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Abstract In this paper we study the three dimensional incompressible gener-
alized rotating magnetohydrodynamics equations. By using littlewood-Paley
decomposition, we obtain the global well-posedness result for small initial data
L4—20— 8-
belong to critical variable exponent Fourier-Besov spaces 7.2, )a *C) This
paper extends some recent work about generalized Navier-Stokes equations.
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1. Introduction

In this paper we consider the 3D incompressible generalized rotating magnetohy-
drodynamics (grMHD) equations:

g+ (u-V)u+ p(—=A)%u — (B-V)B+Qez xu+ VP =0 inR3xR,,

Bi+ (u-V)B+~(—=A)*B—(B-V)u=0 in R® x R,

divu =0 in R3 x R,

u(0, z) = ugp(x) in R® x R,
(erMHD)

where u = (u1, us, ug) is the velocity field of the fluid, % <a<1,V=(0z,00,,0z),
divu = Oy, u1 + Og,us + Oy ug, the operator (—A)® is the Fourier multiplier with
symbol [¢|?*, P = p + %|B|? in which p is the pressure and B is the magnetic
field, p is the viscosity coefficient, 7 is the diffusion of magnetic field and 2 € R
denotes twice the speed of rotation around the vertical unit vector es = (0,0,1).
For simplicity, we take = v = 1 throughout the paper.
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For a = 1, mathematically, the grMHD equations explain why the earth has
non-zero large scale magnetic field whose polarity turns out to invert over several
hundred centuries. For more detailed explanation, one can refer to [7] and references
therein.

When Q = 0, the grMHD equations reduce to the generalized MHD equations,
which deals with magnetic properties of electrically conducting fluids. Duvaut and
Lions [14] proved a global weak solution to MHD for initial data with finite energy.
Since Baraka and Toumlilin [15] established the global well-posedness for general-
ized MHD equations with small initial data belonging to the critical Fourier-Besov-
Morrey spaces, 3D MHD equation remains an outstanding mathematical problem
whether there always exists a global smooth solution for smooth initial data. For
more results in this direction, one can refer to [27,37,40] and references therein.

When « = 1, B =0 and 2 # 0, Babin, Mahalov and Nicolaenko [3,4] proved the
global existence to the system grMHD with periodic initial velocity in the case ||
is enough large. Hieber and Shibata [19] proved the uniform global well-posedness
for small initial data in H 2 (R?)? where Chemin, Desjardins, Gallagher and Grenier
[7] proved that there exist a unique solution in the case |Q2| > € > 0 for some
Qo = Qo(up), if ug is the given divergence free initial velocity belonging to L?(R?)+
Hz(R3). Iwabuchi and Takada [21] proved the existence of global unique solutions
to the Navier-Stokes equations with Coriolis force in Sobolev spaces H*(R?) with
L<s< % if the speed of rotation 2 is sufficiently large. Moreover, Iwabuchi
and Takada [22] also proved the global in time existence and the uniqueness of the
mild solution for small initial data in Fourier-Besov spaces F@i 5(R?). Recently
Wang and Wu [35] proved the global mild solution of the generalized Navier-Stokes
equations with Coriolis force, if the initial data are in X172 := {u € D'(R3) :
Jaa [€172[A(8)|dg < 400}

For 2 = 0 and B = 0, the grMHD equations reduce to the fractional Navier-
Stokes equations (FNS). Lions [30] proved the global existence of classical in 3D
when a > 2(see also Wu [38] in n dimensions). Wu [39] studied the well-posedness

3
for the important case o < 2 in :@;’;2&+;. Dong and Li [13] established the optimal
local smoothing estimates of solutions to (FNS) in Lebesgue spaces. Inspired by
Xiao [41] in the classical case aw = 1, Li and Zhai [29] studied FNS in some critical
Q-type sapces for o € (3,1) and Zhai [42] showed the well-posedness in BM O~

for & € (3,1). Deng and Yao [11] studied FNS in Triebel-Lizorkin spaces F_f‘ and
obtained the well-posedness in Fg_/?aq) , and ill-posedness in FS_/?afl) ,(r>2)in
the case for a € (1,5). Recently Baraka and Toumlilin [16] studied FNS in the
critical case for a > % when a small uy belongs to Fourier-Besov-Morrey space
Sl-2a+5 42

VTR (R3),

FN,rg

When a =1, Q = 0 and B = 0, the grMHD equations reduce to the classical
Navier Stokes equations, which have been intensively studied. In this case, Kato and
Fujita [18,24] transformed the classical incompressible Navier-Stokes equations into
an integral equation and proved its local existence in some Lebesgue and Sobolev
spaces. Kato [23] proved that Navier Stokes equations are locally well-posed in
L3(R?) and globally well-posed if the initial data are small in the Lebesgue space
L3(R3). Koch and Tataru [25] studied the well-posedness for the Navier stokes
equations in BMO~!. However, the ill-posedness of Navier stokes equations in
the largest critical space Bo_olm was proved by Bourgain and Pavlovié¢ [6]. Recently
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Navier Stokes equations are studied in Fourier Besov spaces F. %Z ¢ by many authors,
such as [5,26,28].
In this paper we study the global well-posedness for grMHD equations with small

data in the variable exponent Fourier-Besov spaces F. %;E;q Spaces of variable
integrability, also known as Lebesgue space LP()(R™), have been widely used in
harmonic analysis, see [9,10]. Apart from theoretical consideration, the variable
exponent function spaces have interesting applications in fluid dynamics [1, 33],
image processing [8] and partial differential equations [17]. However, due to the
special structure of the space with variable, one cannot apply it to the global well-
posedness of Navier-Stokes equations. In this paper, by combining the proof of
propositions of frequency space and the definition of variable exponent Fourier-
Besov spaces, we show the global well-posedness of (grMHD) equations in variable
exponent frequency spaces. We avoid the discussion of the value of €2 because our
work space is in the frequency space rather than the physical space. In fact, the
value of {2 cannot be large in some physical models.

2. Preliminaries
Let Py be the set of all measurable functions p(-) : R™ — (0, co] such that

p— = essinf cpap(x) , p4 = esssupp(z).
For p € Po(R™), let LP(-)(R™) be the set of all measurable functions f on R™ such
that for some A > 0,

RS2
oot = [ a

The infimum of such A is denoted by ||f| »).The set LP()(R™) becomes a quasi
Banach function space when equipped with Luxemburge-Nakano norm || f||z») (
[31,34]), where

[ fllzrer = inf{A > 0: 0,y (f/A) < 1}

We postulate the following standard conditions to ensure that the Hardy-Maximal
operator M is bounded on LP)(R™):

1) p is said to satisfy the Locally log-Holder’s continuous condition if there ex-
ists a positive constant Cioe(p) such that |p(z) — p(y)| < log(ﬁ?%’ (for all
z,y € R,z # y);

2) p is said to satisfy the Globally-log-Hélder’s continuous condition if there ex-
ists a positive constant Cjoq(p) and peo, such that [p(x) — peo| < %, (for all
x € R™).

We use Cioq(R™) as the set of all real valued functions p : R™ — R satisfying (1)
and (2).

Let us recall the littlewood-Paley (or dyadic) decomposition. Let S be the
Schwartz class of rapidly decreasing functions. Choose two non negative radial
functions x, ¢ € S(R") satisfying

4
supp x C {{ € R : [¢] < 5}7
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L4 8
supp ¢ C {£ € R :gé\élég},

©+> p27¢) =16 R,

72>0

D (2796 =1,£ e R"/{0},

JEZ

and denote ¢; (&) = ¢(277¢) and h; = F~'y;, we define the frequency localization
operator as follows

Aju = Fﬁlcpjfu = / hj(y)u(z — y)dy,Vj € Z,

Informally, A; = S; — S;_1 is a frequency projection to the annulus {|¢] ~ 27},
while S; is a frequency projection to the ball {|¢] < 27}. One can easily obtain that

AjA,=0if|j—k|>2 and  A(Sp_1uldgu) =0if [j — k| > 5.

Let p(-),q(-) € Po(R™) we use £90)(LP()) to denote the space consisting of all
sequences {g,} ez of measurable functions on R™ such that

. £
{5} iezlleacs (Locry = inf{p >0, Qeqt)(Lm-))({;]}jeZ) <1} < oo,

where
‘ Fi (@) \pa
0ty ooy ({Fi}iez) = Y inf{A>0: / (| i )|)p( Vda < 1}.
kEZ avc)
Since we assume that ¢y < 00, 0pe) (o) ({fi}jez) = ;7 I1F5170) H zy holds.

aC)
Definition 2.1. let p(-), q(-) € C°IR*NPy(R™) and s(-) € C9(R™). The homoge-
neous Besov space with variable exponents %;8 4( 18 the collection of f € S'(R™)
such that

%S()q( ={fes: ||f||%5() " < oo},
1 llggeey = I{27°0A; fYjenllwor pocy < 00
where &' denotes the dual space of S(R") = {f € S(R™) : (D*f)(0) = 0,Va}.

For T > 0 and p € [1, 0], we denote by L(0,T, %;8 ,) the set of all tempered
distribution u satisfying

o
is(- 1
el oo gaer = I 1270 Agullne) 7 s, < oo
0,17,2,05,) T
p(),r n
Jj=0

The mixed L* (0,7, .@;8 ,.) is the set of all tempered distribution u satisfying

is(- 1
HuHZp(o’T,g‘g;E‘_; y T (E ”2]&( )AJUHE;LPM)T < oo.
5T jEZ
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For simplicity, we denote

p () . 75() Foops() s()
Ly =100, T, ) ) and L) = LP(0,T, 55 ).

By virtue of the Minkowski inequality, we have
o g3() < oy i p <
izg g, < Wl o <
ORI ~p sy if T < p.
HUHL%@p((.;,T > HUHLQT”@,)((.;,T ifr < P

To obtain the local well-posedness of grMHD equations in the space with vari-
able, we need to introduce the following spaces.

Definition 2.2 (Homogeneous Fourier-Besov spaces with variable exponents). let
p(-),q(-) € C’l"gR" ﬂ Po(R™) and s(-) € C'9(R™), the variable exponent Fourier-
Besov space ]—"%’ ) 4( 18 the collection of all f € §'(R") such that

||f||fg,>;<(~_>) o = ||{2j8(~)90jf}(ioooHZ‘I(')LP(*) < o0.

Similarly, we denote by E”(O7 T,F %;E;T) the set of all tempered distribution u

satisfying
Iz 0.z )y = Q120007 1) ™ < 00
' kEZ

Proposition 2.1. The following inclusions holds for the variable exponent function
spaces.
(1) Holder 1nequahty [12]: (Jgn |f(x Vg(z[7dz) ™ < C|If]| g @) N9l Lo ey
where 1 =t l<n<oo fe L”l( )(R™) and g € L") (R™). Moreover, let
h(z) € L and ( 5 = —|— ( 7> from the definition of L) we also have

[fhll e @ny = inf{A: /\ |p(z)dx <1}

<anf{N: [ fllpeor 5 HLm}
< | fllLp2rgn

(2) Sobolev inequality [2]: Let po,p1,q € Po and sp,s; € L>® N CY9(R") with
s > s1. If % and

h”LPURn .

n n
So —— =81 — —
Po P
are locally log- Holder continuous, then
() s1(+)
‘%po( )a() ggpl( ).a()”

(3) [2] Let po,p1,q0,q1 € Po and sq,s1 € L= N CPI(R™) with sg > s1. If o —and
n n
so— — =81 — — +ex)
Po p1

are locally log- Holder continuous and essin fyegne(x) > 0, then

00 )

Po(+),q0(+) p1(+),q1(")"
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(4) Molification inequality [12]: For p(-) € C'°9(R") and v € L*(R™), assume that
U(z)= sup |Y(y)|is integrable. Then
yEB(0,|z|)

1f * el Lo @ny < ClFllzee @y Y]] 21 @ny.
for all f € LPC)(R™), where 1), = 24(2) and C depends only on n.
Proposition 2.2 ( [32]). Let s > 0, 1 < n, A\ ¢,p,7, A1, A2 < 00, and % =

1_ 1, 1
X =N + N Then we have

J=
+
D=

ol g, S lullza gy Il + Wollza gy Tl

3. Well-posedness

In this section, firstly we need to introduce the generalized Stokes-Coriolis semi
group S, which is closely related to grMHD equations. For B = 0, the grMHD
equations deduce to the fractional Navier-Stokes equations with Coriolis force. In
fact we have to consider the following linear generalized problem:

u+ (—A)*u+Qeg x u+Vp=0 inR>xR,,
divu =0 in R3 x R, (LNSC)
u(0,x) = uo(x) in R® x R,

The solution of equation (LNSC) can be given by the generalized Stokes-Coriolis
semi group Sq o, which has the following explicit representation [20, 36]:

|£§| t)eleF t1+sin(Q§

€l
1 ees(0 S 083 —(—A)et
= F~[cos(Q —t)] +sin(Q=t)R(&)] * (e u),
€] €]
where divergence free vector field u € S(R?), I is the unit matrix in M3x3(R) and
R(§) is skew-symmetric matrix defined by

S0 (t)u = Fcos(Q e P R(€)] % u

0 & —&
R(e) :=é e 0 & |.£eR\ (o).
& & 0
So, we can write a semigroup:
Aoa(t) = Saa(t) 0
0 Ha(t)

where H(t) := e~ (=27 = f*l(eflflz“t).
Theorem .1. Let p() € C™/(B") N PyR"), § < 0 < 1,2 < p() < sl
I1<y<o0,1<g<5 1 and there exist a sufficiently small € > 0, such that

||u0|| S + || Bol| a0 <E.

p(-),q p(+),q
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Then the grMHD equations has a unique small global solution u in the class

2243 20 224520

~ .4-92 . 5
u,BeLOO(R+,]-'§£’p(_) p“)mm(&,f@ )N L®(Ry, F5B,), ).

Moreover, let pi(-) € C'°9(R™) N Py(R"), 51(-) = 22 — 13() +4 —2a and s1(-) €

B
C'°9(R™), if there exists ¢ > 0 such that 2 < pi(-) < ¢ < p(-), then in addition we

c4—200—
obtain that u, B € L"Y(RJF,]:% ”(‘)).

Remark 3.1. It is pointed out that the variable exponent Fourier-Besov space
4—20— 3
()

FB

p(),q
if u(t,x) is the solution of grMHD equations, then

is important as it gives the scaling invariant function space. In fact,

uy(t, ) = A2 (A2t \x)
is also a solution of the same equation and

[0 _isom gy ~ s @)

“p()a F p(-),q

Remark 3.2. Theroem 3.1 extends the result of [32].

Proof of Theorem 3.1. Let §y > 0, > 0 will be choosen later, consider

D={u, B : |ul|__ L4—20— -2 + (1B ,4—2a— 3~ < do,
Lo Ry, 7 p(-).q =) LRy, ]:‘%p(-),q )
Hu” 2248 90 .i_za ||BH 2248 20 .5 oq Sé}’
LV(Ry , F2,7, LY (R, FB3, V(R4 FB,, LY (R FBE)

which is equipped with the metric

u v
d( - ) =llu—vl|_ 20 2045 5o 5 _2a
B B L°°(R+,]:<%( P“)nmam,fgaW 2D Ry FBE, )
+||B76||~ L4—2a— 2015 94 .5 _oq *
L=(R{FA, P“)me(RJr F%,, 2 )NLY (R4, F23 )

It is easy to see that (D,d) is a complete metric space. Next we consider the
following mapping

g u . Ug /'5./49@(257')1[JJ (u.V)u— (B.V)B 0
B 0 (u.V)B — (B.V)u

We shall prove there exist dp,d > 0, such that g : (D,d) — (D,d) is a strict
contraction mapping.

In order to solve grMHD equations, we need to consider the following integral
equation.

= Ag.q(t) up | /t Aoalt — )P (u.V)u — (B.V)B "
By 0 (u.V)B — (B.V)u

u

B
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where P = I — V(—A)~"1div is the Leray-Hopf projection.

U Sa,a(t)u
Step 1. Estimate of Agq () o1 = 2.a(t)uo

By H,(t)By

Since P and Sq,, are bounded Fourier multipliers, we simply estimate by an abso-
lute constant. From proposition 2.1,

180, (t)uo HZv e

S 1275 E gt

)

Ul (ry 2 lles

i(4—20— -3 — (2234 3 4l
S gt 1274720750 0,5 | o 12745 7250 0y et ). lea
’ LY (Ry, Lp() 2
e
S M2 77 @5l oo les = uoll asa s
g p(+),q

where we used the following estimates

(2034 3 o
(1), ||2j( ¥ 2+P('))gpj+(€_t"|2 || 2p(-)
LY (Ry,LP()=2)
S |127% 273 g e 12 ap()
LY (R4, LP()=2)

< 27 et (Ctty)

vy l12

i(—34 3
S

p()a
2

s s
(2), 27Ty, el 20
i )
=inf{\>0: f|w|v<r> 2dx < 1}
Sanf{ > O:f|%|p<w>*22_3jdx <1}

2p(_2jz)
Sinf{A>0: [|&]r@o-2dr < 1} S C.
Also, for pi(-) < ¢ < p(-), we have
”S"’“(t)”(’||ZW<R+f=@ZiE‘.§,q)
‘204

< i Ogjett

R N (20 _3__3 _492a(i+0)
SIS gy 12747200 75| 1| 275 75 7O ) gy e 12700 _ep()_ ||ea
’ LY(R4,L e~ Pl())

ﬂaHL’Y(]R+’LP1('))H€q

j(4—20—3)  ~
S 00,41 127472753 0,5 oo lles S Nwoll - a s ar
B P

r(-).q
where we used the following estimate

1205 72T R ) e 2

cp(-)

L’Y(R+7LC—P1('))

2a e i —5) epy (o
=275 2 | g yinf (A > 0 / T R < 1)

: epy (1) .
<inf{A>0: /|%|cfél<~>2—3ﬂdx <1}<0C.
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Similarly we can obtain

Ho t)B 2a 5 B «
|| ( ) 0|‘L~’Y( +7'@27q g ) || OH '@i( )2LI (>
and

- . <
HHa(t)BO||L’Y(R+7fga;ig'.§’q) ~ ||B0||]__@4 20— 85

p(-).q

It is easy to see that the estimates for Sq (t)ug also hold for v = oo and p1 () = p(-),
i.e.,

”Sﬂ,a() 0||~ (R j——za) ~ HUOH @4—2&—%
p(-),q
and
HSQ,a(t)UOH~ L4— 2&—T < ” 0” 4— ZQ_T
Lo (B B 4 ) ]:‘”gp( ).q
Also
”Hoz(t)BO”Zoo @é—mx) ~ ||BO||}_%4 2017ﬁ
r(-),q
and
HI_Ioz(t)BO”~ L4—2a— 3 < ||BO|| 4—2a— 3
Loo(Ry o P()) FBp()q p()

. ¢ \
Step 2. Estimate of [ Ago(t —7)P
\Y

let po(-) = 6 — (5 — 4oz)p1(-),% <a<landl <gqg< 2a 7, from proposition
2.1 and 2.2, we have

t
I ] ot = BV, g

r1(-).q

t
. . _ —r 'QQ _—
SIIH/O 27910 e DT (- V)uldr | o gy pei o lles

t
. 2a
5”“/ ||23(51(.)+1)%e—(t—7)\.l [ 6p1() 14 (u “)”M’“g dTllm(n@)lléq

L= G—2a)p1() =

S [ 2 DI DN | g 1y Wy il

4a+1

2045 (t—7)2209 |5 —3]
<IIH/ 2/ =022 “P“’%H om0 18w @ W)l o dTllLo ey lles

LiaTtl

2a § _ T 2a
<IIH/ (2 =02 A w e w)| o drllrae, e

SI27 S22 A (u @ w)| 2209 ¢ —t2*

Sllull

L7 (®s) Lt ) les

L4o¢+1

o

W(R+7.@Ta+%72°‘)HUHLOO(]R_,_,L%)

< o 5 .
Sl e e [[u IILW(R%%%Q—M)
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Similarly

t
I [ Soalt = BB Bl o, pisnt) )snBun(Rhgf oo Bl g
I [ Halt = P BId o, gy Sl i 1Bl i

sl

H,(t—71)P|(B. dr ||+ e < ||B
|| / ot = TPUBIN N o rgnr | SIBI S

20
IRy, 3,7,

Also, we have

+5_

|| / Sea(t — 7)B[(u.V)uldr] S e

LV (Ry, % Vg7 2 )an(R+,ga§; )

5

:||/ Sea(t — 7)P[(u.V)uldr] g

TRy, Fo,n, 2 P )Ry FBE )
Sllull

23,3 5 oo Ul 5 2a -
TRy, 2 Dy, @570 DRy B,
Similarly
t
Sa.u(t — 7)P[(B.V)Bldr 20452
I [ Soalt=mBBIIB i
< B 2a 45 94 B 5 2a )
N ||LW(R+W@2W+2 > )mzw(R+ﬂTza)|| ||LOO(R+7 2o
H,(t — 7)P[(u.V)B]dr 205 94
[ = BBl g
< u 5 _ ~ L2 _2a 9
< sz(m, R T S 1B ||LW(R+7%§172 :
H,(t — 7)P|(B.V)uldr 20,5 5
[ Bt =BTl g
<||B 20,5_ e -
SIBIL SRS RN QQ)H HLOO(R B
_ 2045 9 - .5_ c4—20— -3~
Step 3. Let Y := LV(Ry, %y, * )NL®(Ry, %3, 2”‘) LRy, FB, 0 77)
Then we have
lgully +llgBlly Slluoll a-za- s + [1Boll  asa- s
]:‘%p('),q ! f‘%p()q
+ ||u 20 15 94 .5 _0q U]~ .5 _92q
| H~ @y, 2 e ry 22 )” HL""(R%@;’,QZ )
+ B 2a 45 B - .5 _ 94
| ||Z“*(]R ot S dﬁ_m)H ||LOO(R+7(@22&2)
+|B . .
I1B1l Pt VRS PO [[u ||Lm(R ah
+ [lu 20045 94 5_ B _ .5 _9q -
| H~ CTC X RS AT 20‘)” ”LOO(R%%;J)

Denote

d =100 =2C([Jull . 20— -2 +flull . 2a——) <20,
B FRB

p(-),q r(),q
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if £ is small enough, then we have

)
Blly < -+ =-=04.
lgully + loBlly < 3+
Similarly, we have
u v u v
d(g g <d ,
B B B Ié]

In view of Banach’s contraction mapping principle, there exist a unique u, B € D
satisfying

u — Ao / Aoya(t—7) (u.V)u— (B.V)B i
B (u.V)B — (B.V)u

On the other hand, let

7 =L'Ry, FA')

23—
ynL” (RW%Z ")

p())

3

~ o 57 ~ oo c4—20—
NL®Ry, B3, )NL*(R,FA, |

then we have

lgullz +llgBllz S lluoll  a-sa- s +1Boll  a-aa- s
Fa o) p()

p().q FB o)
AT o SRS P T
* ”B”Zw(R+,<@;i+%_2“)nZw(R+ 35‘2“)”BHZ°°(R+,@§;2“)
+”B”Z (R+,%2$+5 YT AT lu ||L°°(]R %
R Zw(nhwf”“)||B”Z°°<R+,9?§;2">'
Put
b={ubB: Hu”ZW(R_,_,]-'K@;E:))YQ)HLW(R_*_, '27&%72&)0300(&,@%’2“)
T8I, Ry FHL) LRy, G 3T fee g E %) =
HUHZ amza-n + 1Bl 1-2a-3 < 0o}
Ry, FAB, ) L=y, FBA, , , )

In a similar way to the case of space Y, it can be obtain that for ||ug|]| 4 sa_ 3 +
B v

|1Boll  4_za- 5 <€ with small enough ¢, grMHD equations has a unlque global
» :

; p()q
solution in D. O
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