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DYNAMICS OF SINGULAR TRAVELING WAVE
SOLUTIONS OF A SHORT CAPILLARY-GRAVITY

WAVE EQUATION∗
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Abstract In this paper, dynamical behaviour of traveling wave solutions to
a short capillary-gravity equation is analyzed by using the method of bifur-
cation. When the phase orbits intersects the singular parabola y2 = 2ϕ/λ
on the phase plane, then the trajectories create a weaker wave fronts than
the regular traveling wave solutions. By using proper Euler transformations,
we reformulate the model as a singular chaotic problem, which can then be
analyzed using the singularity study. We prove existence of three types of
physically realistic traveling wave solutions to the case of small diffusion for
the first time, two-peaked solitary waves, three-peaked and multi-peaked pe-
riodic wave solutions.

Keywords Singular parabola, singular periodic wave solutions, multi-peaked
periodic wave solutions, two-peaked solitary wave solutions.
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1. Introduction
Recently, studies on time dependent nonlinear wave equations of dynamical sys-
tems which describe many important phenomena in computational sciences, biol-
ogy, astrophysics, etc., have become a central theme of researchers. A shallow
water wave for small amplitude on a long-surface wave and an intermediate wave
has produced a lot of interesting and remarkable nonlinear wave equations [8, 9].
For example, the Green Naddhi system, Benjamin-Bona-Mahony-Peregrine equa-
tion and Boussinesq or modified Boussinesq equations exhibits a smooth traveling
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wave solution on intermediate waves arising from a purely nonlinear diffusive flux
term [1, 11, 12, 20]. Another class of models are the Korteweg and de Vries (KdV)
and the Camassa and Holm (CH) equations with nonlinear dispersion which ad-
dress traveling waves in long-wave dynamics resulting from a combined diffusive
and advective flux term [4,14]. If the effect of dispersion on the motion of the wave
is reduced, the wave fronts become peak-like traveling wave solutions and for the
detailed basic theory on singular solutions for a class of traveling wave equations,
we would like to recommend the reader to refer [6, 7, 10,13,18,21].

Manna and Neveu in [19] studied the following integrable model from a (2+1)-
dimensional asymptotic dynamics of a short capillary-gravity wave

uxt =
3g(1− 3θ)

2vh
u− 1

2
uuxx −

1

4
u2x +

3h2

4v
uxxu

2
x, (1.1)

where u(x, t) is the fluid velocity on the surface, x and t are space and time vari-
ables. They concluded that, true peaks of traveling wave solutions arising from the
interaction of nonlinear dispersion terms of the model are results of these singular-
ity behaviours or discontinuities. After appropriately rescalling the variables of Eq.
(1.1) Borzi & et al in [2] studied and modified Eq. (1.1) to the form of

uxt = u− uuxx −
1

2
u2x +

λ

2
uxxu

2
x, (1.2)

which was used to describe short capillary-gravity waves. A Lax pair and finite time
singularity for Eq (1.2) was provided by Manna and Neveu in [19] and multivalued
solutions in finite time were argued based on a map to the Sine-Gordon equation.

More recently, Chen & et al in [5] studied the effect of singular quadratic curves
on the singularity of traveling wave solutions and showed that Eq. (1.1) has a
new kind of singular periodic wave solution if the corresponding periodic orbits are
tangent to the parabola in the phase plane. However, the authors only obtained
an implicit expression of singular periodic wave solutions for a spacial case, that is
λ = 1 in Eq. (1.2). Besides, the phase portraits of bifurcations of the corresponding
traveling wave system were incomplete. The purpose of this paper is to study the
dynamical behaviour of a short capillary-gravity wave with surface tension using
bifurcation method and to find the exact traveling wave solutions of a second-order
singular traveling wave solution with singular parabolic curve.

This paper is organized as follows. In Sec. 2, the generation of dynamical
systems and bifurcations of the phase portraits of Eq. (1.2) depending on the
changes of parameter (ρ, λ, h) are discussed. In Sec. 3, main results on classification
of the traveling wave solutions with all possible exact parametric representations of
solutions is studied. The last section is devoted to some final remarks.

2. Dynamical systems and phase portrait analysis
To study the traveling wave solution of Eq. (1.2), we let u(x, t) = ϕ(ξ)+ρ, ξ = x−ρt
where ρ is the wave speed, then Eq. (1.2) can be transformed to the following
traveling wave equation

− ρϕξξ − (ϕ+ ρ) + (ϕ+ ρ)ϕξξ +
1

2
ϕ2ξ −

λ

2
ϕξξϕ

2
ξ = 0, (2.1)
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that can be written in Hamiltonian system as

dϕ

dξ
= y,

dy

dξ
=
ϕ+ ρ− 1

2y
2

ϕ− λ
2 y

2
. (2.2)

Since for ϕ = λ
2 y

2, the right hand-side of the second equation of system (2.2) is
discontinuous and it accounts for the nonuniqueness of some traveling wave solu-
tions, which we call singular traveling wave system of the second class (see [15–17]).
Eq. (2.2) admits weak traveling wave solutions with peaks, cusps and solitary so-
lutions with compact support. The system (2.2) has a parabola singular curves
ϕ = λ

2 y
2. Once integrating system (2.2) we have

H(ϕ, y) = −4(ϕ+ 2ρ)ϕ+ 4ϕy2 − λy4 = h. (2.3)

System (2.3) is a planer dynamical system defined in two parameter space (ρ, λ).
Imposing the transformation dξ =

(
ϕ− λ

2 y
2
)
dζ, for ϕ ̸= λ

2 y
2 on system (2.2) leads

to the following associated regular system

dϕ

dζ
=

(
ϕ− λ

2
y2
)
y =

∂H

∂y
,
dy

dζ
= ϕ+ ρ− 1

2
y2 = −∂H

∂ϕ
. (2.4)

Because the phase orbits defined by the vector fields of system (2.4) determine
all traveling wave solutions, we will investigate the bifurcations of phase portraits
of this system in phase plane (ϕ, y) as the parameters are changed.

Obviously, if ρ(1− λ) ≤ 0, system (2.4) has only one equilibrium point E(ϕρ, 0)
where ϕρ = −ρ. If ρ(1−λ) > 0, system (2.4) has three equilibrium points Eρ(ϕρ, 0),
S±(ϕs,±ys) where, ϕs = ρλ

1−λ and ys =
√

2ρ
1−λ . Let M(ϕ, y) be the coefficient matrix

of the linearized system of (2.4) at an equilibrium point (ϕ, y). We have J(ϕρ, 0) =
detM(ϕρ, 0) = −ϕρ = ρ and J(ϕs,±ys) = detM(ϕs,±ys) = −2ρ. Based on the
theory of planar dynamical system, for an equilibrium point of a planar integrable
system, the equilibrium point is a saddle point if J < 0; the equilibrium point is a
center point (a node point) if J > 0 and (trM)2−4J < (>)0; the equilibrium point
is a cusp, if J = 0 and the Poincaré index of the equilibrium point is 0. We write
for H(ϕ, y) given by (2.3), h1 = H(ϕρ, 0) = 4ρ2; h2 = H(ϕs,±ys) = − 4λρ

1−λ .
To do a qualitative analysis from the above information, we have the following

five different cases of system (2.2) depending on the parameter group (ρ, λ).
Case 1. Assume that ρ > 0, λ < 0. In this case, for 0 < h1 < h2, the

equilibrium point E(ϕρ, 0) is a center. System (2.2) has a two real zeros ϕA1
=

ρ− 1
2

√
4ρ2 − h and ϕB1 = ρ+ 1

2

√
4ρ2 − h and also intersects longitudinally (see Fig

1 (b)) with the parabola y2 = 2
λϕ at two points, K±(ϕk,±yk), where ϕk = ρ(λ−

√
−λ)

1−λ
and yk =

√
2ϕk. We have the phase orbits shown in Fig. 1.

Case 2. Assume that ρ < 0, 0 < λ < 1. Corresponding to the level curve
defined by H(ϕ, y) = h, h ∈ (h2, h0), has a global periodic orbit enclosing the equi-
librium point C3(ϕρ, 0) intersecting the singular parabola y2 = 2

λϕ at A±(ϕ1,±y1),
where ϕ1 = 2ρ/(1 + λ) (see Fig. 2(a)). The level curve defined by H(ϕ, y) = 0,
there exists two symmetric homoclinic orbit, connecting the saddle point E(ϕρ, 0),
intersect with the singular parabola at four points A±(ϕ

∗
1,±y∗1) and C2,4(ϕ

∗
2,±y∗2),

where ϕ∗1 = −ρ
√
λ/(1−

√
λ) and ϕ∗2 = ρ

√
λ/(1−

√
λ) (see Fig. 2(b). We have the

phase portrait shown in Fig. 2(a)–(c).
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(a) Smooth periodic orbits (b) Singular Heteroclinic orbits

Figure 1. Bifurcations of phase portraits of system (2.2) when ρ > 0 and λ < 0.

(a) h ∈ (h2, h0). (b) h = h0. (c) h ∈ (h0, h1).

Figure 2. Bifurcations of phase portraits of system (2.2) when ρ < 0 and λ > 0.

Case 3. Assume that ρ < 0, λ = 0. In this case, h2 = 0, the level curve defined
by H(ϕ, y) = h, has a pair of open orbits intersecting with the parabola y2 = 2

λϕ
at exactly two points S±(ϕs,±ys). The equilibrium point E(ϕρ, 0) is a saddle point
and Eq (2.3) we obtained a kink and anti-kink wave solution at E(ϕρ, 0). We have
the phase portrait shown in Fig 3.

(a) Singular open and Hetero-
clinic orbits

Figure 3. Bifurcations of phase portraits of system (2.2) when ρ < 0 and λ ≥ 0.
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Case 4. Assume that ρ > 0, λ = 0. In this case system (2.2) can be rewritten
as

dϕ

dξ
= y;

dy

dξ
=
ϕ+ ρ− 1/2y2

ϕ
, (2.5)

with the first integral

H∗(ϕ, y) = ϕ(ϕ+ 2ρ) + ϕy2 = h∗. (2.6)

Here for ϕ = 0, the right hand-side of equation of (2.5) is discontinuous and
its some traveling wave solutions are perturbed. Consider the subcases (a) ρ <
0, Fig 4(a), (b) ρ = 0, Fig 4(b), (c) ρ > 0, Fig 4(c) given below.

(a) (b) (c)

Figure 4. Bifurcations of phase portraits of system (2.2) when ρ → 0 and λ = 0.

Case 5. Assume that ρ > 0, λ > 0. In this case we have h2 < 0 < h1 < ∞.
Consider four different phase portraits given under here. The level curve defined
by H(ϕ, y) = hs =

λρ
1−λ , has two heteroclinic orbits intersecting with the parabola

y2 = 2
λϕ at the points S+ and S−, (see Fig 5 (a)), we call singular heteroclinic orbit.

The two orbits intersect with the ϕ− axis at the points A1(ϕA1
, 0) and A2(ϕA2

, 0)
respectively, where ϕA1

= −ρ+ ρ√
2(1−λ)

and ϕA2
= −ρ− ρ√

2(1−λ)
.

(a) h = hs. (b) h ∈ (hs, h1). (c) h = h1. (d) h ∈ (h1,∞).

Figure 5. Bifurcations of phase portraits of system (8) when ρ > 0 and λ > 0.

Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (hs, h1), there
exists a singular periodic orbit connecting the parabola at

(
ϕB2 ,±

√
2ϕB2

)
where

ϕB2
=
√

−h
8ρ , see Fig. 5(b). For h = h1, there is a singular periodic orbit intersecting

with the y2 = 2/λϕ at the origin O(0, 0). For Fig. 5(d), we have a family of periodic
orbits that has no intersection with our parabola. This family of periodic orbits
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gives rise a family of smooth periodic wave solutions of Eq. (1.2). In the next
section we shall give exact singular traveling wave solutions of system (2.2) based
on bifurcation theory.

3. Main Results
It is noted for the aforementioned five cases there exist intersection points between
the phase orbits and the singular curve. At these intersection points two possible
contrary directions can be found for the trajectory of system (2.2). When a trajec-
tory along a homoclinic orbit moves at a intersection point on the singular curve,
it forms a peak type soliton. Next, we will describe the evolution of traveling wave
solutions for these cases basing on the phase orbits.

3.1. Existence of smooth and singular periodic wave solutions
i) For ρ > 0, λ < (> 0), the level curve defined by the Hamiltonian H(ϕ, y) = h, h ∈
(0, h1), there exist a periodic orbit that has no intersection point with the parabola
y2 = 2

λϕ (see Fig 1(a) and Fig. 5(d)). Thus, (2.2) has family of smooth periodic
wave solutions. The algebraic equation of periodic orbit is given by(

dϕ

dξ

)2

=
1

λ

(
2ϕ±

√
4(1− λ)ϕ2 − (8ρϕ+ h)λ

)
, (3.1)

where the sign ± before the term
√
4(1− λ)ϕ2 − (8ϕρ+ h)λ is independent on the

interval of ϕ and intersects with the ϕ− axis at two points ϕA1 and ϕB1 . Thus, from
Eq. (3.1) and the first equation of system (2.2), we have the following parametric
representation for the periodic orbit:

Γ1 =

∫ ϕ−

ϕ

√
λdϕ√

2ϕ−
√

4(1− λ)ϕ2 − (8ρϕ+ h)λ
(3.2)

and

|ξ − 2nΓ1| =
∫ ϕ−

ϕ

√
λdϕ√

2ϕ−
√

4(1− λ)ϕ2 − (8ρϕ+ h)λ
, (3.3)

where |ξ − 2nΓ1| ≤ Γ1. Consequently, along this orbit when ϕ → 0, one may have
dϕ
dξ → 0, d2ϕ

dξ2 → ±∞. When, h → 0, the smooth periodic wave advances into a
singular periodic wave. We simulated the singular traveling wave solution by Maple
and shown in Fig. 6(a)–(c).

For h = 0, the periodic orbit is tangent to the parabola y2 = 2
λϕ, at the origin

O(0, 0) (see Fig. 5(c)). The corresponding periodic wave solution satisfies(
dϕ

dξ

)2

=
1

λ

(
2ϕ±

√
4(1− λ)ϕ2 − 8ρϕλ

)
, (3.4)

and (
d2ϕ

dξ2

)2

=

(
4ρλ+ 4(1− λ)ϕ+

√
−4ϕ(λ− 1)ϕ+ 2ρλ)

)2
ϕλ(2ρλ+ (1− λ)ϕ)

. (3.5)
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(a) h = 0.14 (b) h = 0.0754. (c) h = 0.001.

Figure 6. As h → 0, a smooth periodic wave evolved into singular periodic wave.

Now, by applying a substitution (ψϕ)
2
= 4(1 − λ)

(
ϕ2 + 8ρλϕ

1−λ

)
into Eq. (3.1)

gives rise ỹ2 = (2−ψ)(ψ2−4(1−λ))3
32ρλ2ψ2 . Then by the first equation of system (2.2), we

have∫ ψ∗

ψ

ψdψ

(ψ2 − 4(1− λ))
√
(2− ψ)(ψ2 − 4(1− λ))

=

∫ ψ∗

ψ

R(ψ)dψ√
(2− ψ)(ψ2 − 4(1− λ))

= − |ξ|
4λ

√
2ρ

(3.6)
where, R(ψ) = ψ

ψ2−4(1−λ) . Therefore, we obtain the following parametric represen-
tation of singular periodic wave solutions of Eq. (2.2) ( see Fig 6(c)):

ϕ(χ) = 32ρλ
ψ2(χ)−4(1−λ) , ψ(χ) = (2−A)+(A+2)cn(χ,k)

1+cn(χ,k) ,

ξ(χ) = 4

√
A(1−λ)
ρ2

{
χ−

√
1− λΠ

(
arccos (cn(χ, k)) , α2, k

)
−
√
1− λΠ

(
arccos

(
2−A
2+A

)
, α2, k

)}
,

(3.7)

where, A = 2
√
4(1− λ)2 − 1, k2 = A−2

A < α2 < 1 where cn(χ, k) is Jacobean
elliptic function described in (see [3]).

3.2. Weak kink-peakon and weak antikink-peakon interacted
singular traveling wave solutions associated with hetero-
clinic orbit

It is well known that a heteroclinic orbit on the phase plane corresponds to a kink
and anti-kink traveling wave solution, for the orbit not intersecting with the singular
curve as ξ increases. For h1 = 4ρ2, λ = 1 we have two pathes passing through the
intersection points or saddle points K− and K+, we call them L1 and L2 (see Fig.
1(b)). For the vector field moving from K− → ϕA1

→ K+ → ϕB1
→ K−, we have

a heteroclinic orbit with the type of kink and anti-kink singular wave solutions are
obtained.
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Now, from Eq. (3.1) we have a heteroclinic orbit which can be expressed in the
following form:

1√
λ
ξ =

∫ ϕ∗

ϕ

dϕ√
2ϕ±

√
4(1− λ)ϕ2 − (8ρϕ+ h)λ

. (3.8)

By using a long calculation with scale transformation and substituting ϕ =
−(4ρ2 − ψ2)/8ρ into Eq. (3.6) and by the first equation of system (2.2) we get an
improper integral of the form

ξ =

∫ ψ∗

ψ

ψdψ

4ρ
√
ψ + 4ρ2−ψ2

4ρ

, ψ∗ ∈ (ϕA1
, ϕB1

). (3.9)

Hence, we have obtain the following parametric representation of weak kink-peakon
interacted and weak antikink-peakon singular traveling wave solution of Eq. (1.2)
(see Fig. 7(a) and (b)):

ϕ(ξ) = ±
(
4ρ2 + ψ2(ξ)

8ρ

)
, (3.10)

and√
−ψ(ξ)2+4ψ(ξ)ρ+4ρ2

2
√
ρ

±√
ρ arctan

(
ψ(ξ)−2ρ√

−ψ(ξ)2+4ψ(ξ)ρ+ 4ρ2

)
= 4ρξ +

√
ρ+ ρπ.

(3.11)

(a) Weak kink-peakon wave solution
(b) Weak antikink-peakon interacted wave
solution

Figure 7. Wave profile corresponding to exact wave solution of Eq. (3.10).

3.3. Existence of singular periodic and two-peaked solitary
wave solutions

i) Consider Fig. 2(a). When ρ < 0, λ > 0, for each H(ϕ, y) = h, h ∈ (−∞, h1)
there exists a global singular periodic orbit intersects the ϕ-axis at (ϕp, 0) and
also intersects the parabola y2 = 2

λϕ, at E1,2(±ϕ1,±y1), where ϕ1 = 2ρ
2+λ and

y1 =
√

2
λϕ1. Thus, for λ = 1, the parabola intersecting the periodic orbit divides
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the path into three segments, different combinations of which forms the following
three types of waves.

a) For the trajectory moves as Γ1 : C1 → A+
Jump−−−−→ C1, then from Eq. (3.1) we

have
y2 = 2ϕ+

√
−8ϕρ− h. (3.12)

b) For trajectory moving through the points Γ2 : A+
Jump−−−−→ C1

Jump−−−−→ A− →
A+, then from Eq. (3.1) we have

y2 = 2ϕ−
√
−8ϕρ− h. (3.13)

c) For trajectory moving through Γ3 : C1
Jump−−−−→ A− → C1, then from Eq. (3.1)

we have
y2 = −2ϕ−

√
−8ϕρ− h. (3.14)

From the above three subcases, we concluded that the parabola y2 = 2ϕ, has an
effect on the existence of singular periodic wave solutions. Now, from Eq. (3.1)
we have ψ2 = −8ϕρ − h, then ϕ = −h+ψ2

8ρ , ψA =
(
2ρ

√
−h− 8ρ2 − h

) 1
2 as ϕA =

4ρ−
√
−h

4 , ψB =
√
−h, as ϕ = −ρ. Thus from Eq. (3.12)-(3.14) we have

ỹ2 =

(
dψ

dξ

)2

=
4ρ (ψ − ψA) (ψB − ψ)

ψ2
. (3.15)

Now, by using Eq. (3.12) and the first equation of system (2.2), we have the
following first integral

2
√
ρξ =

∫ ψ

ψA−

ψdψ√
(ψ − ψA) (ψB − ψ)

. (3.16)

Hence, corresponding to the level curve ̂A+C1A−, Eq. (1.2) have a parametric
representation of a multi-peaked singular periodic wave solution (see Fig. 9(a)):

ϕ(ξ) = −h+ ψ2(ξ)

8ρ
(3.17)

and

ψ(ξ)=

(
ψA−ψB

2

)
+

(
ψA+ψB

2

)
sinh(2

√
ρξ), ξ ∈

[
arcsinh

(
2ϕ1(ψB − ψA)

ψA + ψB

)
,
π

2

]
.

(3.18)
Corresponding to the level curves defined by H(ϕ, y) = h, h ∈ (−∞, h1), of the

trajectories ̂C1A+C1 and ̂C1A−C1 from Eq. (3.13) and (3.14) respectively, we have
the following first integrals:∫ ψ

ψ0

ψdψ√
(ψ − ψA) (ψB − ψ)

= 2
√
ρξ (3.19)

and
−
∫ ψ

ψ0

ψdψ√
(ψ − ψA) (ψB − ψ)

= 2
√
ρξ. (3.20)
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Therefore, corresponding to (3.19) and (3.20), we have a parametric representa-
tion of singular periodic wave solution for Eq. (1.2) given by:

ϕ(ξ) =
h+ ψ2

8ρ
;

(3.21)
ψ(ξ) =

(
ψA−ψB

2

)
+
(
ψA+ψB

2

)
sinh(2

√
ρξ), ξ ∈

[
−π

2 , arcsinh
(

2ϕ1(ψB−ψA)
ψA+ψB

)]
;

and

ψ(ξ) =
(
ψB−ψA

2

)
−
(
ψA+ψB

2

)
sinh(2

√
ρξ), ξ ∈

[
−π

2 ,−arcsinh
(

2ϕ1(ψA−ψB)
ψA+ψB

)]
.

(3.22)

Theorem 3.1 (The Rapid Jump Property of y = dϕ/dξ when the singular parabola
intersecting a periodic orbit). If the singular parabolic curve intersects with a family
of periodic orbit at the singularity points A+ and A−, the periodic waves have pairs
of opposite vector fields. Let (ϕ, y = dϕ/dξ) be a point on the periodic orbit Γ1 of
(2.2). Then, along Γ1 to the singular parabolic curve y2 = (2/λ)ϕ, y = dϕ/dξ jumps
down rapidly to A− in a very short time interval of ξ. The periodic wave solution
(3.7) is different from the well-known smooth periodic wave solution, i.e, as h→ hs,
the first derivative dϕ/dξ exists while the second derivative d2ϕ/dξ2 doesn’t exists
at the equilibrium point. We call this periodic wave solution singular periodic wave
solution.

ii) Consider Fig. 2(b). Corresponding to the level curve defined by H(ϕ, y) =
h1 = 4ρ2, there exists a two symmetric homoclinic orbits, connecting the sad-
dle point E(ϕρ, 0), and intersects with the parabola y2 = 2

λϕ, at four points
A±(ϕ1∗ ,±y1∗) and C2,4(ϕ2∗ ,±y2∗). As the trajectories on the phase plane inter-
sects with the singular curve, different moves can be explored with the increasing
of the parameter ξ, i.e., A+

Jump−−−−→ C2 → C3 → A+, A+
Jump−−−−→ C2 → C3 →

C4
Jump−−−−→ A− → C3 → A+, A+

Jump−−−−→ C2 → C3 → C4
Jump−−−−→ C2 → A+,

C3 → C4
Jump−−−−→ C2 → C3, and etc. In the following part we shall discuss the dy-

namical behaviour of the waves associated with the phase portrait and the parabola
intersecting at C4 and/or C2, which forms a peak on the waves and jumps between
those points. In the following parts we shall discuss the different peaked solitary
wave solutions determined from these moves.

a) Consider the trajectory defined by the wave A+
Jump−−−−→ C2 → C3 → A+,

which forms two peak forms of periodic wave solutions. In this case we can consider
three different motions of the wave forms Â+C2, Ĉ2C3 and Ĉ3A+. From Eq. (3.1)
we have

Γ1 = Â+C2 : y2 =
1

λ

(
2ϕ+

√
4(1− λ)ϕ2 − (8ρϕ+ h1)λ

)
, ϕ ∈ (ϕ1∗ , ϕ2∗ ], (3.23)

Γ2 = Ĉ2C3 : y2 =
1

λ

(
2ϕ−

√
4(1− λ)ϕ2 − (8ρϕ+ h1)λ

)
, ϕ ∈ [ϕ2∗ , ϕρ], (3.24)

Γ3 = Ĉ3A+ : y2 =
1

λ

(
2ϕ−

√
4(1− λ)ϕ2 − (8ρϕ+ h1)λ

)
, ϕ ∈ (ϕρ, ϕ1∗ ]. (3.25)

Using the transformation ϕ → ϕ1∗ − ϕ2∗ , when ψ(ξ0) = ϕρ → 0, ψ1∗ →
4ρ2(λ−1)+ρλ

λ−1 , when ϕ → ϕ1∗ , ψ2∗ → − 4ρ2(λ−1)+ρλ
λ−1 , when ϕ → ϕ2∗ . From system
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(3.25) letting
(ψ(ϕ− ϕρ))

2 = 4(1− λ)ϕ2 − (8ρϕ+ h1)λ,

we have two sets of solutions of ϕ(ξ) and its first derivatives with respect to the
curve Γ1 and Γ2 respectively:

ϕ(ξ) =
ϕsψ(ξ)

2 + 4(λ− 1)ϕs − 4ρλ

ψ(ξ)2 + 4λ− 4
,

dϕ

dξ
=

8ρλψ(ξ)

(ψ(ξ)2 + 4λ− 4)
2

dψ

dξ
, (3.26)

and

ϕ(ξ) = −ϕsψ(ξ)
2 + 4(λ− 1)ϕs − 4ρλ

ψ(ξ)2 + 4λ− 4
,

dϕ

dξ
= − 8ρλψ(ξ)

(ψ(ξ)2 + 4λ− 4)
2

dψ

dξ
. (3.27)

From Eq. (3.26), Eq. (3.27) and the first equation of system (2.2) we have
respectively

Γ1=

∫ ψ2∗

ψ

ψdψ√
(ψρ + ψ)2 (ψ2+4λ−4)

3
=

∫ ψ2∗

ψ

ψdψ

(ψρ+ψ)(ψ2+4λ−4)
√
ψ2+4λ−4

=
1

2λ

√
1

ρλ(λ− 1)

∫ ξ

0

dξ,

(3.28)

Γ2=

∫ ψ

ψ2∗

ψdψ√
(ψρ − ψ)2 (ψ2+4λ−4)

3
=

∫ ψ

ψ2∗

ψdψ

(ψρ−ψ)(ψ2+4λ−4)
√
ψ2+4λ−4

=
1

2λ

√
1

ρλ(λ− 1)

∫ ξ

ξ∗
dξ = −Γ3,

(3.29)

where ξ∗ = 2λ
√
ρλ(λ− 1)

∫ ψ
ψ2∗

ψdψ

(ψρ−ψ)(ψ2+4λ−4)
√
ψ2+4λ−4

.

Thus, by using a long mathematical computation on Eqs. (3.28) and (3.29),
we have a parametric representation of multi-peaked periodic wave solution for Γ1

given as follows (see Fig 8(a)):

ϕ(ξ) =
ϕsψ(ξ)

2 + 4(λ− 1)ϕs − 4ρλ

ψ(ξ)2 + 4λ− 4
; (3.30)

and
2(1− λ) + ψ

2λ
√
ρλ(λ− 1)

√
ψ2 + 4λ− 4

+
1

2
√
ρλ

ln

(
4(1− λ)ψ − 8(λ− 1)

2(1 + λ)ψ

)
= 0, (3.31)

and corresponding to Γ2 and Γ3 we have a parametric representation of given:

ϕ(ξ) = −ϕsψ(ξ)
2 + 4(λ− 1)ϕs − 4ρλ

ψ(ξ)2 + 4λ− 4
; (3.32)

and
2(1− λ)− ψ

2λ
√
ρλ(λ− 1)

√
ψ2 + 4λ− 4

+
1

2
√
ρλ

ln

(
−4(1− λ)ψ − 8(λ− 1)

2(1 + λ)ψ

)
= 0. (3.33)
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b) For the phase orbit moving through A+
Jump−−−−→ C2 → C3 → C4

Jump−−−−→ A− →
C3 → A+, we have a solitary wave with two peaks can be obtained. From Eq. (3.1)
and the first equation of system (2.2) we have

Γs=

∫ ϕ2∗

ϕ1∗

dϕ√
2ϕ−

√
4(1− λ)ϕ2 − (8ρϕ+ h)λ

, (3.34)

ξ − ξ0=

∫ ϕ

ϕ1∗

dϕ√
2ϕ−

√
4(1− λ)ϕ2 − (8ρϕ+ h)λ

, ξ ∈ (ξ0,Γs + ξ0); (3.35)

ξ − ξ0=Γs+

∫ ϕ

ϕ2∗

dϕ√
2ϕ+

√
4(1−λ)ϕ2−(8ρϕ+h)λ

, ξ∈(Γs+ξ0,+∞). (3.36)

In this case the peak exists at ξ = ξ0 and at ξ = ξ0+Γs respectively (see Fig. 8(b)).
c) For the phase orbit moving through A+

Jump−−−−→ C2 → C3 → C4
Jump−−−−→ C2 →

A+, we have a solitary wave with three peaks can be found. From Eq. (3.1) and
the first equation of system (2.2) we have

Γs=

∫ ϕ2∗

ϕ1∗

dϕ√
2ϕ+

√
4(1− λ)ϕ2 − (8ρϕ+ h)λ

, (3.37)

ξ − ξ0=

∫ ϕ

−ϕ1∗

dϕ√
2ϕ+

√
4(1− λ)ϕ2 − (8ρϕ+ h)λ

, ξ ∈ (ξ0,Γs + ξ0), (3.38)

ξ − ξ0=Γs+

∫ ϕ

ϕ1∗

dϕ√
2ϕ+

√
4(1− λ)ϕ2−(8ρϕ+h)λ

, ξ∈(Γs+ξ0, 2Γs + ξ0), (3.39)

ξ − ξ0=2Γs+

∫ ϕ

ϕ2∗

dϕ√
2ϕ−

√
4(1−λ)ϕ2 − (8ρϕ+h)λ

, ξ ∈ (2Γs + ξ0,+∞). (3.40)

In this case three peaks exists at ξ = ξ0, ξ = Γs + ξo and at ξ = ξ0 + 2Γs
respectively (see Fig. 8(c)).

d) For the phase orbit moving through C3 → C4
Jump−−−−→ C2 → C3, we have a

peakon wave solution can be found. From Eq. (3.1) and the first equation of system
(2.2) we have

Γs =

∫ ϕ

−ϕ2∗

dϕ√
2ϕ−

√
4(1− λ)ϕ2 − (8ρϕ+ h)λ

,

ξ − ξ0 =

∫ ϕ

−ϕ2∗

dϕ√
2ϕ−

√
4(1− λ)ϕ2 − (8ρϕ+ h)λ

, ξ ∈ (−∞,+∞). (3.41)

In this case the peak exists at ξ = ξ0, (see Fig. 8(d)).
iii) Consider Fig. 2(c). In this case the level curve defined by H(ϕ, y) = h, h ∈

(h1,∞), there exists a two families of periodic orbits intersecting the parabola
y2 = 2

λϕ at four points A+, C2, C4 and A−, and divide each family of periodic or-
bits in two pairs of segments. We observe that, as ξ varies along the periodic orbits
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(a) Two-peaked periodic wave (b) Two-peaked solitary wave

(c) Three-Peaked Solitary Wave (d) Peakon wave profile

Figure 8. Wave profiles of system (2.2)

of system (4), there exists two opposite directions of vector field at each point of
intersection and the phase portraits creates a singular periodic orbits which are dif-
ferent from the well known smooth periodic wave solutions. In this case, the singular
periodic wave solution is a weak solution of system (2.2) which has a continuous
first derivative, while the second derivative at the equilibrium point vanish.

3.4. Existence of breaking, peakon and anti-peakon wave so-
lutions

In this case we consider Fig 4(a)–(c) for any ρ and λ→ 0.
(i) Corresponding to ρ < 0, in Fig. 4(a), we have a family of open orbits defined

by H∗(ϕ, y) = h∗, h∗ ∈ (h2, 0), intersecting at E(ϕρ, 0). From system (2.5), we have

ξ =

∫ ϕ

ϕρ

√
ϕdϕ√

h∗ϕ− ϕ(ϕ+ 2ρ)
=

∫ ϕ

ϕρ

√
ϕdϕ√
G(ϕ)

. (3.42)

Thus, we have a parametric representation of a breaking wave solution for system
(2.5) (see Fig. 9 (a)):

ϕ(χ) = ϕL +
ϕρ−ϕL

1+
(

ϕρ−ϕL
ϕL

)
sn2(ωχ,k)

;

ξ(χ) = ϕρ
√
ϕL

[√
ϕL

ϕρ

(
E(am(ωχ, k), k)− k2sn(ωχ, k)cd(ωχ, k)

)]
,

(3.43)
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where χ ∈
[
sin−1

√
ϕρϕL

ϕL−ϕρ
− 1

2

)
, k =

√
1− ϕρ

ϕL
, ω = 1√

ϕL
.

(ii) For ρ = 0, in Fig. 4(b),the level curve defined by H∗(ϕ, y) = 0, we have
a open curve intersecting the singular straight line ϕ = 0, forming a pair of stable
and unstable manifolds at A±(0,±

√
2ρ), we call a singular Heteroclinic orbit, which

gives the known kink and anti-kink wave solution as ξ → ±∞.

(iii) Corresponding to the third subcase ρ > 0, Fig 4(c), has an energy level
defined by H(ϕ, y) = h, h ∈ (h0, h1), we have a family of periodic orbits enclosing
the equilibrium point E(−ϕρ, 0). For h = h1 = hs, system (2.5) have a two families
of heteroclinic orbits connecting the equilibrium points (0,±ys). In this case we
have G(ϕ) = ϕ(ϕ − ϕm). Hence we have a peakon and anti-peakon wave solution
(see Fig 9 (b) and (c)):

ϕ = ϕm + exp (±2ξ) . (3.44)

(a) (b) (c)

Figure 9. Traveling wave solution of system (2.5). 9(a) A breaking wave of Eq. (3.43); 9(b) A peakon
wave solution and 9(c) An anti-peakon wave solution of Eq. (3.44)

3.5. Existence of solitary and multi-peak periodic wave solu-
tion

The level curve defined by H(ϕ, y) = hs = 4ρ2

1−λ , has two heteroclinic orbits inter-
secting with the parabola y2 = 2

λϕ at the saddle points S+ and S−, we call singular
heteroclinic orbit. As show in Fig. 5(a), the two orbits intersect with the ϕ− axis
at the points A1(ϕA1 , 0) and A2(ϕA2 , 0) respectively, where ϕA1 = −ρ+ ρ

√
λ√

1−λ and
ϕA2

= −ρ − ρ
√
λ√

1−λ . Corresponding to the associated regular system (2.4) have two
solitary wave solutions for slow time motion ζ (see Fig 10(a)) while for system
(2.2), it is noted that the two saddle points gives rise to singular periodic wave
solution with multi-peak (see Fig 10 (b)). From Eq. (3.1) and for ϕ ∈ [ϕA, ϕS ] and
ϕ ∈ [ϕB , ϕS ], respectively we have

Ŝ−AS+ : y2=
1

λ

(
2ϕ+

√
4(1−λ)ϕ2−(8ρϕ+h)λ

)
=

2
(
1−

√
1−λ

) (
ϕ−

√
λϕA1

)
λ

,

(3.45)
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and

Ŝ−BS+ : y2=
1

λ

(
2ϕ−

√
4(1−λ)ϕ2−(8ρϕ+h)λ

)
=

2
(
1+

√
1−λ

) (
ϕ−

√
λϕA2

)
λ

.

(3.46)
From Eq. (3.45), (3.46) and the first equation of system (2.2) we have∫ ϕ

ϕS−

dϕ√
ϕ−

√
λϕA1

=

√
λ

2
(
1−

√
1− λ

) |ξ − 2nT |, n ∈ Z, (3.47)

where |ξ − 2nT | ≤ T and

T =

√
2
(
1−

√
1− λ

)
λ

∫ ϕS+

ϕS−

dϕ√
ϕ−

√
λϕA2

. (3.48)

Therefore, we obtain the following exact parametric representations of singular
periodic wave solutions of Eq. (1.2)

ϕa(ξ)=ϕA1
+

1−
√
1− λ

2λ
(ξ − 2nT )

2
, |ξ − 2nT | ≤ T, (3.49)

ϕb(ξ)=ϕA2
+
1+

√
1−λ

2λ
(ξ−(2n+1)(T+T1))

2
, |ξ − (2n+1)(T+T1)|≤T1. (3.50)

(a) Smooth solitary wave solution
(b) Multi-peaked periodic wave solu-
tion

Figure 10. As h goes from h0 → hs, the smooth solitary wave evolves into a singular periodic wave.

4. Conclusion
It is well-known that a homoclinic orbit corresponds a smooth solitary wave solution,
a heteroclinic orbit corresponds to a kink wave solution. Similarly, a periodic orbit
corresponds to a smooth periodic wave solutions. However, when the homoclinic
orbit, heteroclinic orbit, or periodic orbit intersects with the singular parabola in
the phase plane, things will get complicated. In fact, the existence of two opposite
directions of vector field at each intersection points leads to the jump between
the intersection points, and thus the occurrence of new types of singular waves



1206 T. D. Leta, W. Liu & A. El Achab

containing peaks (i.e., two-peaked and three-peaked solitary wave solutions and
multi-peaked periodic wave solutions (see Eq. (3.17), Eq. (3.30), Eq. (3.31), Eq.
(3.44), Eq. (3.49), Eq. (3.50)) and the two singular periodic wave solutions are
obtained (see Eq. (3.9) and Eq. (3.21)), in which both of which are not found
in [5]. To sum up, we have proved the following Theorems.

Theorem 4.1. When the homoclinic orbit intersects with the singular parabola,
with the increase ξ, the trajectory no longer passing across the intersection points
along the orbit, may jump between the intersection points A+, and A− or C2 and
C4, and gives rise a different types of peaked solitary wave solution. It is shown that
the second derivatives of the new singular solitary wave solutions does not exists.

Theorem 4.2. When the a heteroclinic orbits intersect with the singular curve, it
gives rise a weak kink and anti-kink wave solution (3.10) which is different from the
well known smooth kink and anti-kink wave solution.
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