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STABILITY OF A DELAYED ADAPTIVE
IMMUNITY HIV INFECTION MODEL WITH
SILENT INFECTED CELLS AND CELLULAR

INFECTION

A. M. Elaiw1,2,† and N. H. AlShamrani1,3

Abstract In this paper we formulate a mathematical model to investigate
the within-host HIV dynamics under the effect of both antibody and Cyto-
toxic T lymphocytes (CTL) immune responses. The model consists of five
components: healthy CD4+T cells, silent infected cells, active infected cells,
free HIV particles, CTLs and antibodies. The healthy CD4+T cells can be
infected when they are contacted by (i) free HIV particles, (ii) active infected
cells, and (iii) silent infected cells. The model is an improvement of some exist-
ing HIV infection models with both virus-to-cell (VTC) and cell-to-cell (CTC)
transmissions by incorporating the incidence between the silent infected cells
and healthy CD4+T cells. The well-posedness of the model is established by
showing that the solutions of the model are nonnegative and bounded. We
have shown that the model has five equilibria and their existence is governed
by five threshold parameters. We prove the global asymptotic stability of all
equilibria by utilizing Lyapunov function and LaSalle’s invariance principle.
We have presented numerical simulations to illustrate the theoretical results.
We have studied the effects of CTC transmission and time delays on the dy-
namical behavior of the system. We have shown that inclusion of time delay
can significantly increase the concentration of the uninfected CD4+ T cells and
reduce the concentrations of the infected cells and free HIV particles. While
the inclusion of CTC transmission decreases the concentration of the unin-
fected CD4+ T cells and increases the concentrations of the infected cells and
free HIV particles.

Keywords HIV infection, cell-to-cell transmission, global stability, silent in-
fected cells, adaptive immune response, Lyapunov function, intracellular delay.
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1. Introduction
Acquired immunodeficiency syndrome (AIDS) is one of dangerous human diseases
which are caused by human immunodeficiency virus (HIV). According to global
health observatory (GHO, 2018) data of HIV/AIDS published by WHO [55] that,
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globally, 37.9 million people living with HIV in 2018, 1.7 million people newly
infected with HIV in 2018 and 770,000 HIV-related death 2018. HIV is a retro-
virus that infects the healthy CD4+T cells which play an important role in immune
system. Cytotoxic T lymphocytes (CTLs) and antibodies are the two arms of
the immune system response to control the HIV infection for long period (10-15
years). However, during this period the concentration of the healthy CD4+T cells
declines. The concentration of the CD4+T cells in uninfected individual is 1000
cells/mm3. When the concentration of the CD4+T cells reaches below a critical
value of 200 cells/mm3, the individual is said to have progressed to AIDS. During
the last decades, mathematical modeling of within-host HIV infection has witnessed
a significant development [46]. Stability analysis has also become one of the very
important and helpful methods for better understanding the within-host HIV dy-
namics (see e.g. [5, 7, 8, 10,15–17,25,28,33,41]).

During the recent years, great efforts have been made to formulate and analyze
within-host HIV dynamics models under the influence of CTL immune response (see
e.g. [2,11,35,45,48,53]) or antibody immune response (see e.g. [19,22,24,26,27,37,
44]). In 2003, Wodarz [56] has presented a virus dynamics model which considers
the effect of antibodies together with CTL immune response. Dubey etc [9] have
extended the model in [56] by adding a logistic growth term which represents the
proliferation of healthy CD4+T cells. Moreover, the model in [9] incorporates a com-
bination of two classes of antiviral treatment, protease inhibitor and reverse tran-
scriptase. Su at al. [50] have developed the model in [56] by considering Beddington-
DeAngelis incidence rate to replace the mass-action incidence rate. Yousfi etc [59]
have suggested a model to describe the HBV dynamics. In [9,50,56,59], it has been
assumed that infection processes are instantaneous. However, it has been estimated
that the time between the HIV enters a target cell until producing new HIV particles
is about 0.9 days [47]. Therefore, more realistic virus dynamics model when time
delay is incorporated. Yan and Wang [58] have extended the model Wodarz [56] by
incorporating a discrete time delay for production of active infected cells as:

Ẇ (t) = ρ− αW (t)− ηN(t)W (t),

Ṁ(t) = ηe−ℏφN(t− φ)W (t− φ)− aM(t)− µP (t)M(t),

Ṅ(t) = bM(t)− εN(t)−ϖT (t)N(t),

Ṗ (t) = σP (t)M(t)− πP (t),

Ṫ (t) = τT (t)N(t)− ζT (t),

(1.1)

where W (t), M(t), N(t), P (t) and T (t) are the the concentrations of healthy CD4+T
cells, active HIV-infected CD4+T cells, free HIV particles, HIV-specific CTLs and
HIV-specific antibodies at time t, respectively. The healthy CD4+T cells are pro-
duced at specific constant rate ρ. The term ηWN refers to the rate at which new
infectious appears by VTC contact between free HIV particles and healthy CD4+T
cells. The term µPM is the killing rate of active HIV-infected cells due to their spe-
cific CTLs immunity. The proliferation rate for effective HIV-specific CTLs is given
by σPM . The proliferation rate for HIV-specific antibodies is given by τTN . The
free HIV particles are generated at rate bM and neutralized from the plasma due to
HIV-specific antibodies at rate ϖTN . The fraction e−ℏφ denotes the survive rate of
infected cells during the delay period φ. Wang and Liu [54] have developed model
(1.1) by considering saturated incidence rate ηNW

1+ωN , where ω > 0. Model (1.1)
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assume that the time delay is constant which is not biologically realistic. Wang
etc [52] have extended model (1.1) by incorporating two types of distributed time
delays.

In [9, 23, 47, 50, 52, 54, 56, 58, 59] it was assumed that the infection occurs due
to virus-to-cell transmission (VTC). It has been reported in several works that the
healthy CD4+T cells can also be infected due to cell-cell contact known as cell-
to-cell transmission (CTC) (see e.g. [36, 38]). Therefore, CTC transmission plays
an important role in the HIV infection process even during the antiviral treatment
[49]. The CTC transmission has been incorporated into viral infection models by
including: (i) CTL immune response [6,51], (ii) antibody immune response, [14,32,
43] and (iii) both CTL and antibody immune responses [18,20,30,42].

It is known that highly active anti-retroviral therapy can suppress HIV repli-
cation to a low level but cannot enucleate the HIV from the body. One of the
main reasons is the presence of silent (latent) CD4+T infected cells where the HIV
provirus can reside [57]. Silent CD4+T infected cells live long, but they can be ac-
tivated to produce new HIV particles. In a very recent work [1], it has been shown
that both silent and active infected CD4+T cells can infect the healthy CD4+T cells
through CTC mechanism. In all of the above mentioned works, it has been assumed
that the CTC transmission is only due to the active infected CD4+T cells. In a very
recent work, Elaiw and Alshamrani [21] have investigated an HIV dynamics model
with silent and active CTC transmissions and CTL immune response. In [21] the
antibody immune response has not been included.

In the present paper we propose an HIV infection model by including (i) both
CTL and antibody immune responses, (ii) three types of distributed time delays,
(iii) both VTC and CTC transmissions. The CTC transmission is due to the contact
of healthy CD4+T cells with silent or active infected cells. The well-posedness of the
model is investigated by establishing that the solutions of the model are nonnegative
and bounded. We derive five threshold parameters which determine the existence
and stability of the five equilibria. Global stability of all equilibria is proven by
formulating Lyapunov functions and utilizing LaSalle’s invariance principle. We
perform some numerical simulations to illustrate the theoretical results.

2. Model formulation

We formulate a distributed delay HIV infection model with both CTL and anti-
body immune responses. We assume that the HIV virions can replicate by two
mechanisms VTC and CTC transmissions. The CTC infection has two sources, (i)
the contact between healthy CD4+T cells and silent infected CD4+T cells, and (ii)
the contact between healthy CD4+T cells and active infected CD4+T cells. Under
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these assumptions we propose by the following model:



Ẇ (t) = ρ− αW (t)− η1W (t)N(t)− η2W (t)U(t)− η3W (t)M(t),

U̇(t)=
κ1∫
0

Λ1(φ)e
−ℏ1φW (t−φ)[η1N(t−φ)+η2U(t−φ)+η3M(t−φ)]dφ−(λ+γ)U(t),

Ṁ(t) = λ
κ2∫
0

Λ2(φ)e
−ℏ2φU(t− φ)dφ− aM(t)− µP (t)M(t),

Ṅ(t) = b
κ3∫
0

Λ3(φ)e
−ℏ3φM(t− φ)dφ− εN(t)−ϖT (t)N(t),

Ṗ (t) = σP (t)M(t)− πP (t),

Ṫ (t) = τT (t)N(t)− ζT (t),

(2.1)
where W (t), U(t), M(t), N(t), P (t) and T (t) are the the concentrations of healthy
CD4+T cells, silent HIV-infected CD4+T cells, active HIV-infected CD4+T cells,
free HIV particles, HIV-specific CTLs and HIV-specific antibodies at time t, re-
spectively. The HIV virions can replicate using VTC and CTC transmissions. The
healthy CD4+T cells are produced at specific constant rate ρ. The term η1WN
refers to the rate at which new infectious appears by VTC contact between free
HIV particles and healthy CD4+T cells. The healthy CD4+T cells are contacted
with silent infected CD4+T cells and active infected CD4+T cells and become in-
fected due to CTC transmission at rates η2WU and η3WM , respectively. The term
λU is the rate of silent HIV-infected cells that become actively HIV-infected cells.
The term µPM is the killing rate of active HIV-infected cells due to their specific
CTLs immunity. The proliferation rates for effective HIV-specific CTLs is given by
σPM . The proliferation rate for HIV-specific antibodies which is proportional to
the numbers of HIV particles and HIV-specific antibodies is given by τTN . The
free HIV particles are generated at rate bM and neutralized from the plasma due
to HIV-specific antibodies at rate ϖTN . The factor Λ1(φ)e

−ℏ1φ represents the
probability that healthy CD4+T cells contacted by HIV particles at time t−φ sur-
vived φ time units and become silent infected at time t. The term Λ2(φ)e

−ℏ2φ is
the probability that silent HIV-infected CD4+T cells survived φ time units before
transmitted to be active at time t. Moreover, the factor Λ3(φ)e

−ℏ3φ demonstrates
the probability of new immature HIV particles at time t− φ lost φ time units and
become mature at time t. Here ℏi, i = 1, 2, 3 are positive constants. The delay pa-
rameter φ is random taken from a probability distribution function Λi(φ) over the
time interval [0, κi] , i = 1, 2, 3, where κi is the limit superior of this delay period.
The function Λi(φ), i = 1, 2, 3 satisfies Λi(φ) > 0 and

κi∫
0

Λi(φ)dφ = 1 and
κi∫
0

Λi(φ)e
−uφdφ < ∞,

where u > 0. Let us denote

H̄i(φ) = Λi(φ)e
−ℏiφ and Hi =

κi∫
0

H̄i(φ)dφ,
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where i = 1, 2, 3. Thus 0 < Hi ≤ 1, i = 1, 2, 3. The initial conditions of system (2.1)
is given by:

W (x) = ϵ1(x), U(x) = ϵ2(x), M(x) = ϵ3(x), N(x) = ϵ4(x), P (x) = ϵ5(x),

T (x) = ϵ6(x), ϵj(x) ≥ 0, x ∈ [−κ, 0], j = 1, 2, ..., 6, κ = max{κ1, κ2, κ3}, (2.2)

where ϵj(x) ∈ C([−κ, 0],R≥0), j = 1, 2, ..., 6 and C = C([−κ, 0],R≥0) is the Banach
space of continuous functions mapping the interval [−κ, 0] into R≥0 with norm
∥ϵj∥ = sup

−κ≤m≤0
|ϵj(m)| for ϵj ∈ C. Therefore, system (2.1) with initial conditions

(2.2) has a unique solution by using the standard theory of functional differential
equations [31,40]. All parameters and their definitions are summarized in Table 1.

Table 1. Parameters of model (2.1) and their interpretations.

Symbol Biological meaning
ρ Recruitment rate for the susceptible CD4+T cells
α Natural death rate constant for the susceptible CD4+T cells

η1
Virus-cell incidence rate constant between free HIV particles
and susceptible CD4+T cells

η2
Cell-cell incidence rate constant between silent HIV-infected
CD4+T cells and susceptible CD4+T cells

η3
Cell-cell incidence rate constant between active HIV-infected
CD4+T cells and susceptible CD4+T cells

γ Death rate constant of silent HIV-infected cells
a Death rate constant of active HIV-infected cells

µ
Killing rate constant of active HIV-infected cells due to
their specific CTL-mediated immunity

λ
Transmission rate constant of silent HIV-infected cells
that become active HIV-infected cells

b Generation rate constant of new HIV particles
ε Death rate constant of free HIV particles
σ Proliferation rate constant for effective HIV-specific CTLs
π Decay rate constant of HIV-specific CTLs

ϖ
Neutralization rate constant of HIV particles due to HIV-specific
antibodies immunity

τ Proliferation rate constant of HIV-specific antibodies
ζ Decay rate constant of HIV-specific antibodies
φ Delay parameter
Λi(φ) Probability distribution function

3. Well-posedness of solutions
Proposition 3.1. All solutions of system (2.1) with initial conditions (2.2) are
nonnegative and ultimately bounded.
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Proof. First, we show the nonnegativity of solutions. From the first Eq. of system
(2.1), we have Ẇ |W=0= ρ > 0, then W (t) > 0 for all t ≥ 0. Moreover, the rest
Eqs. of system (2.1) give us the following

U(t) = ϵ2(0)e
−(λ+γ)t +

t∫
0

e−(λ+γ)(t−κ)

κ1∫
0

H̄1(φ)W (κ − φ)

× [η1N(κ − φ) + η2U(κ − φ) + η3M(κ − φ)] dφdκ ≥ 0,

M(t) = ϵ3(0)e
−

∫ t
0
(a+µP (y))dy + λ

t∫
0

e−
∫ t
κ(a+µP (y))dy

κ2∫
0

H̄2(φ)U(κ − φ)dφdκ ≥ 0,

N(t) = ϵ4(0)e
−

∫ t
0
(ε+ϖT (y))dy + b

t∫
0

e−
∫ t
κ(ε+ϖT (y))dy

κ3∫
0

H̄3(φ)M(κ − φ)dφdκ ≥ 0,

P (t) = ϵ5(0)e
−

∫ t
0
(π−σM(y))dy ≥ 0,

T (t) = ϵ6(0)e
−

∫ t
0
(ζ−τN(y))dy ≥ 0,

for all t∈ [0, κ]. Thus, by a recursive argument, we get W (t), U(t),M(t), N(t), P (t)≥
0 for all t ≥ 0. Hence, the solutions of system (2.1) satisfy
(W (t), U(t),M(t), N(t), P (t)) ∈ R6

≥0 for all t ≥ 0. Next, we establish the bound-
edness of the model’s solutions. The nonnegativity of the model’s solution implies
that lim supt→∞ W (t) ≤ ρ

α . To show the ultimate boundedness of U(t) we let

Ψ1(t) =
κ1∫
0

H̄1(φ)W (t− φ)dφ+ U(t), then

Ψ̇1(t) =

κ1∫
0

H̄1(φ) [ρ− αW (t− φ)] dφ− (λ+ γ)U(t)

= ρH1 − α

κ1∫
0

H̄1(φ)W (t− φ)dφ− (λ+ γ)U(t)

≤ ρ− ϕ1

 κ1∫
0

H̄1(φ)W (t− φ)dφ+ U(t)

 = ρ− ϕ1Ψ1(t),

where ϕ1 = min{α, λ+ γ}. It follows that, lim supt→∞ Ψ1(t) ≤ Ω1, where Ω1 = ρ
ϕ1

.

Since
κ1∫
0

H̄1(φ)W (t − φ)dφ and U(t) are nonnegative, then lim supt→∞ U(t) ≤ Ω1.

Moreover, we let Ψ2(t) = M(t) + µ
σP (t), then

Ψ̇2(t) = λ

κ2∫
0

H̄2(φ)Uφdφ− aM(t)− µπ

σ
P (t) ≤ λH2Ω1 − aM(t)− µπ

σ
P (t)

≤ λΩ1 − aM(t)− µπ

σ
P (t) ≤ λΩ1 − ϕ2

(
M(t) +

µ

σ
P (t)

)
= λΩ1 − ϕ2Ψ2(t),

where ϕ2 = min{a, π}. It follows that, lim supt→∞ Ψ2(t) ≤ Ω2, where Ω2 =
λΩ1

ϕ2
.

Since M(t) ≥ 0 and P (t) ≥ 0, then lim supt→∞ M(t) ≤ Ω2 and lim supt→∞ P (t) ≤
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Ω3, where Ω3 = σ
µΩ2. Finally, let Ψ3(t) = N(t) + ϖ

τ T (t), then

Ψ̇3(t) = b

κ3∫
0

H̄3(φ)M(t− φ)dφ− εN(t)− ϖζ

τ
T (t) ≤ bH3Ω2 − εN(t)− ϖζ

τ
T (t)

≤ bΩ2 − εN(t)− ϖζ

τ
T (t) ≤ bΩ2 − ϕ3

(
N(t) +

ϖ

τ
T (t)

)
= bΩ2 − ϕ3Ψ3(t),

where ϕ3 = min{ε, ζ}. It follows that, lim supt→∞ Ψ3(t) ≤ Ω4, where Ω4 =
bΩ2

ϕ3
.

Since N(t) ≥ 0 and T (t) ≥ 0, then lim supt→∞ N(t) ≤ Ω4 and lim supt→∞ T (t) ≤
Ω5, where Ω5 = τ

ϖΩ4. This complete the proof and insures the ultimate bounded-
ness of all variables contained in the positively invariant region Ξ.

According to Proposition 3.1 we can show that the region

Ξ =
{
(W,U,M,N, P, T ) ∈ C6

≥0 : ∥W∥ ≤ Ω1, ∥U∥ ≤ Ω1, ∥M∥ ≤ Ω2, ∥P∥ ≤ Ω3,

∥N∥ ≤ Ω4, ∥T∥ ≤ Ω5

}
is positively invariant with respect to system (2.1).

4. Equilibria
In this section, we derive two threshold parameters which guarantee the existence
of the equilibria of the model. Let (W,U,M,N, P, T ) be any equilibrium of system
(2.1) satisfying the following equations:

0 = ρ− αW − η1WN − η2WU − η3WM, (4.1)
0 = H1 (η1WN + η2WU + η3WM)− (λ+ γ)U, (4.2)
0 = λH2U − aM − µPM, (4.3)
0 = bH3M − εN −ϖTN, (4.4)
0 = (σM − π)P, (4.5)
0 = (τN − ζ)T. (4.6)

The straightforward calculation finds that system (2.1) admits five equilibria.

(I) It is obvious that system (2.1) has an infection-free equilibrium,
Ð0 = (W0, 0, 0, 0, 0, 0), where W0 = ρ/α. This case describes the situation of
healthy state where the HIV infection is absent.

(II) When P = T = 0, we have the chronic HIV infection equilibrium with inactive
immune response, Ð1 = (W1, U1,M1, N1, 0, 0), where

W1 =
aε (γ + λ)

H1 [aεη2 + λH2 (bη1H3 + εη3)]
,

U1 =
aεα

aεη2 + λH2 (bη1H3 + εη3)

[
W0H1 {aεη2 + λH2 (bη1H3 + εη3)}

aε (γ + λ)
− 1

]
,

M1 =
εαλH2

aεη2 + λH2 (bη1H3 + εη3)

[
W0H1 {aεη2 + λH2 (bη1H3 + εη3)}

aε (γ + λ)
− 1

]
,
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N1 =
αbλH2H3

aεη2 + λH2 (bη1H3 + εη3)

[
W0H1 {aεη2 + λH2 (bη1H3 + εη3)}

aε (γ + λ)
− 1

]
.

Therefore, Ð1 exists when

W0H1 [aεη2 + λH2 (bη1H3 + εη3)]

aε (γ + λ)
> 1.

At the equilibrium Ð1 the chronic HIV infection persists while the immune
response is unstimulated. The basic HIV reproduction number of model (2.1)
is given as:

ℜ0 =
W0H1 [aεη2 + λH2 (bη1H3 + εη3)]

aε (γ + λ)
= ℜ01 + ℜ02 + ℜ03,

where

ℜ01 =
W0λbη1H1H2H3

aε (γ + λ)
, ℜ02 =

W0η2H1

γ + λ
, ℜ03 =

W0λη3H1H2

a (γ + λ)
.

The parameter ℜ0 determines whether or not the infection will chronic.
In fact, ℜ01 determines the average number of secondary HIV infected cells
caused by free HIV particles due to VTC transmission, while ℜ02 and ℜ03 de-
termine the average numbers of secondary HIV infected cells caused by silent
and active HIV-infected CD4+T cell, respectively, due to CTC transmission.
In terms of ℜ0, we can write

W1 =
W0

ℜ0
, U1 =

aεα

aεη2 + λH2 (bη1H3 + εη3)
(ℜ0 − 1) ,

M1 =
εαλH2

aεη2 + λH2 (bη1H3 + εη3)
(ℜ0 − 1) ,

N1 =
αbλH2H3

aεη2 + λH2 (bη1H3 + εη3)
(ℜ0 − 1) . (4.7)

(III) When P ̸= 0, T = 0, we consider the chronic HIV infection equilibrium with
only active CTL-mediated immune response, Ð2 = (W2, U2,M2, N2, P2, 0),
where

W2 =
ρεσ

bπη1H3+ε (πη3+ασ+ση2U2)
, M2 =

π

σ
,

N2 =
bπH3

εσ
, P2=

a

µ

(
λσH2U2

aπ
−1

)
,

(4.8)

and U2 satisfies the quadratic equation

ÃU2
2 + B̃U2 + C̃ = 0, (4.9)

where

Ã = εη2σ (γ + λ) ,

B̃ = π (bη1H3 + εη3) (γ + λ) + εσ [α (γ + λ)− η2ρH1] ,

C̃ = −πρH1 (bη1H3 + εη3) . (4.10)
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Since Ã > 0 and C̃ < 0, then B̃2 − 4ÃC̃ > 0 and there are two distinct real
roots of Eq. (4.9). The positive root is given by

U2 =
−B̃ +

√
B̃2 − 4ÃC̃

2Ã
. (4.11)

It follows that W2 > 0 and P2 > 0 only when λσH2U2

aπ > 1. We define the HIV
specific CTL-mediated immunity reproductive ratio as follows:

ℜ1 =
λσH2U2

aπ
.

Thus, P2 = a
µ (ℜ1 − 1). Therefore, Ð2 exists when ℜ1 > 1. The parameter ℜ1

determines whether or not the HIV-specific CTL-mediated immune response
is stimulated.

(IV) When P = 0, T ̸= 0, we consider the chronic HIV infection equilibrium with
only active antibody immune response, Ð3 = (W3, U3,M3, N3, 0, T3), where

W3 =
aρτ

a (η1ζ + ατ) + τ (aη2 + λη3H2)U3
, M3 =

λH2U3

a
, N3 =

ζ

τ
,

T3 =
ε

ϖ

(
τbλH2H3U3

aεζ
− 1

)
, (4.12)

and U3 satisfies the quadratic equation

ÂU2
3 + B̂U3 + Ĉ = 0,

where

Â = τ (aη2+λη3H2) (γ + λ), B̂=a(γ + λ)(ζη1+ατ)−ρτH1(aη2 + λη3H2),

Ĉ = −aρζη1H1. (4.13)

Since Â > 0 and Ĉ < 0, then B̂2 − 4ÂĈ > 0 and there are two distinct real
roots of Eq. (4.13). The positive root is given by

U3 =
−B̂ +

√
B̂2 − 4ÂĈ

2Â
. (4.14)

It follows that W3 > 0, M3 > 0 and T3 > 0 only when τbλH2H3U3

aεζ
> 1. The

HIV-specific antibody immune response reproductive ratio is stated as:

ℜ2 =
τbλH2H3U3

aεζ
.

Thus, T3 =
ε

ϖ
(ℜ2 − 1). The parameter ℜ2 determines whether or not the

HIV-specific antibody immune response is stimulated.
(V) When P ̸= 0, T ̸= 0, we consider the chronic HIV infection equilibrium with

active CTL-mediated and antibody immune responses,
Ð4 = (W4, U4,M4, N4, P4, T4), where

W4 =
ρστ

η1ζσ + πη3τ + στ (α+ η2U4)
, M4 =

π

σ
, N4 =

ζ

τ
,
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P4 =
a

µ

(
λσH2U4

aπ
− 1

)
, T4 =

ε

ϖ

(
τπbH3

σεζ
− 1

)
,

and U4 satisfies the quadratic equation

ĀU2
4 + B̄U4 + C̄ = 0,

where

Ā = στη2(γ + λ), B̄ = (γ + λ) (η1ζσ + πη3τ + στα)− ρστη2H1,

C̄ = −ρH1 (η1ζσ + πη3τ) . (4.15)

Since Ā > 0 and C̄ < 0, then B̄2 − 4ĀC̄ > 0 and there are two distinct real
roots of Eq. (4.13). The positive root is given by

U4 =
−B̄ +

√
B̄2 − 4ĀC̄

2Ā
.

It follows that W4 > 0, P4 > 0 and T4 > 0 only when λσH2U4

aπ > 1 and
τπbH3

σεζ
> 1. The HIV-specific CTL-mediated immune competitive reproduc-

tive ratio and the HIV-specific antibody immune competitive reproductive
ratio of system (2.1) are stated respectively as:

ℜ3 =
λσH2U4

aπ
, ℜ4 =

τπbH3

σεζ
.

Thus, P4 = a
µ (ℜ3 − 1) , T4 =

ε

ϖ
(ℜ4 − 1). The parameters ℜ3 and ℜ4 deter-

mine whether or not the HIV-specific CTL-mediated and antibody immune
responses are stimulated.

The threshold parameters are given as follows:

ℜ0 =
W0H1 [aεη2 + λH2 (bη1H3 + εη3)]

aε (γ + λ)
, ℜ1 =

λσH2U2

aπ
,

ℜ2 =
τbλH2H3U3

aεζ
, ℜ3 =

λσH2U4

aπ
, ℜ4 =

τπbH3

σεζ
.

5. Global stability analysis
In this section we prove the global asymptotic stability of all equilibria by con-
structing Lyapunov functional following the method presented [34, 39]. Define
𝟋(x) = x−1−lnx. Denote (W,U,M,N, P, T ) = (W (t), U(t),M(t), N(t), P (t), T (t))
and (Wφ, Uφ,Mφ, Nφ) = (W (t− φ), U(t− φ),M(t− φ), N(t− φ)).

Theorem 5.1. If ℜ0 ≤ 1, then Ð0 is globally asymptotically stable (G.A.S).

Proof. Constructing a Lyapunov functional candidate Θ0(W,U,M,N, P, T ) as:

Θ0 =W0𝟋
(

W

W0

)
+

1

H1
U+

W0 (bη1H3+εη3)

aε
M+

η1W0

ε
N+

µW0 (bη1H3+εη3)

σaε
P
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+
ϖη1W0

τε
T +

1

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

W (κ) [η1N(κ) + η2U(κ) + η3M(κ)] dκdφ

+
λW0 (bη1H3+εη3)

aε

κ2∫
0

H̄2(φ)

t∫
t−φ

U(κ)dκdφ+
bη1W0

ε

κ3∫
0

H̄3(φ)

t∫
t−φ

M(κ)dκdφ.

It is seen that, Θ0(W,U,M,N, P, T ) > 0 for all W,U,M,N, P, T > 0, and Θ0 has
a global minimum at Ð0. We calculate dΘ0

dt along the solutions of model (2.1) as:

dΘ0

dt
=

(
1− W0

W

)
(ρ− αW − η1WN − η2WU − η3WM)

+
1

H1

 κ1∫
0

H̄1(φ)Wφ {η1Nφ + η2Uφ + η3Mφ} dφ− (λ+ γ)U


+

W0 (bη1H3 + εη3)

aε

λ κ2∫
0

H̄2(φ)Uφdφ− aM − µPM


+

η1W0

ε

b κ3∫
0

H̄3(φ)Mφdφ− εN −ϖTN


+

µW0 (bη1H3 + εη3)

σaε
(σPM − πP ) +

ϖη1W0

τε
(τTN − ζT )

+
1

H1

κ1∫
0

H̄1(φ) [W {η1N + η2U + η3M} −Wφ {η1Nφ + η2Uφ + η3Mφ}] dφ

+
λW0 (bη1H3+εη3)

aε

κ2∫
0

H̄2(φ) [U−Uφ] dφ+
bη1W0

ε

κ3∫
0

H̄3(φ) [M−Mφ] dφ.

(5.1)

Collecting terms of Eq. (5.1), we get

dΘ0

dt
=

(
1− W0

W

)
(ρ− αW ) + η2W0U − λ+ γ

H1
U +

λW0H2 (bη1H3 + εη3)

aε
U

− µπW0 (bη1H3 + εη3)

σaε
P − ϖζη1W0

τε
T.

Using W0 = ρ/α, we obtain

dΘ0

dt
=− α

(W −W0)
2

W
+

λ+ γ

H1

[
W0H1 {aεη2 + λH2 (bη1H3 + εη3)}

aε (λ+ γ)
− 1

]
U

− µπW0 (bη1H3 + εη3)

σaε
P − ϖζη1W0

τε
T.

=− α
(W −W0)

2

W
+

λ+ γ

H1
(ℜ0 − 1)U − µπW0 (bη1H3 + εη3)

σaε
P − ϖζη1W0

τε
T.

Therefore, dΘ0

dt ≤ 0 for all W,U,M,N, P, T > 0. Moreover, dΘ0

dt = 0 when W = W0,
P = T = 0 and (ℜ0 − 1)U = 0. Let Υ0 =

{
(W,U,M,N, P, T ) : dΘ0

dt = 0
}

and Υ
′

0
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be the largest invariant subset of Υ0. The solutions of system (2.1) converge to
Υ

′

0 [31]. We have two cases:

• ℜ0 = 1: In this case we have dΘ0

dt = 0 occurs at W = W0 and P = T = 0. The
set Υ

′

0 contains elements which satisfy W = W0 and P = T = 0, then Ẇ = 0
and from the first equation of system (2.1) we get

0 = Ẇ (t) = ρ− αW0 −W0 [η1N(t) + η2U(t) + η3M(t)] .

Using W0 = ρ/α we get

η1N(t) + η2U(t) + η3M(t) = 0.

The nonnegativity of N , U and M implies that N(t) = U(t) = M(t) = 0 for
all t. Therefore, Υ′

0 = {Ð0} and by applying LaSalle’s invariance principle we
get that Ð0 is G.A.S [31].

• ℜ0 < 1: In this case we have dΘ0

dt = 0 occurs at W = W0 and U(t) = P (t) =

T (t) = 0. Hence the set Υ
′

0 contains elements which satisfy W (t) = W0,
U(t) = P (t) = T (t) = 0 and

Ṁ(t) = −aM(t), (5.2)

Ṅ(t) = b

κ3∫
0

H̄3(φ)Mφdφ− εN(t). (5.3)

Following the method presented in [31] we define a Lyapunov function as:

Θ̃0 = M(t) +
a

2bH3
N(t) +

a

2H3

κ3∫
0

H̄3(φ)

t∫
t−φ

M(κ)dκdφ.

Therefore, the time derivative of Θ̃0 along the solutions of system (5.2)-(5.3)
can be calculated as follows:

dΘ̃0

dt
= −a

2

(
M(t) +

ε

bH3
N(t)

)
≤ 0.

Clearly dΘ̃0

dt = 0 if and only if M(t) = N(t) = 0 for all t. Let Υ
′′

0 ={
(W,U,M,N, P, T ) ∈ Υ

′

0 : dΘ̃0

dt = 0
}

then

Υ
′′

0 =
{
(W,U,M,N, P, T ) ∈ Υ

′

0 : W = W0, U=M=N=P =T =0
}
= {Ð0} .

Hence, all solutions trajectories approach Ð0 and this means that Ð0 is G.A.S.

Lemma 5.1. (i) If ℜ1 ≤ 1, then M1 ≤ M2.
(ii) If ℜ2 ≤ 1, then N1 ≤ N3.
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Proof. (i) Let ℜ1 ≤ 1, hence λσH2U2

aπ ≤ 1, where U2 is given by Eq. (4.11),

U2 ≤ aπ

λσH2
=⇒ −B̃ +

√
B̃2 − 4ÃC̃

2Ã
≤ aπ

λσH2

=⇒
√

B̃2 − 4ÃC̃ ≤ 2Ãaπ + λσH2B̃

λσH2

=⇒

(
2Ãaπ + λσH2B̃

λσH2

)2

+ 4ÃC̃ − B̃2 ≥ 0.

Using Eqs. (4.7), (4.8) and (4.10), we obtain

4aπεη2σ(γ + λ)2 [aεη2 + λH2 (bη1H3 + εη3)]

λ2H2
2

(M2 −M1) ≥ 0.

Hence, M1 ≤ M2.

(ii) Let ℜ2 ≤ 1, hence τbλH2H3U3

aεζ
≤ 1, where U3 is given by Eq. (4.14).

L3 ≤ aεζ

τbλH2H3
=⇒ −B̂ +

√
B̂2 − 4ÂĈ

2Â
≤ aεζ

τbλH2H3

=⇒
√

B̂2 − 4ÂĈ ≤ 2Âaεζ + τbλH2H3B̂

τbλH2H3

=⇒

(
2Âaεζ + τbλH2H3B̂

τbλH2H3

)2

+ 4ÂĈ − B̂2 ≥ 0.

Using Eqs. (4.7), (4.12) and (4.13), we obtain

4a2εζτ (aη2 + λη3H2) [aεη2 + λH2(bη1H3 + εη3)] (γ + λ)2

b2λ2H2
2H2

3

(N3 −N1) ≥ 0.

Hence, N1 ≤ N3.
We consider the following equalities to be used in the proceeding theorems:

ln

(
WφNφ

WN

)
= ln

(
WφNφUn

WnNnU

)
+ ln

(
Wn

W

)
+ ln

(
NnU

NUn

)
,

ln

(
WφUφ

WU

)
= ln

(
WφUφ

WnU

)
+ ln

(
Wn

W

)
,

ln

(
WφMφ

WM

)
= ln

(
WφMφUn

WnMnU

)
+ ln

(
Wn

W

)
+ ln

(
MnU

MUn

)
,

ln

(
Uφ

U

)
= ln

(
UφMn

UnM

)
+ ln

(
UnM

UMn

)
,

ln

(
Mφ

M

)
= ln

(
MφNn

MnN

)
+ ln

(
MnN

MNn

)
. (5.4)

Theorem 5.2. Suppose that ℜ0 > 1, ℜ1 ≤ 1 and ℜ2 ≤ 1, then Ð1 is G.A.S.
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Proof. We define a functional Θ1(W,U,M,N, P, T ) as:

Θ1 =W1𝟋
(

W

W1

)
+

1

H1
U1𝟋

(
U

U1

)
+
W1 (bη1H3+εη3)

aε
M1𝟋

(
M

M1

)
+
η1W1

ε
N1𝟋

(
N

N1

)
+

µW1 (bη1H3 + εη3)

σaε
P +

ϖη1W1

τε
T

+
η1W1N1

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)N(κ)

W1N1

)
dκdφ

+
η2W1U1

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)U(κ)

W1U1

)
dκdφ

+
η3W1M1

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)M(κ)

W1M1

)
dκdφ

+
λW1 (bη1H3 + εη3)U1

aε

κ2∫
0

H̄2(φ)

t∫
t−φ

𝟋
(
U(κ)
U1

)
dκdφ

+
bη1W1M1

ε

κ3∫
0

H̄3(φ)

t∫
t−φ

𝟋
(
M(κ)
M1

)
dκdφ.

Calculating dΘ1

dt as:

dΘ1

dt
=

(
1− W1

W

)
(ρ− αW − η1WN − η2WU − η3WM)

+
1

H1

(
1− U1

U

) κ1∫
0

H̄1(φ)Wφ {η1Nφ + η2Uφ + η3Mφ} dφ− (λ+ γ)U


+

W1 (bη1H3 + εη3)

aε

(
1− M1

M

)λ κ2∫
0

H̄2(φ)Uφdφ− aM − µPM


+

η1W1

ε

(
1− N1

N

)b κ3∫
0

H̄3(φ)Mφdφ− εN −ϖTN


+

µW1 (bη1H3 + εη3)

σaε
(σPM − πP ) +

ϖη1W1

τε
(τTN − ζT )

+
η1W1N1

H1

κ1∫
0

H̄1(φ)

[
WN

W1N1
− WφNφ

W1N1
+ ln

(
WφNφ

WN

)]
dφ

+
η2W1U1

H1

κ1∫
0

H̄1(φ)

[
WU

W1U1
− WφUφ

W1U1
+ ln

(
WφUφ

WU

)]
dφ

+
η3W1M1

H1

κ1∫
0

H̄1(φ)

[
WM

W1M1
− WφMφ

W1M1
+ ln

(
WφMφ

WM

)]
dφ
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+
λW1 (bη1H3 + εη3)U1

aε

κ2∫
0

H̄2(φ)

[
U

U1
− Uφ

U1
+ ln

(
Uφ

U

)]
dφ

+
bη1W1M1

ε

κ3∫
0

H̄3(φ)

[
M

M1
− Mφ

M1
+ ln

(
Mφ

M

)]
dφ. (5.5)

Collecting terms of Eq. (5.5), we derive

dΘ1

dt
=

(
1− W1

W

)
(ρ− αW ) + η2W1U − λ+ γ

H1
U − η1

H1

κ1∫
0

H̄1(φ)
WφNφU1

U
dφ

− η2
H1

κ1∫
0

H̄1(φ)
WφUφU1

U
dφ− η3

H1

κ1∫
0

H̄1(φ)
WφMφU1

U
dφ

+
λ+γ

H1
U1−

λW1 (bη1H3+εη3)

aε

κ2∫
0

H̄2(φ)
UφM1

M
dφ+

W1 (bη1H3+εη3)

ε
M1

+
µW1(bη1H3+εη3)

aε
PM1−

bη1W1

ε

κ3∫
0

H̄3(φ)
MφN1

N
dφ+ η1W1N1+

ϖη1W1

ε
TN1

− µπW1 (bη1H3 + εη3)

σaε
P − ϖζη1W1

τε
T +

η1W1N1

H1

κ1∫
0

H̄1(φ) ln

(
WφNφ

WN

)
dφ

+
η2W1U1

H1

κ1∫
0

H̄1(φ) ln

(
WφUφ

WU

)
dφ+

η3W1M1

H1

κ1∫
0

H̄1(φ) ln

(
WφMφ

WM

)
dφ

+
λW1H2 (bη1H3 + εη3)

aε
U +

λW1 (bη1H3 + εη3)U1

aε

κ2∫
0

H̄2(φ) ln

(
Uφ

U

)
dφ

+
bη1W1M1

ε

κ3∫
0

H̄3(φ) ln

(
Mφ

M

)
dφ. (5.6)

Using the equilibrium conditions for Ð1, we get

ρ = αW1 + η1W1N1 + η2W1U1 + η3W1M1,

η1W1N1 + η2W1U1 + η3W1M1 =
λ+ γ

H1
U1,

λH2U1

a
= M1, N1 =

bH3M1

ε
. (5.7)

In addition,

η1W1N1 + η3W1M1 =
W1 (bη1H3 + εη3)

ε
M1 =

λW1H2 (bη1H3 + εη3)

aε
U1.

Then, we obtain

dΘ1

dt
=

(
1− W1

W

)
(αW1 − αW ) + (η1W1N1 + η2W1U1 + η3W1M1)

(
1− W1

W

)
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− η1W1N1

H1

κ1∫
0

H̄1(φ)
WφNφU1

W1N1U
dφ− η2W1U1

H1

κ1∫
0

H̄1(φ)
WφUφ

W1U
dφ

− η3W1M1

H1

κ1∫
0

H̄1(φ)
WφMφU1

W1M1U
dφ+ η1W1N1 + η2W1U1 + η3W1M1

− η1W1N1 + η3W1M1

H2

κ2∫
0

H̄2(φ)
UφM1

U1M
dφ+ η1W1N1 + η3W1M1

+
µW1 (bη1H3 + εη3)

aε
PM1 −

η1W1N1

H3

κ3∫
0

H̄3(φ)
MφN1

M1N
dφ+ η1W1N1

+
ϖη1W1

ε
TN1 −

µπW1 (bη1H3 + εη3)

σaε
P − ϖζη1W1

τε
T

+
η1W1N1

H1

κ1∫
0

H̄1(φ) ln

(
WφNφ

WN

)
dφ+

η2W1U1

H1

κ1∫
0

H̄1(φ) ln

(
WφUφ

WU

)
dφ

+
η3W1M1

H1

κ1∫
0

H̄1(φ) ln

(
WφMφ

WM

)
dφ+

η1W1N1+η3W1M1

H2

κ2∫
0

H̄2(φ) ln

(
Uφ

U

)
dφ

+
η1W1N1

H3

κ3∫
0

H̄3(φ) ln

(
Mφ

M

)
dφ.

Using the equalities given by (5.4) in case of n = 1, we get

dΘ1

dt
=− α

(W −W1)
2

W
− (η1W1N1 + η2W1U1 + η3W1M1)

[
W1

W
− 1− ln

(
W1

W

)]

− η1W1N1

H1

κ1∫
0

H̄1(φ)

[
WφNφU1

W1N1U
− 1− ln

(
WφNφU1

W1N1U

)]
dφ

− η2W1U1

H1

κ1∫
0

H̄1(φ)

[
WφUφ

W1U
− 1− ln

(
WφUφ

W1U

)]
dφ

− η3W1M1

H1

κ1∫
0

H̄1(φ)

[
WφMφU1

W1M1U
− 1− ln

(
WφMφU1

W1M1U

)]
dφ

− η1W1N1 + η3W1M1

H2

κ2∫
0

H̄2(φ)

[
UφM1

U1M
− 1− ln

(
UφM1

U1M

)]
dφ

− η1W1N1

H3

κ3∫
0

H̄3(φ)

[
MφN1

M1N
− 1− ln

(
MφN1

M1N

)]
dφ

+
µW1 (bη1H3 + εη3)

aε

(
M1 −

π

σ

)
P +

ϖη1W1

ε

(
N1 −

ζ

τ

)
T. (5.8)
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Therefore, Eq. (5.8) becomes

dΘ1

dt
=− α

(W −W1)
2

W
− η1W1N1

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφNφU1

W1N1U

)
+𝟋

(
W1

W

)]
dφ

− η2W1U1

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφUφ

W1U

)
+𝟋

(
W1

W

)]
dφ

− η3W1M1

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφMφU1

W1M1U

)
+𝟋

(
W1

W

)]
dφ

− η1W1N1+η3W1M1

H2

κ2∫
0

H̄2(φ)𝟋
(
UφM1

U1M

)
dφ

− η1W1N1

H3

κ3∫
0

H̄3(φ)𝟋
(
MφN1

M1N

)
dφ+

µW1 (bη1H3 + εη3)

aε
(M1 −M2)P

+
ϖη1W1

ε
(N1 −N3)T.

Using Lemma 5.1 and since M1 ≤ M2 and N1 ≤ N3 then dΘ1

dt ≤ 0 for all
W,U,M,N, P, T > 0 with equality holding when

(M1 −M2)P = 0, (N1 −N3)T = 0, (5.9)
W

W1
=

WφNφU1

W1N1U
=

WφUφ

W1U
=

WφMφU1

W1M1U
=

UφM1

U1M
=

MφN1

M1N
= 1, t ∈ [0, κ]. (5.10)

Let Υ′
1 be the largest invariant subset of Υ1 =

{
(W,U,M,N, P, T ) : dΘ1

dt = 0
}

. The
trajectories of system (2.1) converge to Υ

′

1. The set Υ1 is invariant and contains
elements satisfying Eqs. (5.9) and (5.10). Eq. (5.10) is satisfied when W (t) = W1,
U(t) = U1, M(t) = M1 and N(t) = N1. Now we show that each element in Υ1

satisfies P (t) = T (t) = 0 for all t. From Eq. (5.9) we have four cases:

• M1 = M2 and N1 = N3: From the third and fourth equations of system (2.1)
we get

0 = Ṁ(t) = λH2U1 − aM1 − µP (t)M1, (5.11)
0 = Ṅ(t) = bH3M1 − εN1 −ϖT (t)N1. (5.12)

From the equilibrium conditions (5.7) we get P (t) = T (t) = 0 for all t.
• M1 = M2 and N1 < N3. From Eq. (5.9) we obtain T (t) = 0 for all t.

Moreover, from conditions (5.7) and Eq. (5.11) we obtain P (t) = 0 for all t.
• M1 < M2 and N1 = N3. Eq. (5.9) gives P (t) = 0 for all t. Moreover, from

conditions (5.7) and Eq. (5.12) we obtain T (t) = 0 for all t.
• M1 < M2 and N1 < N3. Eq. (5.9) implies T (t) = P (t) = 0 for all t.

Then, Υ′
1 = {Ð1} and Ð1 is G.A.S using LaSalle’s invariance principle.
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Theorem 5.3. For system (2.1), suppose that ℜ1 > 1 and ℜ4 ≤ 1, then Ð2 is
G.A.S.

Proof. Define a function Θ2(W,U,M,N, P, T ) as:

Θ2 =W2𝟋
(

W

W2

)
+

1

H1
U2𝟋

(
U

U2

)
+

W2 (bη1H3 + εη3)

ε (a+ µP2)
M2𝟋

(
M

M2

)
+

η1W2

ε
N2𝟋

(
N

N2

)
+

µW2 (bη1H3 + εη3)

σε (a+ µP2)
P2𝟋

(
P

P2

)
+

ϖη1W2

τε
T

+
η1W2N2

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)N(κ)

W2N2

)
dκdφ

+
η2W2U2

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)U(κ)

W2U2

)
dκdφ

+
η3W2M2

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)M(κ)

W2M2

)
dκdφ

+
λW2 (bη1H3 + εη3)U2

ε (a+ µP2)

κ2∫
0

H̄2(φ)

t∫
t−φ

𝟋
(
U(κ)
U2

)
dκdφ

+
bη1W2M2

ε

κ3∫
0

H̄3(φ)

t∫
t−φ

𝟋
(
M(κ)
M2

)
dκdφ.

We calculate dΘ2

dt as:

dΘ2

dt
=

(
1− W2

W

)
(ρ− αW − η1WN − η2WU − η3WM)

+
1

H1

(
1− U2

U

) κ1∫
0

H̄1(φ)Wφ {η1Nφ + η2Uφ + η3Mφ} dφ− (λ+ γ)U


+

W2 (bη1H3 + εη3)

ε (a+ µP2)

(
1− M2

M

)λ κ2∫
0

H̄2(φ)Uφdφ− aM − µPM


+

η1W2

ε

(
1− N2

N

)b κ3∫
0

H̄3(φ)Mφdφ− εN −ϖTN


+

µW2 (bη1H3 + εη3)

σε (a+ µP2)

(
1− P2

P

)
(σPM − πP ) +

ϖη1W2

τε
(τTN − ζT )

+
η1W2N2

H1

κ1∫
0

H̄1(φ)

[
WN

W2N2
− WφNφ

W2N2
+ ln

(
WφNφ

WN

)]
dφ

+
η2W2U2

H1

κ1∫
0

H̄1(φ)

[
WU

W2U2
− WφUφ

W2U2
+ ln

(
WφUφ

WU

)]
dφ
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+
η3W2M2

H1

κ1∫
0

H̄1(φ)

[
WM

W2M2
− WφMφ

W2M2
+ ln

(
WφMφ

WM

)]
dφ

+
λW2 (bη1H3 + εη3)U2

ε (a+ µP2)

κ2∫
0

H̄2(φ)

[
U

U2
− Uφ

U2
+ ln

(
Uφ

U

)]
dφ

+
bη1W2M2

ε

κ3∫
0

H̄3(φ)

[
M

M2
− Mφ

M2
+ ln

(
Mφ

M

)]
dφ. (5.13)

Collecting terms of Eq. (5.13), we derive

dΘ2

dt
=

(
1− W2

W

)
(ρ− αW ) + η2W2U + η3W2M − λ+ γ

H1
U

− η1
H1

κ1∫
0

H̄1(φ)
WφNφU2

U
dφ

− η2
H1

κ1∫
0

H̄1(φ)
WφUφU2

U
dφ− η3

H1

κ1∫
0

H̄1(φ)
WφMφU2

U
dφ

+
λ+γ

H1
U2−

aW2 (bη1H3+εη3)

ε (a+µP2)
M− λW2 (bη1H3+εη3)

ε (a+µP2)

κ2∫
0

H̄2(φ)
UφM2

M
dφ

+
aW2 (bη1H3 + εη3)

ε (a+ µP2)
M2 +

µW2 (bη1H3 + εη3)

ε (a+ µP2)
PM2

− bη1W2

ε

κ3∫
0

H̄3(φ)
MφN2

N
dφ+η1W2N2+

ϖη1W2

ε
TN2−

µπW2 (bη1H3+εη3)

σε (a+ µP2)
P

− µW2 (bη1H3 + εη3)

ε (a+ µP2)
P2M +

µπW2 (bη1H3 + εη3)

σε (a+ µP2)
P2 −

ϖζη1W2

τε
T

+
η1W2N2

H1

κ1∫
0

H̄1(φ) ln

(
WφNφ

WN

)
dφ+

η2W2U2

H1

κ1∫
0

H̄1(φ) ln

(
WφUφ

WU

)
dφ

+
η3W2M2

H1

κ1∫
0

H̄1(φ) ln

(
WφMφ

WM

)
dφ+

λW2H2 (bη1H3 + εη3)

ε (a+ µP2)
U

+
λW2 (bη1H3 + εη3)U2

ε (a+ µP2)

κ2∫
0

H̄2(φ) ln

(
Uφ

U

)
dφ

+
bH3η1W2

ε
M +

bη1W2M2

ε

κ3∫
0

H̄3(φ) ln

(
Mφ

M

)
dφ.

Using the equilibrium conditions for Ð2:

ρ = αW2 + η1W2N2 + η2W2U2 + η3W2M2,

η1W2N2 + η2W2U2 + η3W2M2 =
λ+ γ

H1
U2,
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λH2U2 = (a+ µP2)M2, M2 =
π

σ
, N2 =

bH3

ε
M2. (5.14)

Further,

η1W2N2 + η3W2M2 =
W2 (bη1H3 + εη3)

ε
M2 =

λW2H2 (bη1H3 + εη3)

ε (a+ µP2)
U2.

Therefore, we obtain
dΘ2

dt
=

(
1− W2

W

)
(αW2 − αW ) + (η1W2N2 + η2W2U2 + η3W2M2)

(
1− W2

W

)

− η1W2N2

H1

κ1∫
0

H̄1(φ)
WφNφU2

W2N2U
dφ− η2W2U2

H1

κ1∫
0

H̄1(φ)
WφUφ

W2U
dφ

− η3W2M2

H1

κ1∫
0

H̄1(φ)
WφMφU2

W2M2U
dφ+ η1W2N2 + η2W2U2 + η3W2M2

− η1W2N2 + η3W2M2

H2

κ2∫
0

H̄2(φ)
UφM2

U2M
dφ+ η1W2N2 + η3W2M2

− η1W2N2

H3

κ3∫
0

H̄3(φ)
MφN2

M2N
dφ+ η1W2N2 +

ϖη1W2

ε
TN2 −

ϖζη1W2

τε
T

+
η1W2N2

H1

κ1∫
0

H̄1(φ) ln

(
WφNφ

WN

)
dφ+

η2W2U2

H1

κ1∫
0

H̄1(φ) ln

(
WφUφ

WU

)
dφ

+
η3W2M2

H1

κ1∫
0

H̄1(φ) ln

(
WφMφ

WM

)
dφ

+
η1W2N2 + η3W2M2

H2

κ2∫
0

H̄2(φ) ln

(
Uφ

U

)
dφ

+
η1W2N2

H3

κ3∫
0

H̄3(φ) ln

(
Mφ

M

)
dφ.

Using the equalities given by (5.4) in case of n = 2, we get

dΘ2

dt
=− α

(W −W2)
2

W
− (η1W2N2 + η2W2U2 + η3W2M2)

[
W2

W
− 1− ln

(
W2

W

)]

− η1W2N2

H1

κ1∫
0

H̄1(φ)

[
WφNφU2

W2N2U
− 1− ln

(
WφNφU2

W2N2U

)]
dφ

− η2W2U2

H1

κ1∫
0

H̄1(φ)

[
WφUφ

W2U
− 1− ln

(
WφUφ

W2U

)]
dφ

− η3W2M2

H1

κ1∫
0

H̄1(φ)

[
WφMφU2

W2M2U
− 1− ln

(
WφMφU2

W2M2U

)]
dφ
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− η1W2N2 + η3W2M2

H2

κ2∫
0

H̄2(φ)

[
UφM2

U2M
− 1− ln

(
UφM2

U2M

)]
dφ

− η1W2N2

H3

κ3∫
0

H̄3(φ)

[
MφN2

M2N
−1−ln

(
MφN2

M2N

)]
dφ+

ϖη1W2

ε

(
N2−

ζ

τ

)
T.

(5.15)

Eq. (5.15) can be rewritten as follows

dΘ2

dt
=− α

(W −W2)
2

W
− η1W2N2

H1

κ1∫
0

H̄1(φ))

[
𝟋
(
WφNφU2

W2N2U

)
+𝟋

(
W2

W

)]
dφ

− η2W2U2

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφUφ

W2U

)
+𝟋

(
W2

W

)]
dφ

− η3W2M2

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφMφU2

W2M2U

)
+𝟋

(
W2

W

)]
dφ

− η1W2N2 + η3W2M2

H2

κ2∫
0

H̄2(φ)𝟋
(
UφM2

U2M

)
dφ

− η1W2N2

H3

κ3∫
0

H̄3(φ)𝟋
(
MφN2

M2N

)
dφ+

ϖη1W2

ε
(N2 −N4)T.

Hence, if ℜ4 ≤ 1, then Ð4 does not exists since T4 =
ε

ϖ
(ℜ4 − 1) ≤ 0. This implies

that, Ṫ (t) = τ
(
N − ζ

τ

)
T ≤ 0 for all T > 0. Thus, N2 ≤ ζ

τ = N4. Hence, if ℜ1 > 1,
then dΘ2

dt ≤ 0 for all W,U,M,N, P, T > 0 with equality holding when

(N2 −N4)T = 0, (5.16)
W

W2
=

WφNφU2

W2N2U
=

WφUφ

W2U
=

WφMφU2

W2M2U
=

UφM2

U2M
=

MφN2

M2N
= 1, t ∈ [0, κ]. (5.17)

Let Υ′
2 be the largest invariant subset of Υ2 =

{
(W,U,M,N, P, T ) : dΘ2

dt = 0
}

. The
trajectories of system (2.1) converge to Υ

′

2. The set Υ2 is invariant and contains
elements satisfying Eqs. (5.16) and (5.17). Eq. (5.17) is satisfied when W (t) = W2,
U(t) = U2, M(t) = M2 and N(t) = N2. Next we show that for each element in Υ2

we get P (t) = P2 and T (t) = 0 for all t. From Eq. (5.16) we have two cases:

• N2 = N4 : From the third and fourth equations of system (2.1) we get

0 = Ṁ(t) = λH2U2 − aM2 − µP (t)M2, (5.18)
0 = Ṅ(t) = bH3M2 − εN2 −ϖT (t)N2. (5.19)

From the equilibrium conditions (5.14) we get P (t) = P2 and T (t) = 0 for all
t.
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• N2 < N4 : From Eq. (5.16) we get T (t) = 0 for all t. Moreover, from
conditions (5.14) and Eq. (5.18) we obtain P (t) = P2 for all t.

Therefore, Υ′

2 = {Ð2}. LaSalle’s invariance principle implies that Ð2 is G.A.S.

Theorem 5.4. Suppose that ℜ2 > 1 and ℜ3 ≤ 1, then Ð3 is G.A.S.

Proof. Define a function Θ3(W,U,M,N, P, T ) as:

Θ3 =W3𝟋
(

W

W3

)
+

1

H1
U3𝟋

(
U

U3

)
+

W3 [bη1H3 + η3 (ε+ϖT3)]

a (ε+ϖT3)
M3𝟋

(
M

M3

)
+

η1W3

ε+ϖT3
N3𝟋

(
N

N3

)
+

µW3 [bη1H3 + η3 (ε+ϖT3)]

σa (ε+ϖT3)
P

+
ϖη1W3

τ (ε+ϖT3)
T3𝟋

(
T

T3

)
+

η1W3N3

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)N(κ)

W3N3

)
dκdφ

+
η2W3U3

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)U(κ)

W3U3

)
dκdφ

+
η3W3M3

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)M(κ)

W3M3

)
dκdφ

+
λW3 [bη1H3 + η3 (ε+ϖT3)]U3

a (ε+ϖT3)

κ2∫
0

H̄2(φ)

t∫
t−φ

𝟋
(
U(κ)
U3

)
dκdφ

+
bη1W3M3

ε+ϖT3

κ3∫
0

H̄3(φ)

t∫
t−φ

𝟋
(
M(κ)
M3

)
dκdφ.

We calculate dΘ3

dt as:

dΘ3

dt
=

(
1− W3

W

)
(ρ− αW − η1WN − η2WU − η3WM)

+
1

H1

(
1− U3

U

) κ1∫
0

H̄1(φ)Wφ {η1Nφ + η2Uφ + η3Mφ} dφ− (λ+ γ)U


+

W3 [bη1H3 + η3 (ε+ϖT3)]

a (ε+ϖT3)

(
1− M3

M

)λ κ2∫
0

H̄2(φ)Uφdφ− aM − µPM


+

η1W3

ε+ϖT3

(
1− N3

N

)b κ3∫
0

H̄3(φ)Mφdφ− εN −ϖTN


+
µW3 [bη1H3+η3 (ε+ϖT3)]

σa (ε+ϖT3)
(σPM−πP )+

ϖη1W3

τ (ε+ϖT3)

(
1− T3

T

)
(τTN−ζT )

+
η1W3N3

H1

κ1∫
0

H̄1(φ)

[
WN

W3N3
− WφNφ

W3N3
+ ln

(
WφNφ

WN

)]
dφ
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+
η2W3U3

H1

κ1∫
0

H̄1(φ)

[
WU

W3U3
− WφUφ

W3U3
+ ln

(
WφUφ

WU

)]
dφ

+
η3W3M3

H1

κ1∫
0

H̄1(φ)

[
WM

W3M3
− WφMφ

W3M3
+ ln

(
WφMφ

WM

)]
dφ

+
λW3 [bη1H3 + η3 (ε+ϖT3)]U3

a (ε+ϖT3)

κ2∫
0

H̄2(φ)

[
U

U3
− Uφ

U3
+ ln

(
Uφ

U

)]
dφ

+
bη1W3M3

ε+ϖT3

κ3∫
0

H̄3(φ)

[
M

M3
− Mφ

M3
+ ln

(
Mφ

M

)]
dφ. (5.20)

Collecting terms of Eq. (5.20), using the equilibrium conditions for Ð3

ρ = αW3 + η1W3N3 + η2W3U3 + η3W3M3,

η1W3N3 + η2W3U3 + η3W3M3 =
λ+ γ

H1
U3,

λH2U3

a
= M3, N3 =

ζ

τ
, bH3M3 = (ε+ϖT3)N3, (5.21)

and using the equalities given by (5.4) in case of n = 3, we get

dΘ3

dt
=− α

(W −W3)
2

W
− η1W3N3

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφNφU3

W3N3U

)
+𝟋

(
W3

W

)]
dφ

− η2W3U3

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφUφ

W3U

)
+𝟋

(
W3

W

)]
dφ

− η3W3M3

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφMφU3

W3M3U

)
+𝟋

(
W3

W

)]
dφ

− η1W3N3 + η3W3M3

H2

κ2∫
0

H̄2(φ)𝟋
(
UφM3

U3M

)
dφ

− η1W3N3

H3

κ3∫
0

H̄3(φ)𝟋
(
MφN3

M3N

)
dφ

+
µW3 [bη1H3 + η3 (ε+ϖT3)]

a (ε+ϖT3)
(M3 −M4)P.

Hence, if ℜ3 ≤ 1, then Ð4 does not exists since P4 = a
µ (ℜ3 − 1) ≤ 0. This implies

that, Ṗ (t) = σ
(
M − π

σ

)
P ≤ 0 for all P > 0. Thus, M3 ≤ π

σ = M4. Then dΘ3

dt ≤ 0
for all W,U,M,N, P, T > 0 with equality holding when

(M3 −M4)P = 0, (5.22)
W

W3
=

WφNφU3

W3N3U
=

WφUφ

W3U
=

WφMφU3

W3M3U
=

UφM3

U3M
=

MφN3

M3N
= 1, t ∈ [0, κ]. (5.23)
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Let Υ′
3 be the largest invariant subset of Υ3 =

{
(W,U,M,N, P, T ) : dΘ3

dt = 0
}

. The
trajectories of system (2.1) converge to Υ

′

3. The set Υ3 contains elements satisfying
Eqs. (5.22) and (5.23). Eq. (5.23) is satisfied when W (t) = W3, U(t) = U3,
M(t) = M3 and N(t) = N3. Next we show that for each element in Υ3 we get
P (t) = 0 and T (t) = T3 for all t. From Eq. (5.22) we have two cases:

• M3 = M4 : From the third and fourth equations of system (2.1) we get

0 = Ṁ(t) = λH2U3 − aM3 − µP (t)M3, (5.24)
0 = Ṅ(t) = bH3M3 − εN3 −ϖT (t)N3. (5.25)

From the equilibrium conditions (5.21) we get P (t) = 0 and T (t) = T3 for all
t.

• M3 < M4 : From Eq. (5.22) we get P (t) = 0 for all t. Moreover, from
conditions (5.21) and Eq. (5.25) we obtain T (t) = T3 for all t.

Therefore, Υ
′

3 = {Ð3}. Applying LaSalle’s invariance principle we get Ð3 is
G.A.S.

Theorem 5.5. If ℜ3 > 1 and ℜ4 > 1, then Ð4 is G.A.S.

Proof. Define Θ4(W,U,M,N, P, T ) as:

Θ4 =W4𝟋
(

W

W4

)
+

1

H1
U4𝟋

(
U

U4

)
+

W4 [bη1H3 + η3 (ε+ϖT4)]

(ε+ϖT4) (a+ µP4)
M4𝟋

(
M

M4

)
+

η1W4

ε+ϖT4
N4𝟋

(
N

N4

)
+

µW4 [bη1H3 + η3 (ε+ϖT4)]

σ (ε+ϖT4) (a+ µP4)
P4𝟋

(
P

P4

)

+
ϖη1W4

τ (ε+ϖT4)
T4𝟋

(
T

T4

)
+

η1W4N4

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)N(κ)

W4N4

)
dκdφ

+
η2W4U4

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)U(κ)

W4U4

)
dκdφ

+
η3W4M4

H1

κ1∫
0

H̄1(φ)

t∫
t−φ

𝟋
(
W (κ)M(κ)

W4M4

)
dκdφ

+
λW4 [bη1H3 + η3 (ε+ϖT4)]U4

(ε+ϖT4) (a+ µP4)

κ2∫
0

H̄2(φ)

t∫
t−φ

𝟋
(
U(κ)
U4

)
dκdφ

+
bη1W4M4

ε+ϖT4

κ3∫
0

H̄3(φ)

t∫
t−φ

𝟋
(
M(κ)
M4

)
dκdφ.

Calculating dΘ4

dt as:

dΘ4

dt
=

(
1− W4

W

)
(ρ− αW − η1WN − η2WU − η3WM)
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+
1

H1

(
1− U4

U

) κ1∫
0

H̄1(φ)Wφ {η1Nφ + η2Uφ + η3Mφ} dφ− (λ+ γ)U


+

W4 [bη1H3 + η3 (ε+ϖT4)]

(ε+ϖT4) (a+ µP4)

(
1− M4

M

)λ κ2∫
0

H̄2(φ)Uφdφ− aM − µPM


+

η1W4

ε+ϖT4

(
1− N4

N

)b κ3∫
0

H̄3(φ)Mφdφ− εN −ϖTN


+

µW4 [bη1H3 + η3 (ε+ϖT4)]

σ (ε+ϖT4) (a+ µP4)

(
1− P4

P

)
(σPM − πP )

+
ϖη1W4

τ (ε+ϖT4)

(
1− T4

T

)
(τTN − ζT )

+
η1W4N4

H1

κ1∫
0

H̄1(φ)

[
WN

W4N4
− WφNφ

W4N4
+ ln

(
WφNφ

WN

)]
dφ

+
η2W4U4

H1

κ1∫
0

H̄1(φ)

[
WU

W4U4
− WφUφ

W4U4
+ ln

(
WφUφ

WU

)]
dφ

+
η3W4M4

H1

κ1∫
0

H̄1(φ)

[
WM

W4M4
− WφMφ

W4M4
+ ln

(
WφMφ

WM

)]
dφ

+
λW4 [bη1H3 + η3 (ε+ϖT4)]U4

(ε+ϖT4) (a+ µP4)

κ2∫
0

H̄2(φ)

[
U

U4
− Uφ

U4
+ ln

(
Uφ

U

)]
dφ

+
bη1W4M4

ε+ϖT4

κ3∫
0

H̄3(φ)

[
M

M4
− Mφ

M4
+ ln

(
Mφ

M

)]
dφ. (5.26)

Collecting terms of Eq. (5.26), we obtain

dΘ4

dt

=

(
1− W4

W

)
(ρ− αW ) + η1W4N + η2W4U + η3W4M − λ+ γ

H1
U

− η1
H1

κ1∫
0

H̄1(φ)
WφNφU4

U
dφ− η2

H1

κ1∫
0

H̄1(φ)
WφUφU4

U
dφ

− η3
H1

κ1∫
0

H̄1(φ)
WφMφU4

U
dφ+

λ+ γ

H1
U4 −

aW4 [bη1H3 + η3 (ε+ϖT4)]

(ε+ϖT4) (a+ µP4)
M

− λW4 [bη1H3 + η3 (ε+ϖT4)]

(ε+ϖT4) (a+ µP4)

κ2∫
0

H̄2(φ)
UφM4

M
dφ

+
aW4 [bη1H3 + η3 (ε+ϖT4)]

(ε+ϖT4) (a+ µP4)
M4
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+
µW4[bη1H3+η3 (ε+ϖT4)]

(ε+ϖT4) (a+µP4)
PM4−η1W4

εN

ε+ϖT4
− bη1W4

ε+ϖT4

κ3∫
0

H̄3(φ)
MφN4

N
dφ

+ η1W4
εN4

ε+ϖT4
+ η1W4

ϖTN4

ε+ϖT4
− µπW4 [bη1H3 + η3 (ε+ϖT4)]

σ (ε+ϖT4) (a+ µP4)
P

− µW4 [bη1H3 + η3 (ε+ϖT4)]

(ε+ϖT4) (a+ µP4)
P4M +

µπW4 [bη1H3 + η3 (ε+ϖT4)]

σ (ε+ϖT4) (a+ µP4)
P4

− η1W4
ϖζT

τ (ε+ϖT4)

− η1W4
ϖT4N

ε+ϖT4
+ η1W4

ϖζT4

τ (ε+ϖT4)
+

η1W4N4

H1

κ1∫
0

H̄1(φ) ln

(
WφNφ

WN

)
dφ

+
η2W4U4

H1

κ1∫
0

H̄1(φ) ln

(
WφUφ

WU

)
dφ+

η3W4M4

H1

κ1∫
0

H̄1(φ) ln

(
WφMφ

WM

)
dφ

+
λW4H2 [bη1H3 + η3 (ε+ϖT4)]

(ε+ϖT4) (a+ µP4)
U

+
λW4 [bη1H3 + η3 (ε+ϖT4)]U4

(ε+ϖT4) (a+ µP4)

κ2∫
0

H̄2(φ) ln

(
Uφ

U

)
dφ

+
bη1H3W4

ε+ϖT4
M +

bη1W4M4

ε+ϖT4

κ3∫
0

H̄3(φ) ln

(
Mφ

M

)
dφ.

Using the equilibrium conditions for Ð4:

ρ = αW4 + η1W4N4 + η2W4U4 + η3W4M4,

η1W4N4 + η2W4U4 + η3W4M4 =
λ+ γ

H1
U4,

λH2U4 = (a+ µP4)M4, bH3M4 = (ε+ϖT4)N4,

M4 =
π

σ
, N4 =

ζ

τ
,

we obtain

η1W4N4 + η3W4M4 =
W4 [bη1H3 + η3 (ε+ϖT4)]

ε+ϖT4
M4

=
λW4H2 [bη1H3 + η3 (ε+ϖT4)]

(ε+ϖT4) (a+ µP4)
U4.

Moreover, we get

dΘ4

dt
=

(
1− W4

W

)
(αW4 − αW ) + (η1W4N4 + η2W4U4 + η3W4M4)

(
1− W4

W

)

− η1W4N4

H1

κ1∫
0

H̄1(φ)
WφNφU4

W4N4U
dφ− η2W4U4

H1

κ1∫
0

H̄1(φ)
WφUφ

W4U
dφ



990 A. M. Elaiw & N. H. AlShamrani

− η3W4M4

H1

κ1∫
0

H̄1(φ)
WφMφU4

W4M4U
dφ+ η1W4N4 + η2W4U4 + η3W4M4

− η1W4N4 + η3W4M4

H2

κ2∫
0

H̄2(φ)
UφM4

U4M
dφ+ η1W4N4 + η3W4M4

− η1W4N4

H3

κ3∫
0

H̄3(φ)
MφN4

M4N
dφ+η1W4N4+

η1W4N4

H1

κ1∫
0

H̄1(φ) ln

(
WφNφ

WN

)
dφ

+
η2W4U4

H1

κ1∫
0

H̄1(φ) ln

(
WφUφ

WU

)
dφ+

η3W4M4

H1

κ1∫
0

H̄1(φ) ln

(
WφMφ

WM

)
dφ

+
η1W4N4+η3W4M4

H2

κ2∫
0

H̄2(φ) ln

(
Uφ

U

)
dφ+

η1W4N4

H3

κ3∫
0

H̄3(φ) ln

(
Mφ

M

)
dφ.

Using the equalities given by (5.4) in case of n = 4, we get

dΘ4

dt
=− α

(W −W4)
2

W
− (η1W4N4 + η2W4U4 + η3W4M4)

[
W4

W
− 1− ln

(
W4

W

)]

− η1W4N4

H1

κ1∫
0

H̄1(φ)

[
WφNφU4

W4N4U
− 1− ln

(
WφNφU4

W4N4U

)]
dφ

− η2W4U4

H1

κ1∫
0

H̄1(φ)

[
WφUφ

W4U
− 1− ln

(
WφUφ

W4U

)]
dφ

− η3W4M4

H1

κ1∫
0

H̄1(φ)

[
WφMφU4

W4M4U
− 1− ln

(
WφMφU4

W4M4U

)]
dφ

− η1W4N4 + η3W4M4

H2

κ2∫
0

H̄2(φ)

[
UφM4

U4M
− 1− ln

(
UφM4

U4M

)]
dφ

− η1W4N4

H3

κ3∫
0

H̄3(φ)

[
MφN4

M4N
− 1− ln

(
MφN4

M4N

)]
dφ. (5.27)

Eq. (5.27) can be simplified as follows

dΘ4

dt
=− α

(W −W4)
2

W
− η1W4N4

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφNφU4

W4N4U

)
+𝟋

(
W4

W

)]
dφ

− η2W4U4

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφUφ

W4U

)
+𝟋

(
W4

W

)]
dφ

− η3W4M4

H1

κ1∫
0

H̄1(φ)

[
𝟋
(
WφMφU4

W4M4U

)
+𝟋

(
W4

W

)]
dφ
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− η1W4N4 + η3W4M4

H2

κ2∫
0

H̄2(φ)𝟋
(
UφM4

U4M

)
dφ

− η1W4N4

H3

κ3∫
0

H̄3(φ)𝟋
(
MφN4

M4N

)
dφ.

Hence, if ℜ3 > 1 and ℜ4 > 1, then dΘ4

dt ≤ 0 for all W,U,M,N, P, T > 0. Similar
to the previous Theorems one can show that dΘ4

dt = 0 when W = W4, U = U4,

M = M4 and N = N4. The solutions of system (2.1) tend to Υ
′

4 the largest invariant
subset of Υ4 =

{
(W,U,M,N, P, T ) : dΘ4

dt = 0
}

. The set Υ
′

4 contains elements with
U(t) = U4, M(t) = M4, N(t) = N4, then Ṁ(t) = Ṅ(t) = 0 and from the third and
fourth equations of system (2.1) we have

0 = Ṁ(t) = λU4 − aM4 − µP (t)M4,

0 = Ṅ(t) = bM4 − εN4 −ϖT (t)N4,

which give P (t) = P4 and T (t) = T4 for all t. Therefore, Υ
′

4 = {Ð4}. Applying
LaSalle’s invariance principle we get Ð4 is G.A.S.

6. Numerical results
In this section, we illustrate the results of Theorems 5.1-5.5 by performing numerical
simulations. We study the influence of CTC transmission and time delays on the
dynamical behavior of the system. We choose dirac delta function D(.) as a special
form of Λi(.):

Λi(x) = D (x− φi) , φi ∈ [0, κi] , i = 1, 2, 3,

Let κi tends to ∞, then the properties of as D(.) implies that:

∞∫
0

Λj(ς)dς = 1, Hj =

∞∫
0

D (ς − φj) e
−ℏjςdς = e−ℏjφj , j = 1, 2, 3.

Then, model (2.1) will take the following form:

Ẇ = ρ− αW − η1WN − η2WU − η3WM,

U̇ = e−ℏ1φ1Wφ1
[η1Nφ1

+ η2Uφ1
+ η3Mφ1

]− (λ+ γ)U,

Ṁ = λe−ℏ2φ2Uφ2 − aM − µPM,

Ṅ = be−ℏ3φ3Mφ3
− εN −ϖTN,

Ṗ = σPM − πP,

Ṫ = τTN − ζT.

(6.1)

For model (6.1), the threshold parameters are given by:

ℜ0 =
W0e

−ℏ1φ1
[
aεη2 + λe−ℏ2φ2

(
bη1e

−ℏ3φ3 + εη3
)]

aε (γ + λ)
, ℜ1 =

λσe−ℏ2φ2U2

aπ
,
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ℜ2 =
τbλe−(ℏ2φ2+ℏ3φ3)U3

aεζ
, ℜ3 =

λσe−ℏ2φ2U4

aπ
, ℜ4 =

τπbe−ℏ3φ3

σεζ
. (6.2)

To solve system (6.1) numerically we fix the values of some parameters (see Table
2) and the other will be varied.

Table 2. Some values of the parameters of model (6.1).

Parameter Value Parameter Value Parameter Value Parameter Value
ρ 10 γ 0.2 σ Varied ℏ3 0.3

α 0.01 λ 0.2 τ Varied φ1 Varied
η1 Varied b 5 ϖ 0.3 φ2 Varied
η2 Varied π 0.1 ζ 0.2 φ3 Varied
η3 Varied µ 0.2 ℏ1 0.1

a 0.5 ε 2 ℏ2 0.2

6.1. Stability of the equilibria
In this subsection, we take the values φ1 = 3, φ2 = 2 and φ3 = 1 and choose the
following three different initial conditions for model (6.1):

IV-1 : (W (φ), U(φ),M(φ), N(φ), P (φ), T (φ)) = (500, 5, 0.8, 0.8, 3, 9), (Solid
lines in the figures),

IV-2: (W (φ), U(φ),M(φ), N(φ), P (φ), T (φ)) = (650, 4, 0.6, 0.6, 2, 6), (Dashed
lines in the figures),

IV-3: (W (φ), U(φ),M(φ), N(φ), P (φ), T (φ)) = (800, 3, 0.4, 0.4, 1, 3). (Dotted
lines in the figures), where φ ∈ [−3, 0].

Choosing selected values of η1, η2, η3, σ and τ under the above initial conditions
leads to the following cases:

Stability of Ð0. η1 = 0.0003, η2 = 0.00001, η3 = 0.0001, σ = 0.002 and
τ = 0.003. For this set of parameters, we have ℜ0 = 0.34 < 1. Figure 1 displays
that the trajectories initiating with IV-1, IV2 and IV-3 reach the equilibrium Ð0 =
(1000, 0, 0, 0, 0, 0). This show that Ð0 is G.A.S according to Theorem 5.1. In this
case the HIV particles will be cleared from the body.

Stability of Ð1. η1 = 0.003, η2 = 0.00002, η3 = 0.001, σ = 0.002 and τ =
0.003. With such choice we get ℜ0 = 3.29 > 1, ℜ1 = 0.10 < 1 and ℜ2 = 0.13 < 1. It
is clear that the equilibrium point Ð1 exists with Ð1 = (303.7, 12.90, 3.46, 6.40, 0, 0).
Figure 2 displays that the trajectories initiating with IV-1, IV2 and IV-3 tend to
Ð1. Therefore, the numerical results supports Theorem 5.2. This case represents
the persistence of the HIV infection but with unstimulated immune responses.

Stability of Ð2. η1 = 0.003, η2 = 0.00002, η3 = 0.001, σ = 0.2 and τ = 0.003.
Then, we calculate ℜ1 = 2.50 > 1 and ℜ2 = 0.13 < 1. In Figure 3 we show
that Ð2 = (747.86, 4.67, 0.5, 0.93, 3.76, 0) exists and it is G.A.S and this agrees
Theorem 5.3. Hence a chronic HIV infection with CTL-mediated immune response
is attained.

Stability of Ð3. η1 = 0.003, η2 = 0.00002, η3 = 0.001, σ = 0.002 and τ = 0.3.
Then, we calculate ℜ2 = 3.45 > 1 and ℜ3 = 0.08 < 1. The numerical results plotted
in Figure 4 show that Ð3 = (749.94, 4.63, 1.24, 0.67, 0, 16.33) exists and it is G.A.S
and this agrees Theorem 5.4. As a result a chronic HIV infection with antibody
immune response is attained.
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Stability of Ð4. η1 = 0.003, η2 = 0.00002, η3 = 0.001, σ = 0.2 and τ = 0.3.
Then, we calculate ℜ3 = 2.03 > 1 and ℜ4 = 1.39 > 1. The numerical results
displayed in Figure 5 show that Ð4 = (795.17, 3.79, 0.5, 0.67, 2.59, 2.59) exists and it
is G.A.S according to Theorem 5.5. In this case a chronic HIV infection is attained
where both CTL-mediated and antibody immune responses are working.
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Figure 1. The behavior of solution trajectories of system (6.1) in case of ℜ0 ≤ 1.
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Figure 2. The behavior of solution trajectories of system (6.1) in case of ℜ0 > 1, ℜ1 ≤ 1 and ℜ2 ≤ 1.
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Figure 3. The behavior of solution trajectories of system (6.1) in case of ℜ1 > 1 and ℜ4 ≤ 1.
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Figure 4. The behavior of solution trajectories of system (6.1) in case of ℜ2 > 1 and ℜ3 ≤ 1.
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Figure 5. The behavior of solution trajectories of system (6.1) in case of ℜ3 > 1 and ℜ4 > 1.

6.2. Effect of time delays on the HIV dynamics
In this part we vary the delays parameters φ1, φ2 and φ3 and fix the parameters
η1 = 0.003, η2 = 0.00002, η3 = 0.001, σ = 0.2 and τ = 0.3. Since ℜ0 given by Eq.
(6.2) depends on φ1, φ2 and φ3, then changing the parameters φ1, φ2 and φ3 will
change the stability of equilibria. Let us take the following values:

(I) φ1 = φ2 = φ3 = 0,
(II) φ1 = 4, φ2 = 3 and φ3 = 2,
(III) φ1 = 5, φ2 = 4 and φ3 = 3,
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(V) φ1 = 7, φ2 = 6 and φ3 = 5.
With these values we solve system (6.1) under initial condition IV-3. The nu-

merical solutions are displayed in Figure 6. We observe that inclusion of time delays
can significantly increase the concentration of the healthy CD4+ T cells and reduce
the concentrations other compartments.
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Figure 6. The influence of time delay parameters on the behavior of solution trajectories of system
(6.1).

In Table 3 we present the values ℜ0 for selected values of φ1, φ2 and φ3. It is
clear that ℜ0 is decreased when φ1, φ2 and φ3 are increased and the stability of Ð0
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will be is changed. Now we want to calculate the critical value of the time delay
that changes the stability of Ð0. To do so we fix the parameters φ2 and φ3 and
write ℜ0 as a function of φ1 as:

ℜ0(φ1) =
W0e

−ℏ1φ1
[
aεη2 + λe−ℏ2φ2

(
bη1e

−ℏ3φ3 + εη3
)]

aε (γ + λ)
.

When ℜ0 (φ1) ≤ 1, we obtain

φ1 ≥ φmin
1 where φmin

1 =max

{
0,

1

ℏ1
ln

(
W0

{
aεη2+λe−ℏ2φ2

(
bη1e

−ℏ3φ3+εη3
)}

aε (γ + λ)

)}
.

Therefore, if φ1 ≥ φmin
1 , then Ð0 is G.A.S. Let φ2 = 5 and φ3 = 4 and compute

φmin
1 as φmin

1 = 2.22266. Then we have the following:
(i) If φ1 ≥ 2.22266, then ℜ0(φ1) ≤ 1 and Ð0 is G.A.S.
(ii) If φ1 < 2.22266, then ℜ0(φ1) > 1 and Ð0 will lose it stability and one of the

other equilibria will be G.A.S.

Table 3. The values of ℜ0 for selected values of delay parameters.

Delay parameters ℜ0

φ1 = φ2 = φ3,= 0 8.55

φ1 = 3, φ2 = 2, φ3 = 1 3.29

φ1 = 4, φ2 = 3, φ3 = 2, 1.92

φ1 = 5, φ2 = 4, φ3 = 3 1.13

φ1 = 6, φ2 = 5, φ3 = 4 0.69

φ1 = 7, φ2 = 6, φ3 = 5 0.42

6.3. Effects of CTC transmission
In this subsection, we investigate the influence of different mode of transmissions
on the HIV dynamics (6.1). We use the parameters given in Table 2 and choose
the values σ = 0.05, τ = 0.3, φ1 = 3, φ2 = 2, φ3 = 1 with the following initial
condition:

IV-4 (W (φ), U(φ),M(φ), N(φ), P (φ), T (φ)) = (600, 10, 2, 0.5, 1, 20), where φ ∈
[−3, 0].

We choose three sets of parameters η1, η2 and η3 and investigate the following
illustrative cases:

Case 1: HIV dynamics with VTC, silent-CTC and active-CTC transmissions:
Here we consider the parameters η1 = 0.005, η2 = 0.002 and η3 = 0.003. Fig-
ure 7 shows that the solutions of the system approach the equilibrium Ð4 =
(205, 14.72, 2, 0.67, 2.43, 30.37).

Case 2: HIV dynamics with VTC, silent-CTC and active-CTC transmissions:
In this case, we choose the parameters η1 = 0.004, η2 = 0.001 and η3 = 0.002. We
can see from Figure 7 that the trajectories of the system tend to the equilibrium
Ð4 = (347.9006, 12.08, 2, 0.67, 1.55, 30.37).

Case 3: HIV dynamics with both VTC and active-CTC transmissions: In
this case, we select the values η1 = 0.003, η2 = 0.0 and η3 = 0.001. From
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Figure 7, we observe that the solution trajectories converge to the equilibrium
Ð3 = (757.27, 4.50, 1.21, 0.67, 0, 15.66).

Case 4: HIV dynamics with only VTC transmission: Here, we consider the
values η1 = 0.002, η2 = η3 = 0.00. Figure 7 displays that the solution trajectories
approach the equilibrium Ð3 = (882.35, 2.18, 0.58, 0.67, 0, 4.15).
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Figure 7. The evolution of HIV dynamics (6.1) under different modes of transmissions.

Case 5: HIV dynamics with only VTC transmission: In this situation, we pick
the parameters η1 = 0.001, η2 = η3 = 0.0. It is clear from Figure 7 that the solution
trajectories reach the equilibrium Ð0 = (1000, 0, 0, 0, 0, 0).
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From the above we note that the presence of silent-CTC and/or active-CTC
transmissions increase the infection rate. As a result, the concentration of the
healthy cells is decreased while the concentrations of silent/active infected cells,
free HIV particles, CTL cells and antibodies are increased as shown in Figure 7.

7. Conclusion and discussion
In this work, we proposed an HIV dynamics model in the presence of CTLs and an-
tibodies. Three types of distributed-time delays were incorporated into the model.
We took into consideration two routes of transmission, VTC and CTC. The CTC
transmission is due to (i) the contact between healthy CD4+T cells and silent
HIV-infected cells, and (ii) the contact between healthy CD4+T cells and active
HIV-infected cells. We proved that the solutions of the model are nonnegative
and bounded. We showed that the model has five possible equilibria, and their
existence is determined by five threshold parameters. We investigated the global
asymptotic stability of all equilibria by constructing Lyapunov functionals and ap-
plying LaSalle’s invariance principle. We conducted numerical simulations to il-
lustrate the results of Theorems 5.1-5.5. We studied the influence of time delay
and CTC transmission on the dynamical behavior of the system. Numerical simu-
lation of our proposed model give the following results. (1) The results indicated
that the intracellular delay is one of the key factors in controlling the disease. (2)
The presence of CTC transmission poses a challenge to the existing antiviral drug
treatments. Thus, such transmission will increase the infection progression within
the host. Those findings might be helpful in designing treatment for the control of
HIV infection. Our proposed HIV dynamics model can be generalized and extended
to incorporate different biological effects such as reaction-diffusion [3, 4, 12, 13] and
stochastic interactions [29].
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