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STABILITY OF A DELAYED ADAPTIVE
IMMUNITY HIV INFECTION MODEL WITH
SILENT INFECTED CELLS AND CELLULAR

INFECTION

A. M. Elaiw®®" and N. H. AlShamrani®*

Abstract In this paper we formulate a mathematical model to investigate
the within-host HIV dynamics under the effect of both antibody and Cyto-
toxic T lymphocytes (CTL) immune responses. The model consists of five
components: healthy CD41T cells, silent infected cells, active infected cells,
free HIV particles, CTLs and antibodies. The healthy CD4"T cells can be
infected when they are contacted by (i) free HIV particles, (ii) active infected
cells, and (iii) silent infected cells. The model is an improvement of some exist-
ing HIV infection models with both virus-to-cell (VI'C) and cell-to-cell (CTC)
transmissions by incorporating the incidence between the silent infected cells
and healthy CD4" T cells. The well-posedness of the model is established by
showing that the solutions of the model are nonnegative and bounded. We
have shown that the model has five equilibria and their existence is governed
by five threshold parameters. We prove the global asymptotic stability of all
equilibria by utilizing Lyapunov function and LaSalle’s invariance principle.
We have presented numerical simulations to illustrate the theoretical results.
We have studied the effects of CTC transmission and time delays on the dy-
namical behavior of the system. We have shown that inclusion of time delay
can significantly increase the concentration of the uninfected CD4™ T cells and
reduce the concentrations of the infected cells and free HIV particles. While
the inclusion of CTC transmission decreases the concentration of the unin-
fected CD4™ T cells and increases the concentrations of the infected cells and
free HIV particles.

Keywords HIV infection, cell-to-cell transmission, global stability, silent in-
fected cells, adaptive immune response, Lyapunov function, intracellular delay.
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1. Introduction

Acquired immunodeficiency syndrome (AIDS) is one of dangerous human diseases
which are caused by human immunodeficiency virus (HIV). According to global
health observatory (GHO, 2018) data of HIV/AIDS published by WHO [55] that,
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globally, 37.9 million people living with HIV in 2018, 1.7 million people newly
infected with HIV in 2018 and 770,000 HIV-related death 2018. HIV is a retro-
virus that infects the healthy CD4T cells which play an important role in immune
system. Cytotoxic T lymphocytes (CTLs) and antibodies are the two arms of
the immune system response to control the HIV infection for long period (10-15
years). However, during this period the concentration of the healthy CD4™T cells
declines. The concentration of the CD4™ T cells in uninfected individual is 1000
cells/mm®. When the concentration of the CD4F T cells reaches below a critical
value of 200 cells/mm?, the individual is said to have progressed to AIDS. During
the last decades, mathematical modeling of within-host HIV infection has witnessed
a significant development [46]. Stability analysis has also become one of the very
important and helpful methods for better understanding the within-host HIV dy-
namics (see e.g. [5,7,8,10,15-17,25,28,33,41]).

During the recent years, great efforts have been made to formulate and analyze
within-host HIV dynamics models under the influence of CTL immune response (see
e.g. [2,11,35,45,48,53]) or antibody immune response (see e.g. [19,22,24,26,27,37,
44]). In 2003, Wodarz [56] has presented a virus dynamics model which considers
the effect of antibodies together with CTL immune response. Dubey etc [9] have
extended the model in [56] by adding a logistic growth term which represents the
proliferation of healthy CD4 " T cells. Moreover, the model in [9] incorporates a com-
bination of two classes of antiviral treatment, protease inhibitor and reverse tran-
scriptase. Su at al. [50] have developed the model in [56] by considering Beddington-
DeAngelis incidence rate to replace the mass-action incidence rate. Yousfi etc [59]
have suggested a model to describe the HBV dynamics. In [9,50,56,59], it has been
assumed that infection processes are instantaneous. However, it has been estimated
that the time between the HIV enters a target cell until producing new HIV particles
is about 0.9 days [47]. Therefore, more realistic virus dynamics model when time
delay is incorporated. Yan and Wang [58] have extended the model Wodarz [56] by
incorporating a discrete time delay for production of active infected cells as:

W(t) = p—aW(t) =N ()W (t),

M(t) = ne " N(t - ) (t =) —aM(t) — pP(t)M(t),

N(t) = bM(t) —eN(t) — @T(t)N(¢), (1.1)
P(t) = o P(t)M(t) — T P(t),

T(t) = rT()N(t) — (T(t),

where W (t), M (t), N(t), P(t) and T(t) are the the concentrations of healthy CD4™T
cells, active HIV-infected CD4T T cells, free HIV particles, HIV-specific CTLs and
HIV-specific antibodies at time ¢, respectively. The healthy CD4™T cells are pro-
duced at specific constant rate p. The term nW N refers to the rate at which new
infectious appears by VTC contact between free HIV particles and healthy CD4™T
cells. The term pPM is the killing rate of active HIV-infected cells due to their spe-
cific CTLs immunity. The proliferation rate for effective HIV-specific CTLs is given
by o PM. The proliferation rate for HIV-specific antibodies is given by 7T'N. The
free HIV particles are generated at rate bM and neutralized from the plasma due to
HIV-specific antibodies at rate wT N. The fraction e~ denotes the survive rate of
infected cells during the delay period ¢. Wang and Liu [54] have developed model

(1.1) by considering saturated incidence rate %, where w > 0. Model (1.1)
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assume that the time delay is constant which is not biologically realistic. Wang
etc [52] have extended model (1.1) by incorporating two types of distributed time
delays.

In [9,23,47,50,52,54,56,58,59] it was assumed that the infection occurs due
to virus-to-cell transmission (VTC). It has been reported in several works that the
healthy CD4™T cells can also be infected due to cell-cell contact known as cell-
to-cell transmission (CTC) (see e.g. [36,38]). Therefore, CTC transmission plays
an important role in the HIV infection process even during the antiviral treatment
[49]. The CTC transmission has been incorporated into viral infection models by
including: (i) CTL immune response [6,51], (ii) antibody immune respounse, [14,32,
43] and (iii) both CTL and antibody immune responses [18,20, 30, 42].

It is known that highly active anti-retroviral therapy can suppress HIV repli-
cation to a low level but cannot enucleate the HIV from the body. One of the
main reasons is the presence of silent (latent) CD41T infected cells where the HIV
provirus can reside [57]. Silent CD4™ T infected cells live long, but they can be ac-
tivated to produce new HIV particles. In a very recent work [1], it has been shown
that both silent and active infected CD4 1T cells can infect the healthy CD4 T cells
through CTC mechanism. In all of the above mentioned works, it has been assumed
that the CTC transmission is only due to the active infected CD4™ T cells. In a very
recent work, Elaiw and Alshamrani [21] have investigated an HIV dynamics model
with silent and active CTC transmissions and CTL immune response. In [21] the
antibody immune response has not been included.

In the present paper we propose an HIV infection model by including (i) both
CTL and antibody immune responses, (ii) three types of distributed time delays,
(iii) both VT'C and CTC transmissions. The CTC transmission is due to the contact
of healthy CD4™ T cells with silent or active infected cells. The well-posedness of the
model is investigated by establishing that the solutions of the model are nonnegative
and bounded. We derive five threshold parameters which determine the existence
and stability of the five equilibria. Global stability of all equilibria is proven by
formulating Lyapunov functions and utilizing LaSalle’s invariance principle. We
perform some numerical simulations to illustrate the theoretical results.

2. Model formulation

We formulate a distributed delay HIV infection model with both CTL and anti-
body immune responses. We assume that the HIV virions can replicate by two
mechanisms VT'C and CTC transmissions. The CTC infection has two sources, (i)
the contact between healthy CD4™ T cells and silent infected CD41T cells, and (ii)
the contact between healthy CD4* T cells and active infected CD41T cells. Under
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these assumptions we propose by the following model:

W (t) =p— aW(t) = mW(EN(t) — W)U (t) — nsW (£) M (2),
U(t>=£A1(w)e‘”“"W(t—w)[mN(t—w)+n2U(t—<p)+nsM(t—sD)]d<P—(A+7)U(t)7

M(t) = A [ As(p)e 22U (t — p)dp — aM () — uP(t)M(2),

P(t) = o P(t)M(t) — wP(t),
T(t) = TT()N(t) = CT(1),

(2.1)
where W (t), U(t), M(t), N(t), P(t) and T(t) are the the concentrations of healthy
CD4™T cells, silent HIV-infected CD4™T cells, active HIV-infected CD4™T cells,
free HIV particles, HIV-specific CTLs and HIV-specific antibodies at time ¢, re-
spectively. The HIV virions can replicate using VT'C and CTC transmissions. The
healthy CD4*T cells are produced at specific constant rate p. The term nWN
refers to the rate at which new infectious appears by VTC contact between free
HIV particles and healthy CD4™T cells. The healthy CD4T cells are contacted
with silent infected CD41T cells and active infected CD4" T cells and become in-
fected due to CTC transmission at rates neWU and nsW M, respectively. The term
AU is the rate of silent HIV-infected cells that become actively HIV-infected cells.
The term pPM is the killing rate of active HIV-infected cells due to their specific
CTLs immunity. The proliferation rates for effective HIV-specific CTLs is given by
oPM. The proliferation rate for HIV-specific antibodies which is proportional to
the numbers of HIV particles and HIV-specific antibodies is given by 7T'N. The
free HIV particles are generated at rate bM and neutralized from the plasma due
to HIV-specific antibodies at rate @TN. The factor A;(p)e "% represents the
probability that healthy CD4T cells contacted by HIV particles at time ¢ — ¢ sur-
vived ¢ time units and become silent infected at time ¢. The term Ay(p)e 2% is
the probability that silent HIV-infected CD4™T cells survived ¢ time units before
transmitted to be active at time t. Moreover, the factor As(p)e™"8% demonstrates
the probability of new immature HIV particles at time ¢ — ¢ lost ¢ time units and
become mature at time t. Here A;, ¢ = 1,2, 3 are positive constants. The delay pa-
rameter @ is random taken from a probability distribution function A;(¢) over the
time interval [0, k;], i = 1,2, 3, where k; is the limit superior of this delay period.
The function A;(y), i = 1,2, 3 satisfies A;(¢) > 0 and

/Ai(go)dgp =1and /Ai(go)e*wdga < 00,
0 0

where © > 0. Let us denote

Hi(p) = Ai(p)e” "% and H; = /ﬁi(w)d%
0
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where i =1,2,3. Thus 0 < H; < 1,i=1,2,3. The initial conditions of system (2.1)
is given by:

1 ) =ea(z), M(z) =e3(z), N(z) = es(x), P(z) = e5(x),
T(z) = es(z),€5(x) >0, z € [-k,0], j=1,2,...,6, k=max{kr,ke, K3}, (2.2)

where ¢;(z) € C([—~,0],R>¢), j =1,2,...,6 and C = C([—k, 0], R>() is the Banach
space of continuous functions mapping the interval [—x,0] into R>o with norm
llejl = sup |ej(m)| for €; € C. Therefore, system (2.1) with initial conditions

—rk<m<
(2.2) has a unique solution by using the standard theory of functional differential
equations [31,40]. All parameters and their definitions are summarized in Table 1.

Table 1. Parameters of model (2.1) and their interpretations.

Symbol  Biological meaning

0 Recruitment rate for the susceptible CD47T cells
« Natural death rate constant for the susceptible CD4™ T cells
Virus-cell incidence rate constant between free HIV particles
n and susceptible CD41T cells
Cell-cell incidence rate constant between silent HIV-infected
2 CD4™*T cells and susceptible CD4T cells
Cell-cell incidence rate constant between active HIV-infected
s CD4™T cells and susceptible CD4™T cells
0 Death rate constant of silent HIV-infected cells
a Death rate constant of active HIV-infected cells
Killing rate constant of active HIV-infected cells due to
K their specific CTL-mediated immunity
\ Transmission rate constant of silent HIV-infected cells
that become active HIV-infected cells
b Generation rate constant of new HIV particles
€ Death rate constant of free HIV particles
o Proliferation rate constant for effective HIV-specific CTLs
T Decay rate constant of HIV-specific CTLs
- Neutralization rate constant of HIV particles due to HIV-specific
antibodies immunity
T Proliferation rate constant of HIV-specific antibodies
¢ Decay rate constant of HIV-specific antibodies
%) Delay parameter
Ai(p) Probability distribution function

3. Well-posedness of solutions

Proposition 3.1. All solutions of system (2.1) with initial conditions (2.2) are
nonnegative and ultimately bounded.
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Proof. First, we show the nonnegativity of solutions. From the first Eq. of system
(2.1), we have W |w=o= p > 0, then W(¢) > 0 for all ¢ > 0. Moreover, the rest
Egs. of system (2.1) give us the following

t K1
Uh) = ea0)e 4 4 [0 [ o)
0 0
X MmN (3¢ =) + 12U (3¢ — @) + n3M (3¢ — )] dpds > 0,

t Ko
M(t) = e3(0)e™ Jo @rnP@Nay | / o~ JlatnP )y / Ha(p)U (5 — p)dpd > 0,
0 0

t K3
N(t) = es(0)e™ Jo C+=TWNy 4y / e~ FrleF=TW)dy / Ha(p)M (5 — )dipdix > 0,
0 0

P(t) = e5(0)e™ Jo (TmoMW)dy >

T(t) = €6(0)e™ Jo C—NW)dy >

for all ¢ €0, k]. Thus, by a recursive argument, we get W (t), U(t), M (t), N(t), P(t)>
Ofor all ¢ > 0. Hence, the solutions of system (2.1) satisfy

(W(t),U(t), M(t),N(t), P(t)) € R, for all £ > 0. Next, we establish the bound-

edness of the model’s solutions. The nonnegativity of the model’s solution implies
that limsup, ,  W(t) < 2. To show the ultimate boundedness of U(t) we let

(1) = ?ﬂlwwu — @)dp + U(t), then

K1

¥, (1) = / Ha() [ — aW(t — @) dp — (A +7) U(t)
0
—Hi—a / Ha ()W (t — p)dip — (A7) U (1)

0
<p—b / Ha (W (t — @)+ U () | = p— dr1(8),
0

where ¢1 = min{a, A +~}. It follows that, limsup;_,,, W1(t) < 1, where 0y = £

K1 _

Since [ Hi(p)W (t — ¢)dp and U(t) are nonnegative, then limsup,_,  U(t) < Q.
0

Moreover, we let Uy (t) = M(t) + £P(¢), then

o

g g

Wa(t) = A / Ho(@)U,dp — al(t) — T P(t) < XHaQ — aM(t) — PZP(1)
0

<AQ — aM(t) — %P(t) <A — ¢ (M(t) + gP(t)) = A — do U (1),

AQ

where ¢ = min{a,r}. It follows that, limsup, ,. Ws(t) < Q, where Qy = =
2

Since M (t) > 0 and P(t) > 0, then limsup,_,., M(t) < Qs and limsup,_, . P(t) <
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Q3, where Q3 = 7. Finally, let W5(t) = N(t) + £T(t), then

Us(t) = b / Ha(p)M(t — p)dp — eN(t) — wTCT(t) < bH3Q — eN(L) — %CT(t)

< by — eN(t) — ”‘%CT(t) < — ¢ (N(t) + %T(t)) = b — p3 U5 (1),

b2
where ¢3 = min{e, ¢}. It follows that, limsup, ,. Ws(t) < 4, where Q; = —=.
3

Since N(t) > 0 and T'(¢t) > 0, then limsup,_, . N(t) < Q4 and limsup,_, . T(t) <

25, where 25 = Z€y4. This complete the proof and insures the ultimate bounded-

ness of all variables contained in the positively invariant region =. O
According to Proposition 3.1 we can show that the region

= ={(W,UM,N,P.T) € CLy : | W]| < @, U] < 0, | M]| < 02, | Pl| < 0,
INI < Q|7 < 95

is positively invariant with respect to system (2.1).

4. Equilibria

In this section, we derive two threshold parameters which guarantee the existence
of the equilibria of the model. Let (W, U, M, N, P,T) be any equilibrium of system
(2.1) satisfying the following equations:

O0=p—aW — WN —noWU —nsWM, (4.1)
0=Hi (MWN 4+ WU +nsWM) - (A+~)U, (4.2)
0=AHU —aM — pPM, (4.3)
0= bHsM — eN — wTN, (4.4)
0= (oM —m)P, (4.5)
0= (TN -()T. (4.6)

The straightforward calculation finds that system (2.1) admits five equilibria.

(I) Tt is obvious that system (2.1) has an infection-free equilibrium,
by = (W,0,0,0,0,0), where Wy = p/a. This case describes the situation of
healthy state where the HIV infection is absent.

(I) When P =T = 0, we have the chronic HIV infection equilibrium with inactive
immune response, B, = (W1, Uy, My, N1,0,0), where

W, — ag (v + A)
Hi laens + NHo (bnHs + ens)]’
_ as [WOH1 {acns + NHo (bjHs +ens)} 1}
aeny + AHz (by1Hs + ens) ag (y+A) 7
_ calHs |:WOIH1 {aenz + NHa (b Hsz +ens)} B 1}
aena + AXHa (b Hs + en3) ag (v +A) 7
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N abA\H o Hs WoHi {aens + AHa (b Hs +ens)} 1
! aeng + Ao (b Hs + eng) ag (v +A) .

Therefore, D, exists when

WoHy [aenz + ANHa (b Hs + €ns)]
ag (v +A)

> 1.

At the equilibrium B; the chronic HIV infection persists while the immune
response is unstimulated. The basic HIV reproduction number of model (2.1)

is given as:
WoH1 [aens + AHa (bniHs + €
Ro = 0 1[ "2 2 (b Hs 773)] = Ro1 + Ro2 + Ros,
ag (v +A)
where
oo WobmHiHoHs o WomHa _ WoAns#Ha#Hy
01 ag(fy+)\) ’ 02 ’Y"‘A ’ 03 CL(’Y—F/\)

The parameter Ry determines whether or not the infection will chronic.
In fact, Rp; determines the average number of secondary HIV infected cells
caused by free HIV particles due to VT'C transmission, while Ry and Rz de-
termine the average numbers of secondary HIV infected cells caused by silent
and active HIV-infected CD41T cell, respectively, due to CTC transmission.
In terms of Ry, we can write

Wo acq

w = Yoy, - R — 1),
1 Ro 1 agng + ANHs (b Hs + en3) (o )
604/\7'[2
M, = % -1 )
! aeng + AXHa (bynHs + ens) (o )
b\
abAHaHs (Ro — 1). (4.7)

" aeny + NHa (b Hs + eng3)

(IIT) When P # 0, T = 0, we consider the chronic HIV infection equilibrium with
only active CTL-mediated immune response, Dy = (Wa, Uz, Ma, No, P5,0),

where oo .
Wy = , My = —,
2 brmHs+e 3 +aoc+onUs) 2T 5 (4.8)
Ny — b7r3"l:>,7 ]32:@()“7?'[2[]2_1)7
o am
and Us satisfies the quadratic equation
AU2 + BU, + C =0, (4.9)
where
A=emo(v+)),
B = (bmHs +ens) (y+A) +e0[a(y+A) — napHal,

C = —mpH1 (b Hsz + ens) . (4.10)
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Since A > 0 and C < 0, then B2 — 4AC > 0 and there are two distinct real
roots of Eq. (4.9). The positive root is given by
—B+ VB2 - 4AC
Uy = = . (4.11)
2A
It follows that W5 > 0 and P, > 0 only when 27%2U2 > 1. We define the HIV
specific CTL-mediated immunity reproductive ratio as follows:
Ao HU:
R, = AgTt2Y2
arm
Thus, P, = % (R1 — 1). Therefore, Dy exists when ®; > 1. The parameter #;
determines whether or not the HIV-specific CTL-mediated immune response
is stimulated.
(IV) When P =0, T # 0, we consider the chronic HIV infection equilibrium with
only active antibody immune response, D3 = (W3, Us, M3, N3,0,T3), where
AHLU.
W3: anT 7M3:M7 N3:£7
a(mC+ar)+ 7 (any + AnsHz) Us a T
Ty = i <7’b/\7‘[27'[3U3 - 1) ’ (4.12)
w asC
and Us satisfies the quadratic equation
AU2 + BUs + C =0,
where
A= (any+M5Ha) (v +A), B=aly + N (Cny+ar) = prHa (an, + MgHa),
C = —apln, M. (4.13)
Since A > 0 and C' < 0, then B2 — 4AC > 0 and there are two distinct real
roots of Eq. (4.13). The positive root is given by
—B+ VB2 —4AC
Us = = . (4.14)
2A
bA
It follows that W3 > 0, M3 > 0 and 75 > 0 only when L?BUB > 1. The
ae
HIV-specific antibody immune response reproductive ratio is stated as:
Tb)(Hg’Hg, U3
Ry = ——————.
asC
Thus, T3 = E(§)‘E2 —1). The parameter $o determines whether or not the
w
HIV-specific antibody immune response is stimulated.
(V) When P # 0, T # 0, we consider the chronic HIV infection equilibrium with

active CTL-mediated and antibody immune responses,
by = (W47 U4aM47N4;P47T4), where

_ poT
T m¢o + 3T + o7 (v +nUy)’
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p4:a<)\UH2U4_1>7 T4:5<”b%3_1),
I am w oeC

and Uy satisfies the quadratic equation
AUZ + BU, + C =0,

where

A=orny(vy+ ), B= (74 A) (mCo +mns7 + ora) — pornyH,
C = —pH1 (mCo + mnsT). (4.15)

Since A > 0 and C < 0, then B? — 4AC > 0 and there are two distinct real
roots of Eq. (4.13). The positive root is given by

—B+VB? - 4AC
Us = 51 .

It follows that Wy > 0, P, > 0 and T, > 0 only when % > 1 and
TrbHs3
oeC
tive ratio and the HIV-specific antibody immune competitive reproductive

ratio of system (2.1) are stated respectively as:

> 1. The HIV-specific CTL-mediated immune competitive reproduc-

/\O'HQU4 T7Tb7‘[3
= S gy = R
am el

Rs

Thus, Py = % Rg—1), Ty = £ (R4 —1). The parameters 3 and R, deter-
w
mine whether or not the HIV-specific CTL-mediated and antibody immune

responses are stimulated.

The threshold parameters are given as follows:

_ WoH1 [a&‘T]Q + AHo (b?h?‘[g + 8773)} _ AoHoUs
Ro = ;o Ri=—
aeg (y+ N) am
Tb)\HQHgUg )\CTHQU4 T7Tb7'l3
R, = MUy g AoHUs g TTbH
ae am oeC

5. Global stability analysis

In this section we prove the global asymptotic stability of all equilibria by con-
structing Lyapunov functional following the method presented [34,39]. Define
F(z) =x—1—Inz. Denote (W,U, M,N,P,T) = (W (t),U(t), M(t), N(t), P(t),T(t))
and (Wy, Uy, My, Np) = (W(t — ), U(t — @), M(t — ), N(t — ).

Theorem 5.1. If Ry < 1, then Dy is globally asymptotically stable (G.A.S).
Proof. Constructing a Lyapunov functional candidate ©¢(W, U, M, N, P,T) as:

w 1 Wo (b Hs+ens)

W, Wo (b :
®O:WOF(>+U+ g 1oy 1 Wo (bmiFhatems)

Wo Hq ae € oae
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TE

K1 t
W, 1
LEmWo, 1 / /W [N (5¢) + 12U (5¢) + 13 M (52)] dsedip
t=e

K2

)\Wo (b Hz+ens) /’Hg((p)/ U(%)d%d¢+bnlgwo/g3(@)/ M (3¢)dsedip.
0

ag

0 t—p t—p

It is seen that, ©o(W,U, M, N, P,T) > 0 for all W,U, M, N, P,T > 0, and O¢ has
a global minimum at Dy. We calculate 990 (2.1) as:

doe Wi
7; = <1 VVO> (p—aW = WN — WU —nsWM)

/ Ty (@)W AN, +maU, + msM,y dp — A+ 7) U

K2

K3
W _
+ mg—o b/Hs(@)M¢d¢ —eN —@wTN

oag

(TN —(T)

wm Wo
TE

K1
1 _
+ 7_71 /Hl(%’) (WA{MN +nU +n3M} — W, {77le + Uy + 773Ms0}] de

AWo (b Hs+ens) [ b Wo [ -
L AWo (b Hs +11s) / () (U~ Uy drt 10 / Ha(p) [M—M,] do.

ag

(5.1)

Collecting terms of Eq. (5.1), we get

d@o Wo A + Y /\W()Hg (b??ng, + 6773)
=0 (128 — _
7 ( W ) (p aW) + e WoU H, U+ s U
_ prWo (bmHs +ens) ,,  wlmWo,,
cag TE '
Using Wy = p/a, we obtain
L@O __ OZ(W — W0)2 n A + Yy W()Hl {a&’f}z + )\7‘[2 (b’lh%g + 8’173)} _1lu
dt W H, ac (A +7)
_ pmWo (b Hs + 5773)P _ @mWo
cae TE
_ 2
_ a(W Wo) + Aty (Ro— 1)U — prWo (b Hs + 5773)P _ @mWo .
w Hi oae TE

Therefore, df?to <Oforall W,U, M, N, P, T > 0. Moreover, dgo = 0 when W = W,

P=T=0and (Ro— 1)U =0. Let Yo = {(W,U,M,N,P,T): %2 =0} and T,
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be the largest invariant subset of To. The solutions of system (2.1) converge to
T, [31]. We have two cases:
e Ry = 1: In this case we have dgo =0occursat W =Wyand P =T = 0. The
set T, contains elements which satisfy W = Wy and P = T = 0, then W = 0
and from the first equation of system (2.1) we get

0=W(t)=p—aWy — Wy [N (t) + nU(t) + nsM(t)] .
Using Wy = p/a we get
mN(t) +nU(t) + n3M(t) = 0.

The nonnegativity of N, U and M implies that N(t) = U(t) = M (¢t) = 0 for
all t. Therefore, T, = {Po} and by applying LaSalle’s invariance principle we
get that Dy is G.A.S [31].

e Ry < 1: In this case we have 420 = 0 occurs at W = Wy and U (t)

T(t) = 0. Hence the set T, contains elements which satisfy W(t) =
U()=P(t)=T(t) =0 and

(t) =

M(t) = —aM(t), (5.2)

N(t) = b / Fa(0)M,dp — eN (1), (5.3)

Following the method presented in [31] we define a Lyapunov function as:

t
~ a

Og = M(t) + 2b7—l3 27_[5 /Hg / M (5)dsdp.
t—p

Therefore, the time derivative of ©¢ along the solutions of system (5.2)-(5.3)
can be calculated as follows:

do a
=5 (M0 + N0 ) <o

Clearly dg;” = 0 if and only if M(t) = N(t) = 0 for all t. Let T/O/ =

{(WUMNPT)eTO-d@o— }then

Tg :{(VV, UM,N,P,T) ¢ Té) W =Wy, U=M:N=P=T=O} ={DPo}.
Hence, all solutions trajectories approach Py and this means that Dy is G.A.S.

O
Lemma 5.1. (i) If Ry <1, then M; < Ms.
(ZZ) [f%g < 1, then Nl < Ng.
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Proof. (i) Let ®; <1, hence % < 1, where Us is given by Eq. (4.11),

Uy < ar__ —B+\/B~2—4AC~' o _am

~ AoHs 24 ~ AoHs

2Aar + )\U"HQB
)\O"HQ

B2 —4AC <

2Aam + A\oH2B
)\O"HQ

2
) +4AC - B? > 0.

Using Eqgs. (4.7), (4.8) and (4.10), we obtain

damen,o(y 4+ N)? [agn, + NHa (b, Hs + en3)]

o (Mz — M) > 0.

Hence, My < Ms.
bA JU.
(ii) Let $2 < 1, hence % < 1, where Us is given by Eq. (4.14).
a
< aeC . —B+ VB2 —4AC < aeC
P = ThAHoHs 24 = TOAHoH3
2AaeC + TOAHo H3 B
Tb)\HgH:;

<2Aaag + TbAHoH3 B

L

B2 —4AC <

2
4AC — B* > 0.
TOAH o H3 ) + -
Using Egs. (4.7), (4.12) and (4.13), we obtain

4a?e(T (any + AnsHa) [aenz + AHa (b Hs + ens)] (v + N)?
V2N2HZH?

(N3 —N1) > 0.

Hence, N; < Nj. O
We consider the following equalities to be used in the proceeding theorems:

o (35) - () e () e (3).
In <W¢g¢> =In (MI;ZL%D) +In <MV3L) ,

(weie) = () == (i)
In (U“J) =1In (g}j}%) +In (g%) ,

U
M<P _ MwNn MnN

Theorem 5.2. Suppose that ®o > 1, Ry <1 and Ry < 1, then Py is G.A.S.

g
7N
Sle
=&
SN—
I
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Proof. We define a functional ©1(W,U, M, N, P,T) as:

O1 =W1F <W>+HU r < U)+W1 (bnnHatens) ( M)
1

U1 age M1

+771W1 NiF < N) n Wy (bniHs +€773)P+ W771W1T
N oae TE
?71W1N1/ / W(%
ds
H( F W1N1
t—p
WU FW()
772 1U1 k2
ds
/H /F< W1U1 )
t—p
t
3W1M1/ / W (3) M ()
dsed
h F WM,y s
t—p

)\Wl (bn1H3+5773 Ul/ N / (U(%)>d%d<p
t—¢

(/1

t—¢

) dxdep.

Calculating dgl as:

dgl—(l Wl)(p aW —mWN — WU — nsW M)

dt w
LG
Ha

W1 (bﬂng + 57}3) 1— %
ag M

/Hl W {771N +772U +U3M¢}d(p ()\—I—’y)U]

A / Ha(p)Uydp — aM — pPM

b/'}:lg((p)M@d(p —eN - wTN}

771W1 Ny
12 =
(-5
mWi

MWl (b’l717'[3 +en3) (ePM — 7TP) + wmi (TTN —¢T)
TE

N N N, N,
1W1 1/3,_[1 [W We £ 4 1n (Wsa ¢>:|d(,0

W1N1 W1Ny WN
WA U, / ) WU WU, W,U,
- I d
o ) [WlUl wo, |\ wo )|
0

K1
773W1M1/ - WM thMgo I/VLP]\L‘(J
—_— - 1 d
+ Hale [WlM1 won, T\ war )| %
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AW, (bm”H3+an3)U172- U ou, U,
Y _Ye i 2e
+ e ) g T T )| %
0

K3
b’thlMl -~ M MLP MLp
gL /ng) [Ml M1—|—ln(M do. (5.5)

0

Collecting terms of Eq. (5.5), we derive

0 W A+ T W.NU
S _ (1 - 1) (p— aW) + WU — -1y — %/%(W)“’iwd@
1

dt w Hq U
w,U,Uy 3 / _ W,M,U;
70? ¥
/Hl e — 22 [ (o) =ty
A AW, (b H U M Wy (bniH
n +7U1 1 (b 3+€773/ L+ 1 (bm 3-|-5773)]\/[1
Hl g
0
WibnmH b Wy W,
L 1(77;€3+6773 m / dgo+n1W1N1+ 77(1€ LN
0

K1
pr Wy (b Hs + en3) w(m W mWiN; / - W,N,
— P — T | d
cae e e T ) de

K1 K1
772W1U1/ - W,U, 773W1M1/ - WM,
- In{ —+—|d - In|{ —-—=|d
+ Hily) n( wo )Mt T Hilp)In { <777 | 4@
0 0

AW Hs (b f AW, (b DU, [ U
n 1H2(Z;H3+En3)U+ 1(7717';:;—#5173) 1/H2(<p)ln(U“") dy

A () 56

Using the equilibrium conditions for Dy, we get

p=aWy +mWi Ny + WUy + nsWi1 My,

A+
MmWiNy + oW1 Uy +nsWi M, = JUl,
AHU bH 5 M
T m, N =T (5.7)

In addition,

Wy (b7717'[3 + 6773) AW1Ho (b7717'[3 + 5773)

mWiNy +n3Wi M = M, = Us.
€ ae
Then, we obtain
doe %% %%
dtl (1 — VV1> (Ole — OZW) + (771W1N1 + 772W1U1 + 773W1M1) (1 — VV1>
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WiN, [ W,N,U Wiy [ WU,
_77111/7_[() 1d—n211/7{1() 24

H, wiN U T T, WiU
0 0
WM, [ WLMU
_ M/Hl o) MUy WANy 4 WU, + ms W M
WM, U

K2
WiNy + nsWi M ¥
~ mWiNy +n3Wi My /’Hg( dap+771W1N1 + n3W1 My

Ho UM

K3
Wi (bmH WiNy [ -
L 1 (b 3+€773)PM1_771 1 1/7-[3(

ag

d W1 N
MN @ +mWi1Ny

p_ YDC’Ith

+ ’W’Ith TNl _ ,U/T('Wl (b7]17‘l3 + 57]3)
€ oag

MWIN, [ - W,N, nzwlUl /
+ /Hl(@ln(WN Hily de
0
ngwlMljl W, M, 771W1N1+773W1M1/7 U,
- = 1 dy In| == |d
I [0 o) Teg? o TN Hale)n( 9 )
0 0
mWiN: [ M,
+ T /’Hg(go)hl(M dep.
0

Using the equalities given by (5.4) in case of n = 1, we get

o W — Wy)? 1% 1%
ditl =- @% — (mWiN1 + neWhUs + nsWi M) {VVI —1-In (VVIH
mWLN, 7 _ W,N,U, W,N,U,
_ Rl g gy Leleli) 1y
w0 ) ) [ WiNLU "\wino )]
neW1ly 7 - W, U, WU,
_hih Pele 4 d
Tl A [ WU “\wo )|
0

1 Wi M, 7 _ W, M, U, W, M,U,
_ Wil Wellott ) gy (Dl |y
Tl ) [ Wi MU "\ wano )|

K2
Wi N Wi M - U, M U,M
~mW 1;[‘773 1 1/7_[2(@)[ ¢ 1_1_1n( v 1>}d<p
2

K3
mWiNy [ M, N, MyNy
T /7—[3(<p) [MlN 1—1In NN dp
0

b
n puWy (bniHs + ens) (Ml B Z) P wwm Wi (N1 7 C) T (5.8)
ae o €
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Therefore, Eq. (5.8) becomes

4o, (W —Wy)? 771W1N17 W,N,U, Wy
a W w )M e ) T de

2W1U1 Wi
[ r () o ()]
_M/* WM, Uy LA}
T Hl(@)l:f(WIMlU 57 )| %
0

771W1N1+773W1M172 — U@Ml
- d
Ho HQ(SO)F UM ¥

B 771W1N1 7 — Male qu (b7717'[3 +5773) .
BT /H3(¢)F<M1N de + e (My — M) P

wm Wi

+ (N1 —N3) T.

Using Lemma 5.1 and since M; < My and Ny < N3 then dgl < 0 for all
W, U, M, N, P,T > 0 with equality holding when

(My — M) P =0, (Ny — N3) T =0, (5.9)
W WeNUi  WoU, WyMUi U,My M,N
=Sl o Dee o e L o e o 2 = te [0,k (5.10)

W, WiINU WU WM, U UM ~ MN

Let T/ be the largest invariant subset of T = {(W,U, M,N, P,T) : =0}. The

trajectories of system (2.1) converge to T;. The set T; is invariant and contains
elements satisfying Eqgs. (5.9) and (5.10). Eq. (5.10) is satisfied when W (t) = Wr,
U(t) = Uy, M(t) = My and N(t) = N;. Now we show that each element in Y
satisfies P(t) = T(t) = 0 for all t. From Eq. (5.9) we have four cases:

e M; = M5 and Ny = N3: From the third and fourth equations of system (2.1)
we get

M(t) = XH2Uy — aMy — pP(t) My, (5.11)

N(t) = bH3M;, — eNy — @wT(t)Ny. (5.12)

0
0=
From the equilibrium conditions (5.7) we get P(t) = T'(t) = 0 for all ¢.

e My = My and N; < N3. From Eq. (5.9) we obtain T(t) = 0 for all ¢.
Moreover, from conditions (5.7) and Eq. (5.11) we obtain P(t) = 0 for all ¢.

e My < My and Ny = N3. Eq. (5.9) gives P(t) = 0 for all t. Moreover, from
conditions (5.7) and Eq. (5.12) we obtain T'(t) = 0 for all ¢.

e My < My and Ny < N3. Eq. (5.9) implies T'(t) = P(¢) = 0 for all ¢.

Then, T} = {P;1} and D; is G.A.S using LaSalle’s invariance principle. O
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Theorem 5.3. For system (2.1), suppose that ®1 > 1 and R4 < 1, then Dy is
G.A.S.

Proof. Define a function O2(W,U, M, N, P,T) as:

w U Wo (b7717'[3 + 8773) ( M )
O, =W- —U. M-
2 2F< ) H 2F (U2> + (0t 1) 2F A

W N Wo (bmH P W-
+771€2NF( )+/J 2 (b 3+€773)P2F< >+w771 27

Ny oe (a+ pPs) P, TE
K1 t
771W2N2/ - / W (3¢)N (5¢)
+ Hi o) |1 WaNy dredp
te
1 t
neWalUs [ - / W (5)U(5)
daed
+ e Hi(y) F( Wl »dyp
0 t—p

Ny (M +en) Us [o [ (U() 5
+ 818 0/H2(¢)/F( )d dy

e(a+ puPy) Uz
t—¢
o Woldy [ FM()
T VV 2 iVl - V4
DRUUEL /’Hg(g@)/F( o )d%dga.
0 t—p

dOs
dt

de 1%
dt2:<1 Mf)(p aW —mWN —nWU —nsWM)

5 0-8)

Wa (b Hs + ens) (1 B -7\/[2)

e(a+ phPs) M
/ ©)Mydp —eN — wTN:|

thz(l_)
9
0

P
pW2 (bmHs +ens) (| Po (0PM — xP) + @i Wa
oe (a+ pP) TE

P
MWy ] WN  W,N, W,N,
MmN [ ] d
L 2 [WQN2 WoN, T v

K1
nNeWolsy / _ wU w,U, wW,U,
2272 _Pele L (BeZe) | g
+ Ha 2 {WzUz WoUs, +in 7
0

We calculate

as:

/7'[1 YWo {m Ny + 02Uy +n3My} dp — ()\+7)U]

A / Ha(p)Uydp — aM — pPM

(rTN —¢T)
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13 Wa My 7 _ WM WM, W, M,
UEME R Ry ™) - 1
LR 1(%) [WZM2 Woldy "\ WM

de

Ao (b YU
n 2 (b Hs + ens) 2/7—[2 {U—%—&-ln(%ﬂdgp

e(a+ pb,) Us U
K3
binWoMy [ - M M, M,
AR S s N Y = . .
I / s(o) [ -3+ (58] |4 (5.13)

Collecting terms of Eq. (5.13), we derive

de W A
2o (1-22) (p— aW) + o Wal + nsWoM — Ty
dt w 1

m g > WSONL,DUQ

- ML Y|
z / (o) E2dp
/ W U U2 3 W M W MU, |
Ha Y

>\+’)/ aWy (b1 Hz+ens) AWy (b7717-[3+51]3)/2 — U,M,

Us— M— H d

H1 ? £ (atuh,) e (atpuh,) %) M
0

aWy (binHs + €n3) Y uWo (b Hs + ens)

e(a+ puPs) 2 e(a+ phy) PM;
AU mﬂg(@) M},;[Nz do-+mWaNs +wn;W2 TN, MVZZ EZH;ZE)&%) p
_ pWa (b Hs +ens) POM + urWeo (b Hs + n3) P, owWgT
e(a+ puhs) oe (a+ uPs) TE
K1
+ 7771‘;‘_1/21]\[2 /7-_11(<p) In (V;ix“v n2W2U2 /7—[1 ) In ( ) dp
0
e

AWq (b7717'l3 + 8773 U2 / U
1 _r
+ ( ,LLP2 HQ n U

bHsm W- bny Wo M- _ M,
+ BZI 20 4 2 62 2/3’-13(4,0)1n (]\f) dep.

Using the equilibrium conditions for Ds:

P = Osz + 7]1W2N2 + 772W2U2 + 7]3W2M2,

A+

M WaNo +noWolUs + n3sWolMs = Us,
1
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z ng
o

)\HQUQ = (a + /,LPQ) MQ, MQ = ) N2 ?Mg (514)

Further,

Wy (b7717'[3 + 6773> . AWoHo (bn1H3 + 5773)
My = Us.

mWaNa +n3WaMy =

€ e(a+ phy)
Therefore, we obtain
do %1% W.
dtQ - <1 - W2) (aWy — aW) + (. WaNa + naWals + nsWaMy) (1 - W2>
K1 K1
. 771W2N2 — W@N@UQ _ 772W2U2 / — W U
/H1 WoNoU d Ha(p) WolU T W

K1
Woly [ - W MU
- %/Hl( WZMwUQ dip + mWaNz + 12 WaUs + 115 W2 Mz

Ko
Wo Ny + nsWo M- _ U
et T2 2/7{2( d<,0+771W2N2+773W2M2

Ha UsM
K3
Wy N. - M, N W. W.
_ mWaN, /Hg(go) N2 b WaN, + 22y, w(m 27
MyN € TE

mWaNy [ W,N, 772W2U2/ WU,
M2z 1 )1
+ e /Hl(go)n<WN)d + Hi(p)In WU dy
0
nsWay [ W, M,
3272 In [ Zelie
+ 28 [ om (T3 ) de
0

K2
WaNy + nsWa M. - U
4 MWala + sV 2/?—[2(90)111 LEAPS
Ha U

Wy N M,
+771 22/7‘[3 IH<M>d(p

Using the equalities given by (5.4) in case of n = 2, we get

o) W — W,)2 W W
Tf =-— a% — (mWaNy + neWolUs + nsWa M) {V[f —1-In (W?)}
MW, 7 _ W, N, U W,N,Us
_ mWalvs DolVeba [ Zele®2)) |y
T ) [ WaNoU "\ Wen,u )Y

1o Wally / _ WU, W,U,
_ 1-1
H Hl(‘p)[WQU "\ Wipo )|
0
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771W2N2 + T]3W2M2 72 — U[PMQ UwMQ
- et g, (%22 g
Hs Hae) | Tod A
K3
mWaNy [ - M,No M, No wm Wa ¢
_mPa 11 Zmie (N, _ ST
Hs /H3(‘P) [ ST VA K 7
0

Eq. (5.15) can be rewritten as follows

A0y (W —Wy)? mW2N27 W,N,Us Wa
o =@ 7 I Hi(p)) |F WoNoU +F dep

772W2U2 Wy
/Hl [(Ww>+F<W)P@
_M/ y We MUz ws
T Hi(p) [F(WQMQU +F (37 )| e
0

K2
WaNo + n3Wo M- _ U, M.
_ mWaNy +nsWs 2/7—[2(@),5( v Q)d@

Ho UM

K3
mWaNy [ - M,Na wn Wa _
e [ (5 ) de+ T (v - N T,

Hence, if 4 < 1, then D4 does not exists since Ty = £(§R4 — 1) < 0. This implies
w

that, T'(t) = T (N - g) T < 0forall T > 0. Thus, Ny < ¢ = Ny. Hence, if R > 1,
then % <0 for all W,U, M, N, P, T > 0 with equality holding when

(N — Ny)T =0, (5.16)

W W,N,U, WU, W,M\U, U,M, M,N,
Wo WaoNU WyU Wo MU UM MsN RASUL A )

Let Y% be the largest invariant subset of To = {(W,U, M,N, P,T) : d@2 =0}. The

trajectories of system (2.1) converge to T/Q. The set Ty is invariant and contains
elements satisfying Eqgs. (5.16) and (5.17). Eq. (5.17) is satisfied when W (t) = Wa,
U(t) = Uy, M(t) = My and N(t) = Ny. Next we show that for each element in T
we get P(t) = Py and T'(t) = 0 for all . From Eq. (5.16) we have two cases:

e Ny = Ny : From the third and fourth equations of system (2.1) we get

M(t) = XHoUz — aMy — pP(t) Mo, (5.18)

0
0 N(t) = ngMQ — €N2 — wT(t)Ng (519)

From the equilibrium conditions (5.14) we get P(t) = P, and T'(t) = 0 for all
t.
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e Ny < Ny : From Eq. (5.16) we get T(t) = 0 for all £. Moreover, from
conditions (5.14) and Eq. (5.18) we obtain P(t) = P, for all ¢.

Therefore, TIQ = {Py}. LaSalle’s invariance principle implies that Dy is G.A.S.
O

Theorem 5.4. Suppose that Ry > 1 and R3 < 1, then D3 is G.A.S.

Proof. Define a function O3(W,U, M, N, P,T) as:
W U Ws [bmHs + n3 (e + wT3)] M
03 =W. —U. M.
3 3F< )+H1 3F ((]3,)+ a(€+wT3) 3F M3

mWs F N n puWs [bniHs + 03 (e + wT3)]
e+ wTl; Ns Ns oa (e + wTs)

P

+

t

wn W3 T 771W:'51\73/N1 / ( ))
—_—_— _ dd
+ T(E —‘erg,) sk <T3> + Hq H F W3N3 S
0 t—p
Wals [ [ (WU ()
N2W3Us - V4 ”
_ ———— ) dd
* H1 /’Hl(cp) / F( W3Us > %90
0 t—p

+7USZ31M3 07711(90) j r (Wﬁiﬂﬂj;%))d%dso

t—p

t
RE (o Hs + 13 (e + wT3)] Us / / U(>)
dsed
a(e+ wTs) Haly) ! 3 e

ot oo [ 1 (M)

We calculate Tts as:

40 W
s (1 _ 3) (p— aW — mWN — WU — 515 W M)

w

50-9)

Ws [bnHs + 13 (e + wT3)] 1_ %
a (e + wTs) M

/H1 YW {Am Ny +n2Uy +n3My} dp — (/\+7)U]

/\/7:12(S0)U¢d<p —alM — ;LPM]

mWs (1 N3) /H3 YM,dp — eN — @TN

g +’WT3
pWs b Hs+ns (s—i—ng)] wm W3 Ty
PM—7mP)4+—F——— | 1—— TN—-CT
+ oa(e+wT3) (o " )+7’ (e+wTs) T (7 ¢T)

K1
7’]1W3N3/ - WN W N WsaNLp
—_ In|{ —>]|d
) ) [WgN3 W, T e )|
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K1
772W3U3/ _ wu w,U, W,U,
—_— In| —=)|d
) ) {WBU3 W, T )|
0

Waly | WM WM WM
UELE 3/7{1(@)[ Wy “"—&—ln( @ “")}dgp
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W3 Ms W3 Mj WM
W3 [b7717'[3 + 773 €+ ng U; / ULP
— ——F—+In(-=-=%])|d
+ (E+TDT3 /HQ U3 + . U 14
K3
bnWsMs [ - M M, M,
_ — — —Y— +In| -+ . 2
T /HS(@ [Mg i, o )| (5.20)
0

Collecting terms of Eq. (5.20), using the equilibrium conditions for D3

p = aWs +nW3N3 + n2W3Usz + nsWsMs,

A+
M W3N3 +naW3Usz + nsWaMsz = JU?,,
AHoU:
% =Ms;, N3= % bH3Ms = (¢ + @) Na, (5.21)

and using the equalities given by (5.4) in case of n = 3, we get

dO; (W —Ws3)?2  mWsNs 7 - W,N,Us Ws
el 7 Hi(p) | F WaN.U +F W dyp

T Ha(p) [F<W3U +F i do
0

e Ha(p) [F<W3M3U +F T dy
0

T]1W3N3 + 773W3M3 72 — U@Mg
— d
0 Rl { g ) 4

mWsN3 73 Y MwN3>
ey —)d
7‘[3 3(@)F < Mg,N g
0
n pWs [bmHs + ns (€ + wT3)] (M3 — My) P.
a(e + wls)

Hence, if i3 < 1, then D4 does not exists since Py = % (R3 — 1) < 0. This implies
that, P(t) = O'(M— g)P <0 for all P > 0. Thus, M3 < T = M. Then % <0
for all W, U, M, N, P, T > 0 with equality holding when

(Ms — My) P =0, (5.22)
W WoNUs _ WUy _ WoMpUs _ UMy _ MoNy _ o (o

Wi W3N3U WsU WsMsU ~— UsM ~ M3N
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Let T% be the largest invariant subset of Y5 = {(VV, UM,N,PT): d@3 = O} The
trajectories of system (2.1) converge to T;. The set T3 contains elements satisfying
Egs. (5.22) and (5.23). Eq. (5.23) is satisfied when W(t) = W3, U(t) = Us,
M(t) = M3 and N(t) = N3. Next we show that for each element in T35 we get
P(t) =0 and T'(t) = T3 for all . From Eq. (5.22) we have two cases:

e M3 = My : From the third and fourth equations of system (2.1) we get

0 M(t) = )\H2U3 - aM3 — [LP(t)Mg, (524)

0= N(t) = bH3M3 - ENg - wT(t)Ng, (525)
From the equilibrium conditions (5.21) we get P(t) = 0 and T'(¢) = T3 for all
t.

o M3 < M, : From Eq. (5.22) we get P(¢t) = 0 for all t. Moreover, from
conditions (5.21) and Eq. (5.25) we obtain T'(¢t) = T3 for all ¢.

Therefore, T; = {P3}. Applying LaSalle’s invariance principle we get D3 is
G.A.S. O
Theorem 5.5. If R3 > 1 and R4 > 1, then Dy is G.A.S.

Proof. Define O,(W,U, M, N, P,T) as:

%% 1 U Wy [binHs + 13 (e + wTy)] < M >
0, =W. —U. — M. e
1=l <W) N (U> M EE= Y PR A R T

mWy N Wy [binHs + 3 (€ + @wTy)] ( P )
————Nu4F + L
et+wly < ) o (e +wTy) (a+ uPy) *

Py
K1 t
w771W4 T 771W4N4/ — / W(%)N(%)
— T, _ —————= | dxd
" 7 (e + wTy) v <T4> * Ha Hale) |1 WyNy e
0

t—p

0

+

WaUy
t—¢p

K1 t
773W4M4 / — / W(%)M(%)
+ H1 i) | F Wyl dredp
0 t—p

t
AWy [b7717'[3 +n3 (e + wT4 Uy / / (U(%)
+ (e + wTy) (a + uPy) #a () F U,
) dxdp

> dxdp
t

b
b WyMy /H /F(
€+WT4

t—¢

Calculatmg 4 as:

do Ww.
7754 = (1— VV4> (p—aW —mWN — WU — nsWM)
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5 0-8)

Wy b Hs + n3 (e + @Ty)] < - M4>
(e +@Ty) (a + uPy) M

771W4
1— =
t 2 + @iy ( )
uWa [bmHs + 3 (e + wT4)] Py
1—-2)(¢PM — P
o (e + @Ty) (a + pPy) P ) mP)

wn Wy Ty
7 (e + @Ty) (1 - T) (rTN —¢T)

K1
771W4N4/ - WN W N WgoNLp
mWalg (e | g

ATl L {mz\f4 W, T e )|

/"H YW {m Ny + Uy +n3Mytde — (A +~)U
0

A/ﬁz(w)U@dap —aM — uPM

/7—[3 YM,dp —eN —wTN

K1
w,U. _ wU W.,U, wW,U,
I 44/7_[1(@){ B “’w—f—ln( wv)]d(p

Hl W4U4 W4U4 wU

K1
sWy M, _ WM WM, W, M
4 18Wa 4/7_[1(@ [ 2 1 1n ( @ “’)}d(p

WiMy Wil WM
AWy b Hs + 03 (e + @wTy)] U4/ [ (U )]
(o) | L = Ye 4 d
(e + wly) (a+ pby) e i 7 A
K3
b771W4M4/ _ M M, M,
_ — — —% +1In d 2
i [ |3y - 3+ (57 ) ae (5.26)
0

Collecting terms of Eq. (5.26), we obtain

0,
it
W A
1= 22 (p— aW) + mWaN + Wil + ngWall — 2t g7
%% Ha
mo [ WoNJUy / W, UU,s
_ d
Hy /Hl( =7 a U

Uy —

5 [ W, M,Uy Aty aWy [bmHs + 03 (e + wTy)]
H ———d M
/ ' LT (e + Ty (a + pPy)

>\W4 [b’l]lng + n3 (5 + ’(DT4 U M4
Ha(p)—2——dyp
(e + wTy) (a + pPy) M

aWy [bnHs + 13 (e + WT4)]

(c+@lh) (a+puPy)
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K3
uWyalbm Hs+ns (e+wTy)] eN by Wy / _
PMy—m W, — H
(e+wTy) (a+pPy) i Yot wly etwly 3
0
eNy wl Ny [L7TW4 [b7717'l3 + 13 (8 + ’CUT4)]
W W -
I o (e + wTy) (a+ pPy)
~ pWa b Hs + 3 (e + wTy)] PM 4+ purWy [bnHs + 03 (€ + wTy)]
(e + @Ty) (a+ pPy) o (e +@Ty) (a+ pPy)
w(T
o W5
ez (e + wTy)

K1

wT4N WCT4 771W4N4 / — WLpNga

—mWi—— W, 1 d
n 4E+WT4+7]1 4T(€+wT4)+ H1 Hl(‘P) . v

772W4U4 W, TISW4M4/ WoM,
+ /H1 ln(WU)d + — Hl WM d(p

AW Ho [57717'[3 + 73 (E + ZUT4)]
(e +@Ty) (a + phy)

)\W4[b’l717'[3+773 €+?DT4 U4/H <U)d
(e + wTy) (a + pPy) ? v )%

+ b7717'13W4 b771W4M4 /7'[3 ) In dy
€+ wT4 e+ wly

Using the equilibrium conditions for Dy:

p=aWy +mWiNy + WUy + n3WiMy,

A+
MWaNy +2WaUg + n3WyMy = TJU%

)\H2U4 = (Cl + ,UP4) ]\447 bH3M4 = (6 + wT4) N4,

M4:za N4:£7
o T

we obtain

Wy b Hs + 03 (e + @Ty)]
e+ wly

o AWaHo b Hs + 03 (e + wTy)]

n (E + wT4) ((l + /LP4)

MWaNy +n3WiMy =

My

U,.

Moreover, we get

de W, W.
dt4 (1 - W4> (aWy — aW) + (mWaNsg + noWaUs + nsWally) (1 - Wil>

K1 K1
’171W4N4/ — W¢N¢U4 7]2W4U4/ — WgoULp
_ = == do —
M) N M) o
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K1
Wy, W, M, U,
- %/H (¢ )Wd@+U1W4N4+772W4U4+773W4M4
1
0

Ko
~ mWyNy + nsWylM,y /7_—1 ) U
Ho UM

2o+ mWaNy + nsWyM,y

W,N. WaNs [ - W,N.
- mWy 4/7_[3 M, 4dap+mﬂ’4N4+n1 4 4/7_[1(90)111 ERCRP
Hq WN

’172W4U4 773W4M4/ Ww. M‘P
)1 _ YIn (| —*
/’H1 n< ) do + Hi(p)In W dy

771W4N4+773W4M4/ - U, 771W4N4/ - M,
In{ =% )d _—_ : In | —= | do.
+ Hs Halo) I 77 | ot === [ Hale)n | T | de
0 0

Using the equalities given by (5.4) in case of n = 4, we get

e W — Wy)2 W, W,
7; =- a% — (MWaNg + a2 WaUy + nsWaMy) {VVAI —1—1In ( VV4>}
mWiNy [ - W,N,Us W,N,Us
_ mWalte Pol¥ols gy (Zeltedd) |y
H, /HW) [ WiN,U \wano )|

Wiy [ (WU, . (WU,
n / Hl(gp)[Ww G )| %
0

nsWaly [ W,M,U, W, M,U,
_ sWalla Welloa )y (Delleta) |y
H /Hl(@ [ Wi MU "\ wano )%

~ mWaNy + nsWally /7:[2(@ [UapMzL 1 (U¢M4>} dy

H2 U4M U4M
0
K3
mWaNy [ M,Ny M,N,
- —1-1 . 2
et [t | ey -1 (e )| (5.27)

Eq. (5.27) can be simplified as follows

9y (W -Wy)?* mWiNy 7 - W,N,Uy Wi
a Y w ol UL D vl Rt di

Wil / - WU, Wi
7 Ha(e) [F ( wo ) TE )| 4
0

N3WalMy 7 ~ W, MUy Wy
_34rd M it ke MNP
o) [F ( woano ) TP \w )]
0
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Ko
W,N. WM. _ U, M,
_ mWaNy +nsWy 4/7—[2(@),5( 0 4)dg0
0

Ho UM
K3
771W4N4/ ~ M,Ny
—— | H do.
s 3(p)F ( MN )%
0

Hence, if 3 > 1 and R4 > 1, then % < 0 for all W, U, M, N, P,T > 0. Similar
to the previous Theorems one can show that dd@t4 =0 when W = Wy, U = Uy,
M = My and N = Ny. The solutions of system (2.1) tend to T; the largest invariant
subset of Ty = {(T/V, UM,N,P,T): % = 0}. The set T; contains elements with
U(t) = Uy, M(t) = My, N(t) = Ny, then M(t) = N(t) = 0 and from the third and
fourth equations of system (2.1) we have

M(t) = \Uy — aMy — pP(t) My,

N(t) = bM4 — 8N4 — wT(t)N4,

0
0

which give P(t) = P, and T(t) = Ty for all t. Therefore, Y, = {D,}. Applying
LaSalle’s invariance principle we get Dy is G.A.S. O

6. Numerical results

In this section, we illustrate the results of Theorems 5.1-5.5 by performing numerical
simulations. We study the influence of CTC transmission and time delays on the
dynamical behavior of the system. We choose dirac delta function D(.) as a special
form of A;(.):

Ai(x):D(x_@i)a (Pie[ov"{'i]a i=1,2,3,

Let x; tends to oo, then the properties of as D(.) implies that:

oo

/Ajk)dc:l, H, =/D(c—soﬂe"’lﬂdc:e—ﬁﬂj, j=1,2,3.
0 0

Then, model (2.1) will take the following form:

W=p—aW —mWN — WU —nsWM,

U= e MPW, Ny, + Uy, + 1My, ] — (A +7) T,
M = Xe "2%2U,, —aM — uPM,

N =be "% M, —eN — wTN,

P=0PM — 1P,

T =7TN —(T.

For model (6.1), the threshold parameters are given by:

Woe—ﬁum [05772 + \e~ T2z (bnle_ﬁw?’ + 57]3)] )\Ge_ﬁQ‘p?Ug
§RO = ) §R1 = )
ae (7 + A) am
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bhe— (Fap2+hses) ), Age 2@y be—Tiaws
R, = 70N 8 g, =20 O g T T (6.2)

asC am oeC

To solve system (6.1) numerically we fix the values of some parameters (see Table
2) and the other will be varied.

Table 2. Some values of the parameters of model (6.1).

Parameter Value Parameter Value Parameter Value Parameter Value

p 10 vy 0.2 o Varied hs 0.3
« 0.01 A 0.2 T Varied ©1 Varied
m Varied b 5 w 0.3 2 Varied
N2 Varied ™ 0.1 ¢ 0.2 V3 Varied
13 Varied I 0.2 hi 0.1

a 0.5 € 2 ho 0.2

6.1. Stability of the equilibria

In this subsection, we take the values ¢1 = 3, 92 = 2 and 3 = 1 and choose the
following three different initial conditions for model (6.1):

IV-1 : W(p),U(e), M(p),N(p), P(¢),T(p)) = (500,5,0.8,0.8,3,9), (Solid
lines in the figures),

IV-2: (W(p),U(e), M(p), N(¢),P(p),T(p)) = (650,4,0.6,0.6,2,6), (Dashed
lines in the figures),

IV-3: (W(p),U(p), M(p),N(p), P(¢),T(¢)) = (800,3,0.4,0.4,1,3). (Dotted
lines in the figures), where ¢ € [—3,0].

Choosing selected values of 11, 172, 73, o and 7 under the above initial conditions
leads to the following cases:

Stability of Dg. m = 0.0003, n2 = 0.00001, n3 = 0.0001, ¢ = 0.002 and
7 = 0.003. For this set of parameters, we have Ry = 0.34 < 1. Figure 1 displays
that the trajectories initiating with IV-1, IV2 and IV-3 reach the equilibrium By =
(1000, 0,0,0,0,0). This show that By is G.A.S according to Theorem 5.1. In this
case the HIV particles will be cleared from the body.

Stability of D;. 1, = 0.003, n; = 0.00002, 3 = 0.001, ¢ = 0.002 and 7 =
0.003. With such choice we get g =3.29 > 1, R; =0.10 < land R =0.13 < 1. It
is clear that the equilibrium point D, exists with D, = (303.7,12.90, 3.46, 6.40, 0, 0).
Figure 2 displays that the trajectories initiating with IV-1, IV2 and IV-3 tend to
D1. Therefore, the numerical results supports Theorem 5.2. This case represents
the persistence of the HIV infection but with unstimulated immune responses.

Stability of Dy. n; = 0.003, 1, = 0.00002, 13 = 0.001, 0 = 0.2 and 7 = 0.003.
Then, we calculate ®; = 2.50 > 1 and R = 0.13 < 1. In Figure 3 we show
that Dy = (747.86,4.67,0.5,0.93,3.76,0) exists and it is G.A.S and this agrees
Theorem 5.3. Hence a chronic HIV infection with CTL-mediated immune response
is attained.

Stability of D3. n; = 0.003, 172 = 0.00002, n3 = 0.001, ¢ = 0.002 and 7 = 0.3.
Then, we calculate 5 = 3.45 > 1 and R3 = 0.08 < 1. The numerical results plotted
in Figure 4 show that D3 = (749.94,4.63,1.24,0.67,0, 16.33) exists and it is G.A.S
and this agrees Theorem 5.4. As a result a chronic HIV infection with antibody
immune response is attained.
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Stability of P4. n; = 0.003, 2 = 0.00002, n3 = 0.001, 0 = 0.2 and 7 = 0.3.
Then, we calculate 3 = 2.03 > 1 and R4 = 1.39 > 1. The numerical results
displayed in Figure 5 show that P, = (795.17,3.79,0.5,0.67, 2.59, 2.59) exists and it
is G.A.S according to Theorem 5.5. In this case a chronic HIV infection is attained
where both CTL-mediated and antibody immune responses are working.

——IV-1 = = —IV-2 = V-3

e .
= 1
700 1
I
600 b
— V-1 - - =IV-2 = IV-3
500
0 100 200 300 400 500 600 700 0 10 20 30 40 50
t t
(a) Healthy CD4"T cells (b) Silent HIV-infected cells
0.8 ; ; : : : 1 ; ; : : :
—1IV-1 - - -1IV-2 —1IV-1 - --IV-2
0.7

= 04 1 s
0.3 1
0.2 1
0.1 1
0
0 10 20 30 40 50 60 40 50 60
t t
(c) Active HIV-infected cells (d) Free HIV particles
3 10
— 1V - - -IV-2 = IV-3 — IV - - -IV-2 = IV-3
251 1
25 1
J
A}
S sl 1 e
= 1.5 \‘ =
\
1 Y g
40 60 80 30 40
t t
(e) HIV-specific CTLs (f) HIV-specific antibodies

Figure 1. The behavior of solution trajectories of system (6.1) in case of Ry < 1.
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Figure 2. The behavior of solution trajectories of system (6.1) in case of Rg > 1, 1 < 1 and Ry < 1.
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Figure 3. The behavior of solution trajectories of system (6.1) in case of 1 > 1 and R4 < 1.
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Figure 4. The behavior of solution trajectories of system (6.1) in case of 2 > 1 and R3 < 1.
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Figure 5. The behavior of solution trajectories of system (6.1) in case of 3 > 1 and R4 > 1.

6.2. Effect of time delays on the HIV dynamics

In this part we vary the delays parameters o1, @2 and ¢3 and fix the parameters
71 = 0.003, o = 0.00002, n3 = 0.001, 0 = 0.2 and 7 = 0.3. Since R, given by Eq.
(6.2) depends on ¢1, p2 and @3, then changing the parameters o1, @9 and 3 will
change the stability of equilibria. Let us take the following values:

(I) o1 =2 =3 =0,
(IT) 1 =4, g2 = 3 and @3 = 2,
(III) ¢y =5, w2 = 4 and p3 = 3,
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(V) 1 =7, ¢2 =6 and @3 = 5.

With these values we solve system (6.1) under initial condition IV-3. The nu-
merical solutions are displayed in Figure 6. We observe that inclusion of time delays
can significantly increase the concentration of the healthy CD4* T cells and reduce
the concentrations other compartments.
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Figure 6. The influence of time delay parameters on the behavior of solution trajectories of system
(6.1).

In Table 3 we present the values Ry for selected values of 1, o and @s. It is
clear that Ry is decreased when @1, w5 and @3 are increased and the stability of Dy
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will be is changed. Now we want to calculate the critical value of the time delay
that changes the stability of Dg. To do so we fix the parameters s and @3 and
write Ry as a function of ¢ as:

Wye e [asng + \e hew2 (bme‘ﬁ?’“’?’ + 5773)]

Roler) = ae (7 + N)

When Ry (¢1) < 1, we obtain

. . 1 Wo {aeno+Ae2¢2 (by e~ "a%2 4-en3) }
> min h min — O , 1 .
©1 > O where ¢} max{ 7 ( ey

Therefore, if ¢1 > 1" then Dy is G.A.S. Let o = 5 and ¢3 = 4 and compute
PN a5 N = 2.92266. Then we have the following:

(i) If 1 > 2.22266, then Rp(¢1) < 1 and Dy is G.A.S.

(ii) If o1 < 2.22266, then Ro(p1) > 1 and Dy will lose it stability and one of the
other equilibria will be G.A.S.

Table 3. The values of Ry for selected values of delay parameters.

Delay parameters Ro

Y1 =2 =p3,=0 8.55
p1=3,p2=2,p3=1 3.29
w1 =4, p2 =3, Y3 =2, 1.92
w1 =05, 2 =4, p3=3 1.13
w1 =06, p2 =5, p3=4 0.69
01 =7, 02 =06, p3=D5H 0.42

6.3. Effects of CTC transmission

In this subsection, we investigate the influence of different mode of transmissions
on the HIV dynamics (6.1). We use the parameters given in Table 2 and choose
the values 0 = 0.05, 7 = 0.3, 1 = 3, 2 = 2, p3 = 1 with the following initial
condition:

IV-4 (W(p),U(p), M(p), N(¢), P(¢), T(¢)) = (600,10,2,0.5,1,20), where ¢ €
[-3,0].

We choose three sets of parameters 77, 72 and 73 and investigate the following
illustrative cases:

Case 1: HIV dynamics with VTC, silent-CTC and active-CTC transmissions:
Here we consider the parameters n; = 0.005, n2 = 0.002 and 73 = 0.003. Fig-
ure 7 shows that the solutions of the system approach the equilibrium by =
(205,14.72,2,0.67,2.43,30.37).

Case 2: HIV dynamics with VTC, silent-CTC and active-CTC transmissions:
In this case, we choose the parameters 17; = 0.004, 7, = 0.001 and n3 = 0.002. We
can see from Figure 7 that the trajectories of the system tend to the equilibrium
b, = (347.9006, 12.08,2,0.67, 1.55,30.37).

Case 3: HIV dynamics with both VT'C and active-CTC transmissions: In
this case, we select the values 173 = 0.003, 7o = 0.0 and 13 = 0.001. From
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Figure 7, we observe that the solution trajectories converge to the equilibrium
b3 = (757.27,4.50,1.21,0.67,0, 15.66).

Case 4: HIV dynamics with only VTC transmission: Here, we consider the
values 771 = 0.002, ne = n3 = 0.00. Figure 7 displays that the solution trajectories
approach the equilibrium D3 = (882.35,2.18,0.58,0.67,0,4.15).
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Figure 7. The evolution of HIV dynamics (6.1) under different modes of transmissions.

Case 5: HIV dynamics with only VTC transmission: In this situation, we pick
the parameters 777 = 0.001, 172 = n3 = 0.0. It is clear from Figure 7 that the solution
trajectories reach the equilibrium By = (1000, 0, 0,0, 0,0).
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From the above we note that the presence of silent-CTC and/or active-CTC
transmissions increase the infection rate. As a result, the concentration of the
healthy cells is decreased while the concentrations of silent/active infected cells,
free HIV particles, CTL cells and antibodies are increased as shown in Figure 7.

7. Conclusion and discussion

In this work, we proposed an HIV dynamics model in the presence of CTLs and an-
tibodies. Three types of distributed-time delays were incorporated into the model.
We took into consideration two routes of transmission, VITC and CTC. The CTC
transmission is due to (i) the contact between healthy CD4TT cells and silent
HIV-infected cells, and (ii) the contact between healthy CD4TT cells and active
HIV-infected cells. We proved that the solutions of the model are nonnegative
and bounded. We showed that the model has five possible equilibria, and their
existence is determined by five threshold parameters. We investigated the global
asymptotic stability of all equilibria by constructing Lyapunov functionals and ap-
plying LaSalle’s invariance principle. We conducted numerical simulations to il-
lustrate the results of Theorems 5.1-5.5. We studied the influence of time delay
and CTC transmission on the dynamical behavior of the system. Numerical simu-
lation of our proposed model give the following results. (1) The results indicated
that the intracellular delay is one of the key factors in controlling the disease. (2)
The presence of CTC transmission poses a challenge to the existing antiviral drug
treatments. Thus, such transmission will increase the infection progression within
the host. Those findings might be helpful in designing treatment for the control of
HIV infection. Our proposed HIV dynamics model can be generalized and extended
to incorporate different biological effects such as reaction-diffusion [3,4,12,13] and
stochastic interactions [29].
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