorem 4.4. If fo = 0 and foo € (0,+00), then for any A € (A1/foo, +00),
problem (1.1) has at least one radially symmetric negative solution.

Proof. If (A, v) solves problem (1.3) with ||v|| # 0, then we can get

!
(123 F (—w'(r)F) = MBI e (0,1),

H2k

through dividing problem (1.3) by ||v||?* and setting w = v/|v[|?. Let

S — lwl[?¢ (w/|w]|?) ifw # 0,
0 if w=0,
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where £ is given in the proof of Theorem 4.1.
Now we can write problem (4.2) equably as

(Tszk (—w’(r))k>/ = )\k%ﬁ]\’*l (f!fowk + g(w)) , m€(0,1),
W' (0) = w(1) = 0.

(4.3)

By (4.1), we see that lim, o &(w)/||w|| = 0. For problem (4.3), the same to the
proof of Theorem 1.2, we can get an unbounded continuum D, which emanates from
(M/f,0) such that

D C ({(M1/foe;0)} U (R x PF)).

By the inversion w — w/||w||?> = v, we obtain a continuum C of solutions to problem
(1.3) emanating from (A1/fs,+00). C is either unbounded in the direction of A, or
it meets {(\,0) : A € R}. In combination with fy = 0, just like the discussion of
Theorem 4.2, we know that it is impossible that C meets {(\,0) : A € R}. Thus C
is unbounded in the direction of .

Next we only need to claim that C joins to (+00,0). Suppose on the contrary
that there exists a positive constant p and (A,,v,) € C such that \, — 400 as
n — 4oo and ||v,|| > p for any n € N. Note that v, is strictly decreasing on
[0,1]. Select a 7, € (0, 1] such that v, (z) > p/2 for any = € [0, 7,,]. Combined with
foo € (0,400), it is true that there is a positive constant § such that f (v,) /vX > §
for any x € (0,7,) and all n € N. Suppose (71, ¢1) is the principal eigenpair of

_ k)’ k41 _
(TZN k(fv’) ) :/\kNé])% T,QN 1vk, re (O,Tn),

v'(0) =v(r,) =0.
Then for n large enough and any z € (0,7,), we have

f (vn)
AP > yr
n

According to Lemma 3.5, we know that v, has at least one zero in (0,7,) for
sufficiently large n. This contradiction completes the proof. O

Theorem 4.5. If fo = 0 and foo = 0, then for any X € (A, +00), there exists
A« > 0 such that problem (1.1) has at least two radially symmetric negative solutions.

Proof. Let

sk /nk, s€0,1/n],
75) =4 (f (2fn) — 1/n%) s+ 2/0% — £ (2/n), 5 € (1/n,2/n),
f(s), s €[2/n,+00)

and consider
/ N
(r2¥ = (20 ) = XAZEEN L ), e (0,1),

v'(0) =v(1) = 0.
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Firstly limy, 400 f(s) = f(s), f§ = 1/n and fZ = fso = 0. From Theorem 4.2,
we have a sequence of unbounded continua C,, emanating from (nA1,0) and joining
to (+00,400) := 2. Let C = limsup,,_,,,, Cn. For any (\,v) € C, the definition
of superior limit (see [30]) shows that there exists a sequence (A, v,) € C, such
that (An,vn) — (A, v) as n — 4o00. Then a continuity argument shows that v is a
solution of problem (1.3).

By Proposition 2 of [11], for each € > 0 there exists an Ny such that for every
n > Ny, C, C V. (C), where V. (C) denote the e-neighborhood of C. It follows that

(nA1,+00) C Proj (C,) C Proj (Ve (C)),

where Proj (C,,) is the projection of C,, on R. So (nA; + €, +00) C Proj (C). Further
C\ {oo} #0.
Let
S1 = {(4o00,u) : 0 < |Ju|]| < +o0}.

For any fixed n € N, we claim that C,, N .S; = 0. Otherwise, there exists a sequence
(AmsUm) € Cp, such that (A, vm) — (+00,v,) € S1 with |jv.]| < 4o00. It follows
that ||vn,| < M, for some constant M,, > 0. It implies that ™ (vy,) /vy > &, for
some positive constant é,, and all m € N. From Lemma 4.1 we have that v,, =0
for m large enough, which contradicts the fact of [|v.|| > 0. Thus (U/>7C,) NS =
Ut (€N Sy) = 0. Since C C (U+°°Cn), one has that CNS; = 0. Set

n=1
Sy = {(\,+0) : 0 < A < +o0}.

For any fixed n € N, by fo = 0 and an argument similar to that of Theorem 4.2,
we have that C,, NSy = (). Then reasoning as the above, we have that C N .Sy = (.
Hence, C N (S7 U S3) = (). Taking z* = (+00,0), we have z* € liminf,,_, C,, with
|2*||g« x+ = +00. Therefore, we obtain that C N {oo} = {2, 2*}.

The compactness of Ty implies that (uzgolcn) N B is pre-compact. So Lemma
3.1 of [10] implies that C is connected. By an argument similar to that of Theorem
4.2, we can show that C N ([0, +00) x {0}) = (). Now the desired conclusion can be
deduced from the global structure of C immediately. O

Theorem 4.6. If fo =0 and foo = +00, then for any X € (0,400), problem (1.1)
has at least one radially symmetric negative solution.

Proof. In view of Theorem 1.3, by an argument similar to that of Theorem 4.5
and the conclusion of Theorem 4.3, we can obtain the desired conclusion. O

Theorem 4.7. If fo = +00 and fo = 0, then for any X € (0,400), problem (1.1)
has at least one radially symmetric negative solution.

Proof. Let
nksk, s€[0,1/n],
fr(s) =19 (f(2/n) —1)ns+2— f(2/n), s € (1/n,2/n),
f(s), s €[2/n,+0)

and consider
/ X
(TQN—k- (—v’)k> — )k Né}fr”‘lf”(v), re(0,1),

v'(0) =v(1) = 0.
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Firstly lim, 400 f™(s) = f(5), f =n and f2 = foo = 0. We have from Theorem
4.2 that there is a sequence of unbounded continua C,,, which emanate from (A /n, 0)
and join to (400, 400) 1= 2.

Set z* = (0, 0), then one has z* € liminf,_, . C". Since T is compact, we have
that (U;>{C,) N B is pre-compact. By Lemma 3.5 of [11], C = limsup,,_, , ., Cy, is
connected and z,,z* € C. The conclusion is proved. O

Theorem 4.8. If fo = +00 and foo € (0,+00), then for any A € (0,A\1/fc0),
problem (1.1) has at least one radially symmetric negative solution.

Proof. By combining the conclusion of Theorem 4.1 and the same argument of
Theorem 4.7, the required conclusion can be obtained. O

Theorem 4.9. If fo = 400 and foo = +00, then for any A € (0, \*), there exists
A* > 0 such that problem (1.1) has at least two radially symmetric negative solutions.

Proof. Consider problem (4.4) again. By Theorem 4.3, there exists a sequence
of unbounded continua C,, which bifurcate from (A;/n,0) and join to (0,+00).
Reasoning as that of Theorem 4.7, we have that C := limsup,,_,, ., Cy is connected,
which joins (0,0) to (0,+00). Next we show that C N ((0,+c0) x {0}) = 0. If
there exists a sequence {(\,v,)} with v, € Pt such that nli)rfmA,L =pu > 0 and

lim |lv,|| = 0 as n — +oo. By Lemma 4.1 we have y < +o0o. And fy = +o0

n—-+oo
implies that
)\k f (UTL)

n &
v n

> A for any 7 € (0,1)

and n large enough. From Lemma 3.5, we know that v, must change its sign for n
large enough, which is a contradiction. O

Example 4.1. Consider the specific case of f(s) = s? with ¢ € (0, k.]. According to
Theorem 4.6 or Theorem 4.7, we have that problem (1.1) has at least one radially
symmetric negative solution for any A\ € (0,400). It is just the corresponding
conclusion of [21, Theorem 2] when A = 1. Therefore our Theorem 4.1-4.9 improve
and extend the corresponding results of [21] except the case of ¢ € (ks, k™).

5. Uniqueness

We get from Theorem 1.2 a bifurcation branch C. Now we study its local structure
near (A1,0). Let X =R x Xt, ®(\,v) = v — AT, (v) and

S={n0) eX:®(N0)=0,0Z0] .
For A € R and 0 < s < 400, define an open neighborhood of (A1, 0) in X as follows.
By (A1,0) = {(Av) € X[l +[A = M| < s}

Let X be a closed subset of X satisfying X = span {u1} @& Xo, where ¢ is an
eigenfunction corresponding to A\; with ||¢1|| = 1. According to the Hahn-Banach
theorem, we have [ € X* satisfying

(1) =1and Xg ={ve X :l(v) =0},
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where X* denotes the dual space of X. Note that X* C X, sol € (X1)". Then

K- ={(\v) eX: A= \]| <¢g,l(v) > o]}

&,M

is well defined for any 0 < e < +00 and 0 < n < 1.
Similar to that of [22, Lemma 6.4.1], we can show the following lemma.

Lemma 5.1. Let n € (0,1), there is o > 0 such that for each § : 0 < § < o, it
holds that

(8 {(M.0)}) NB; (A1,0)) € K7,

And there exist s € R and a unique y € Xo such that
v=s¢1 +y and s > n|v||

for each (A, v) € (S\ {(A1,0)}) N (Bs (A1,0)). Further, A = X1 + o(1) and y = o(s)
as s — 0% for these solutions (A, v).

The following are the main results of this section.

Theorem 5.1. Let f € C' (Ry,R,) such that f(s)/s* is decreasing for s > 0.
Then

b'¢ ] b.¢ X
I
I
I
|
|
l
01 M/fo A/ fao A o Xi/fo A0 M/fo A
(a) fo, foo € (0, +00) (b) fo € (0,+00), foo =0 (¢) fo € (0,40), foo = 400
X : X X
|
|
|
|
|
|
l
0 M/ o X 0 Ko X 0 X
(d) fo =0, foo € (0,+00) (e) fo=foo =0 (f) fo =0, foo = 400
X X : X
|
|
I
I
|
: |
I I
0 T M/fe X O Iy X
(g) fo =400, foo =0 (h) fo = +00, foo € (0,00) (i) fo =400, foo = +o0

Figure 1. Bifurcation diagrams of Theorems 4.1-4.9 and Theorem 5.1.
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(i) if fo € (0,400) and foo = 0, problem (1.1) has a unique radially symmet-
ric negative solution for any A € (M\1/fo,+00) and has only the trivial radially
symmetric solution for any X € (0, A1/ fol;

(7) if fo € (0,+00) and foo € (0,+00) with foo # fo, problem (1.1) has a unique
radially symmetric negative solution for any A € (A1/fo, M/ feo) and has only the
trivial radially symmetric solution for any A € (0, A1/ fo] U [AM1/ foo, +00);

(iii) if fo = 400 and fs € (0,400), problem (1.1) has a unique radially sym-
metric negative solution for any A € (0,\1/fs) and has only the trivial radially
symmetric solution for any X € [A\1/ feo, +00];

(iv) if fo = 400 and fo = 0, problem (1.1) has a unique radially symmetric
negative solution for any A € (0, +00).

Let
Y = {veC?*0,1):v'(0) =v(1) =0}.

For any ¢ € Y and positive solution v of problem (1.3), we can calculate that the
linearized eigenvalue problem of (1.3) at the direction ¢ is

<_¢/T2N—k (_,Ul)k—l)/ _ )k z\lzczcljngquf/(v)qs = L4, re(0,1),
¢'(0) = (1) = 0.

Next is the introduction to the stability property of solutions.

Suppose v is a solution of problem (1.3). The linear stability of v can be de-
termined by the linearized eigenvalue problem (5.1). If all eigenvalues of problem
(5.1) are positive, then we call v is stable, otherwise we call it unstable.

The Morse index M (v) of v is defined as the number of negative eigenvalues of
problem (5.1). Call v is degenerate if 0 is an eigenvalue of problem (5.1), otherwise
it is non-degenerate.

(5.1)

Lemma 5.2. If f satisfies the conditions of Theorem 5.1, then any solution v of
problem (1.3) is stable and non-degenerate, and their Morse index are M (v) = 0.

Proof. Let v be a solution of problem (1.3), and let (1, ¢1) be the corresponding
principal eigenpair of problem (5.1) with ¢1 > 0 in (0,1). Notice that v and ¢
satisfy

(r2N—k (—v’)k)/ kN2 r2N=1f(v) =0, r € (0,1)
C]k\f - b b b

v (0)=wv(1)=0

(5.2)

and
1\’ k41 "
(—80’17”2ka (—v’)k 1) B )\k]\ET%T2N71f/(U)S01 = By re (0,1),

©1(0) = 1(1) = 0.

(5.3)

By multiplying the first equation of problem (5.3) by —wv, and the first equation of
problem (5.2) by —¢1, subtracting and then integrating, we get that

! A N2k+L L
Ml/ prvdr = —or / 2N =Yoo (kf(v) — f'(v)v) dr.
0 N 0

Note that f'(s) < kf(s)/s and f'(s) #Z kf(s)/s for s > 0, and we know v > 0 and
©1 > 01in (0,1), so py > 0. It follows that v is stable. O
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Next we give the proof of Theorem 5.1.

Proof of Theorem 5.1. (i) Review C in Theorem 4.2, we know from Lemma
5.1 that C near (A1,0) is a curve (A(s),v(s)) = (A1 +o0(1),s¢1 + o(s)). Let F :
R x Xt — X* be defined as

k+1
F()\,U) _ (T2N—k (_v/)k>/ _ kNZTTQN—lf(U).
Cx
It follows from Lemma 5.2 that any solution v of problem (1.3) is stable. So, at any
solution (A*,v*), we can use the Implicit Function Theorem to F'(A,v) = 0, and all
the solutions of F'(A,v) = 0 near (A\*,v*) are on a curve (A, v(A)) with |A — A*| <e
for some small € > 0. Hence, the unbounded continuum C is a curve.

We claim that any solution uy is decreasing with respect to A. That is if ()\1, vl)
and ()\2, vg) are two positive solution pairs of problem (1.3) and A!' < A%, we need
show v; < we. Suppose, on the contrary, that Irg € [0,1) : vy (rg) > va (rg). Set I
is the connected component of {r € [0,1) : v1 (r) > v (r)} containing ry.

For the case of 0 € I, there exists r1 > 0 such that I = [0,71). Using the
complex Hessian identity, we can get that

1 k+1 2N—k (_,1\k !
/ (Ul ! : (zva)” v 2Nk (—U’l)k> dr = Ly + Lo,
0

Uy
where
T1 N2k:+1
L, :/ <)\12€f(1;2) . Az;f(il)) o T2N71v11€+1 dr
0 Vg vy N
and
1 _ 7\ kt1 VAN
Ly = / PNk ((—U’l)’““ +k (”“’2> — (k+ Lyofo] < “2> ) dr.
0 V2 Vo
Further

0. (5.4)

It follows that L; + Ly < 0, then Ls > 0 from the Young inequality. Combine
the monotonicity of f(s)/s* and our assumptions, we get that L; > 0, which is a
contradiction.

For the case of 1 € I, there exists 7o > 0 such that I = (r3,1). Using the
complex Hessian identity again, we get that

1 k+1 2N—Fk 1\k '
v T —.
/ ( ) _ww—k(—m’“) r=Ti+Lh,  (59)
T2

Vg
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where
1 k+1
[ (v2) f(v1)\ N2 -
L’lz/ ()\’2’C " — Ak F oF PN =L g
T2 2 1 N
and

1 1 ot k+1 ! k
Ly = / L ) g —2 — (k4 1)vkv) 2 dr.
T2 (%) V2

We can see from the argument of Lemma 3.4 that the left-hand side of (5.5) is equal
to

=01 (r2) 13N (b (r2))" = (o} (r2))") <0

Then a contradiction like the one above emerges.
For the case where I does not contain 0 and 1, there exist r3, 74 € (0,1) such
that I = (r3,74). We use the complex Hessian identity once again and obtain that

/
T4 k+1, 2N—k \k
o (—vh) k
1 2 2N —k / _Tn "
/ ( % —ur (—v1)" | dr =Ly + Ly,
T3

Vg
where
"k S (va) fo)\ N2FHL o
Ly :/ ()\g F — ¥ F oF r2N =Lkl gy
73 2 1 N
and
r4 _ 7N\ k+1 N\ F
Ly :/ r2N-k <(—U/1)k+1 +k <1:}12U2> — (k4 1)vko} (1;12) ) dr.
T3
Further

/
ra [ k+12N—k (7,0/)’C 3 k
3
KLk Bl (K
_ 2Nk (”1(;’2)_1}1 (_,le)k> () — 72N+ (1’1(;’2)_1}1 (_@’1)’6> (r3)

= vr () i ()" (ra) = o))" (r0) ) —on (r) 137 ()" () = o) (7))

Then reasoning as the above, we can obtain a contradiction again.

Next we prove the uniqueness of radially symmetric negative of problem (1.1).
Suppose on the contrary that there exist two solutions v; and ve with v; € C for
A € (A1/fo,+00). for € > 0, take (A —g,ua_¢), (A +¢&,vx4c) € C, then var. — vy
as € — 0. By the monotonicity of ve with respect to A, we get vy— < va < Uyje.
Then vy = v;.

Through the same discussion as above, we know that problem (1.1) with A\ =
A1/ fo has only the trivial solution. So next we only need to show that problem (1.1)
has only the trivial solution for any A € (0, A1/ fo). Suppose, by contradiction, that
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problem (1.1) has a radially symmetric negative solution u for some A € (0, A1/ fo).
Then

/
(TQka (_v/)k) = )\kNéi]:fl’l"QNil f(;:) Ukv € (07 1)7

N v

v'(0) = v(1) =0,

where v = —u. From A < A1/ f, it is clear that

According to Lemma 3.5, 91 changes its sign. This is a contradiction.

(ii) If w is a radially symmetric negative solution of problem (1.1) for a
A € (A1/foo, +00), then

/ :
r2N—k (_U/)k) _ )\kNé’:kv“rQNq%vk’ € (0,1),

Since A > A1/ fs, we have that

AE f(v) S\

vk L

By Lemma 3.5, v changes its sign, which is a contradiction. The next proof is the
same as that of (i).

(iii) From (ii), we know that problem (1.1) has only the trivial solution for any
A € [A1/fs, +0). The existence can be got from Theorem 4.8. The uniqueness
can be obtained similarly as that of (i).

(iv) In view of Theorem 4.7 and the argument of (i), the desired conclusion can
be obtained immediately. O

See Figure 1 for bifurcation diagrams of Theorems 4.1-4.9 and Theorem 5.1.

For Example 4.1 with ¢ € (0,%), Theorem 5.1 implies that problem (1.1) has
a unique radially symmetric negative solution, which improves the corresponding
results of [21, Theorem 2| even in the case of A = 1, where only the existence was
proved. In addition, if ¢ € (k, k.), Theorem 4.6 combining with Corollary 4.5 of [29]
shows that problem (1.1) has a unique radially symmetric negative solution.
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