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NEW INSIGHTS ON BIFURCATION IN A
FRACTIONAL-ORDER DELAYED

COMPETITION AND COOPERATION MODEL
OF TWO ENTERPRISES∗
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Abstract Over the past decades, many authors establish various kinds of
competition and cooperation models of two enterprises to analyze the dynamic
interaction. However, they are only concerned with integer-order differential
equation models, while the reports on fractional-order ones are very rare. In
this article, based on the earlier studies, we propose a new fractional-order
delayed competition and cooperation model of two enterprises. Letting the
delay be bifurcation parameter and analyzing the corresponding characteristic
equation of involved model, we establish some new sufficient conditions to
guarantee the stability and the existence of Hopf bifurcation of fractional-
order delayed competition and cooperation model of two enterprises. The
research indicates that different delays have different effect on the stability
and Hopf bifurcation of involved model. The impact of the fractional order on
the stability and Hopf bifurcation of involved model is displayed. To check the
correctness of theoretical analysis, we implement some computer simulations.
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1. Introduction
Recently, the research on competition and cooperation among enterprises has been
an important active field and has attracted the great attention of many scholars.
Correctly handling competition and cooperation among enterprises plays a crucial
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role in mastering the management and decision-making of enterprises. In order
to grasp the internal operation mechanism among different enterprises, a lot of
scholars are striving to establish the the competition and cooperation model among
enterprises and investigate their dynamical behavior. Many excellent results have
been reported. In 2012, Xu [50] studied the following continuous competition and
cooperation model of two enterprises:

ẏ1(t) = α1y1(t)

[
1− y1(t)

a1
− r1(y2(t)− β2)

a2

]
,

ẏ2(t) = α2y2(t)

[
1− y2(t)

a2
+
r2(y1(t)− β1)

a1

]
,

y1(0) ≥ 0, y2(0) ≥ 0,

(1.1)

where y1(t) and y2(t) denote for the output of enterprise A and enterprise B, re-
spectively; αi(i = 1, 2) stands for the intrinsic growth rate of enterprise A and
enterprise B, respectively; ai(i = 1, 2) represents the natural market carrying ca-
pacity of enterprise A and enterprise B; r1 represents the consumption coefficient
of the enterprise with the output y2(t) to the one with the output y1(t) and r2
represents the transformation coefficient of the enterprise with the output y1(t) to
the one with the output y2(t); β1 and β2 are the initial outputs of enterprise A and
enterprise B, respectively. With the help of the coincidence degree theory, Xu [50]
discussed the existence of periodic solutions of model (1.1). Liao et al. [27] thought
that the duration of output for enterprises has important effect on the dynamics of
competition and cooperation model of two enterprises and then he established the
following delayed competition and cooperation model of two enterprises:

ẏ1(t) = α1y1(t)

[
1− y1(t− ε)

a1
− r1(y2(t− ε)− β2)

a2

]
,

ẏ2(t) = α2y2(t)

[
1− y2(t− ε)

a2
+
r2(y1(t− ε)− β1)

a1

]
,

y1(0) = ϕ1(t), y2(0) = ϕ2(t), t ∈ [−ε, 0],

(1.2)

where ε denotes the time delay of interior of two enterprises and ϕ1(t), ϕ2(t) ∈
C([−ε, 0], , R). Applying the normal theory and center manifold theorem, Liao et
al. obtained the sufficient conditions to assure the stability and the existence of
Hopf bifurcation of (1.2) and the explicit algorithms to determine the direction,
period and stability of Hopf bifurcation for model (1.2). Considering the effect of
different delays on the dynamics of (1.2), in 2014, Liao et al. [26] modified the model
(1.2) as follows:

ẏ1(t) = α1y1(t)

[
1− y1(t− ε1)

a1
− r1(y2(t− ε2)− β2)

a2

]
,

ẏ2(t) = α2y2(t)

[
1− y2(t− ε1)

a2
+
r2(y1(t− ε2)− β1)

a1

]
,

y1(0) = ϕ1(t), y2(0) = ϕ2(t), t ∈ [−ε, 0].

(1.3)

Applying the Hopf bifurcation theory of delayed differential equations, Liao et
al. [26] discussed the effect of two different delays on the bifurcation behavior of
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system (1.3). In 2016, Li et al. [22] proposed the following delayed competition and
cooperation model of two enterprises with four delays:

ẏ1(t) = α1y1(t)

[
1− y1(t− ε1)

a1
− r1(y2(t− ε2)− β2)

a2

]
,

ẏ2(t) = α2y2(t)

[
1− y2(t− ε3)

a2
+
r2(y1(t− ε4)− β1)

a1

]
,

y1(0) = ϕ1(t), y2(0) = ϕ2(t), t ∈ [−ε, 0].

(1.4)

By assuming ε1 = ε3 = 0 and ε2+ε4 = ε, Li et al. [22] discussed the Hopf bifurcation
issue of system (1.4). For more relative topic, one can see [3, 22,25,26,30,53,61].

As is known to us, the fractional calculus is a generalization of ordinary dif-
ferentiation and integration [10, 12, 19, 21, 24, 36, 38, 40, 42, 43, 60, 62–64]. However,
the fractional calculus attracts little attention due to its complexity and the lack of
practical background. Up to the last few decades, the fractional calculus has gained
extensive applications in numerous areas of science and engineering such as mechan-
ics, chemistry, viscoelasticity, biology, physics, finance and so on [4, 59]. Many au-
thors argued that in many cases, it is more reasonable to model the natural world by
fractional-order differential equations than integer-order ones since fractional-order
differential equations give a better description of the memory and hereditary nature
of various materials and processes. Recently, many researchers pay much attention
to the dynamical behavior of fractional-order differential systems and outstanding
achievements have been made. We refer the readers to [2, 18, 32, 41]. In particu-
lar, some fruits about Hopf bifurcation phenomenon of fractional-order differential
models have also been reported. For example, Rakkiyappan et al. [35] investigated
the Hopf bifurcation of fractional-order complex-valued neural networks, Abdeloua-
hab et al. [1] analyzed the Hopf bifurcation and chaos for a fractional-order hybrid
optical model, Huang and Cao [14] discussed the bifurcation behavior of fractional
order neural networks with leakage delays, Deshpande et al. [8] focused on the
Hopf bifurcation in a fractional order systems. In details, we refer the readers
to [9, 13,15–17,33,34,44–48,52].

Here it is worth pointing out that all the above publications about Hopf bifur-
cation of fractional-order differential models are mainly concerned with single or
the sum of different delays. So far, there are no papers that focus on the impact of
different delays on the Hopf bifurcation of involved systems. Not to speak of dealing
with the impact of different delays on the Hopf bifurcation of fractional-order com-
petition and cooperation model of two enterprises with different delays. In order to
further reveal the effect of different delays on Hopf bifurcation of fractional-order
competition and cooperation model of two enterprises and master the operation
rules of enterprises effectively, we think that it is necessary to investigate the role
of time delay in fractional-order competition and cooperation model.

Motivated by the analysis above, we modify (1.3) as a fractional-order delayed
competition and cooperation model of two enterprises as follows:

Dqy1(t) = α1y1(t)

[
1− y1(t− ε1)

a1
− r1(y2(t− ε2)− β2)

a2

]
,

Dqy2(t) = α2y2(t)

[
1− y2(t− ε1)

a2
+
r2(y1(t− ε2)− β1)

a1

]
,

(1.5)
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where q ∈ (0, 1]. All other variables and coefficients have the same meaning as those
in (1.3).
The primary object of this manuscript is listed as follows: (a) seeking the sufficient
conditions to ensure the stability and existence of Hopf bifurcation of model (1.5);
(b) revealing the impact of two different delays on Hopf bifurcation of model (1.5);
(c) illustrating the effect of fractional order on the stability and Hopf bifurcation
of model (1.5).
The highlights of this manuscript consist of the following aspects:
• A new fractional-order competition and cooperation model of two enterprises
with two delays, which can better depict the memory and hereditary nature of
competition and cooperation of two enterprises, is established.
• A new set of sufficient criteria to ensure the stability and the existence of Hopf
bifurcation of fractional-order competition and cooperation model of two enterprises
with two delays are obtained. The influence of two different delays and fractional-
order on the stability and Hopf bifurcation of (1.5) are revealed.
• So far, no author focuses on the Hopf bifurcation of fractional-order competition
and cooperation model of two enterprises with two delays.
• The research ideas of this manuscript will provide an excellent reference to
handle a lot of delayed fractional-order differential systems.

The rest of this manuscript is planned as follows. In Segment 2, some basic
knowledge on fractional calculus is prepared. In Segment 3, the sufficient conditions
to assure the stability and the existence of Hopf bifurcation of involved model are
derived. The impact of two different delays on the stability and Hopf bifurcation
of the involved competition and cooperation model of two enterprises is displayed.
In Segment 4, computer simulations are carried out to verify the main findings.
Segment 5 ends the manuscript.
Remark 1.1. In (1.3), we replace the first-order derivatives by Caputo fractional
derivatives of order q ∈ (0, 1]. According to the idea of [23,45], we have

Dqy1(t) = αq1y1(t)

[
1− y1(t− ε1)

a1
− r1γ

1−q(y2(t− ε2)− β2γ
1−q)

a2

]
,

Dqy2(t) = αq2y2(t)

[
1− y2(t− ε1)

a2
+
r2γ

1−q(y1(t− ε2)− β1γ
1−q)

a1

]
,

where γ is a fractional time constant. Let ᾱ1 = αq1, ᾱ2 = αq2, r̄1 = r1γ
1−q, r̄2 =

r2γ
1−q, β̄2 = β2γ

1−q, β̄1 = β1γ
1−q and still denote

ᾱ1, ᾱ2, r̄1, β̄2, β̄1, β̄2 by α1, α2, r1, β2, β1, β2, respectively, then one has
Dqy1(t) = α1y1(t)

[
1− y1(t− ε1)

a1
− r1(y2(t− ε2)− β2)

a2

]
,

Dqy2(t) = α2y2(t)

[
1− y2(t− ε1)

a2
+
r2(y1(t− ε2)− β1)

a1

]
.

For the detailed derivation process, one also can see [23,45].

2. Basic knowledge
In this section, some related definitions and lemmas about fractional calculus are
displayed.
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Definition 2.1 ( [31]). The fractional integral of order q for a function g(ξ) is
defined as follows:

Iqg(ξ) = 1

Γ(q)

∫ ξ

ξ0

(ξ − s)q−1g(s)ds,

where ξ ≥ ξ0, q > 0, and Γ(s) =
∫∞
0
ξs−1e−ξdξ denotes Gamma function.

Definition 2.2 ( [31]). Let g(ξ) ∈ C([ξ0,∞), R). Define the Caputo fractional-
order derivative of order q of g(ξ) as follows:

Dqg(ξ) =
1

Γ(l − q)

∫ ξ

ξ0

g(l)(s)

(ξ − s)q−l+1
ds,

where ξ ≥ ξ0 and l denotes a positive integer which satisfies l− 1 ≤ q < 1. Further-
more, if 0 < q < 1, then

Dqg(v) =
1

Γ(1− q)

∫ ξ

ξ0

g
′
(s)

(ξ − s)q
ds.

Definition 2.3 ( [16]). For given the fractional order system:

Dqui(t) = hi(ui(t)), i = 1, 2, · · · , n, (2.1)

where q ∈ (0, 1], ui(t) = (u1(t), u2(t), · · · , un(t)), hi(t) = (h1(t), h2(t), · · · , hn(t)).
(u∗1, u

∗
2, · · · , u∗n) is said to be the equilibrium point if hi(u∗i ) = 0.

Lemma 2.1 ( [29]). For the system Dqz = Az, z(0) = z0 where 0 < q < 1, z ∈
Rn,A ∈ Rn×n. Assume that λi(i = 1, 2, · · · , n) is the root of the characteris-
tic equation of Dqz = Az. Then system Dqz = Az is asymptotically stable ⇔
|arg(λi)| > qπ

2 (i = 1, 2, · · · , n). Moreover, this system is stable ⇔ |arg(λi)| > qπ
2 (i =

1, 2, · · · , n) and those critical eigenvalues that satisfy |arg(λi)| = qπ
2 (i = 1, 2, · · · , n)

have geometric multiplicity one.

Lemma 2.2 ( [7]). For the given fractional-order system: Dqu(t) = G1u(t)+G2u(t−
ϱ), where u(t) = ϕ(t), t ∈ [−ϱ, 0], q ∈ (0, 1], u ∈ Rn,G1,G2 ∈ Rn×n, ϱ ∈ R+(n×n).
Then the characteristic equation of the system is det |sqI − G1 −G2e

−sϱ| = 0. If all
the roots of the characteristic equation of the system have negative real roots, then
the zero solution of the system is asymptotically stable.

3. Impact of two different delays on Hopf bifurca-
tion for model (1.5)

In this section, we will discuss the impact of two different delays on Hopf bifurcation
for model (1.5).

Let bi = αi

ai
(i = 1, 2), c1 = α1r1

a2
, c2 = α2r2

a1
, then system (1.5) becomesDqy1(t) = y1(t)

[
α1 − b1y1(t− ε1)− c1(y2(t− ε2)− β2)

2
]
,

Dqy2(t) = y2(t)
[
α2 − b2y2(t− ε1) + c2(y1(t− ε2)− β1)

2
]
.

(3.1)



New insights on bifurcation. . . 1245

Set x1(t) = y1(t)− β1, x2(t) = y2(t)− β2, then system (3.1) takes the form:Dqx1(t) = (x1(t) + β1)
[
d1 − b1x1(t− ε1)− c1x

2
2(t− ε2)

]
,

Dqx2(t) = (x2(t) + β2)
[
d2 − b2x2(t− ε1) + c2x

2
1(t− ε2)

]
.

(3.2)

where di = αi − biαi(i = 1, 2).

Now the assumption is given as follows:
(A1) b22β1 > c1d

2
2.

Lemma 3.1. If (A1) holds true, then system (3.2) has a unique equilibrium point
(x10, x20), which is locally asymptotically stable, where x10 =

√
b2x20−d2

c2
and x20

satisfies the following condition:

d2 − b2x20 +
c2(d1 − c1x

2
20)

2

b21
= 0.

Proof. In view of Lemma 2.1 of Liao et al. [27], we know that system (3.2) has
a unique equilibrium point (x10, x20). Next we prove that the equilibrium point
(x10, x20) is locally asymptotically stable.

The linear equation of (3.2) around the equilibrium point (x10, x20) is given by:Dqx1(t) = A1x1(t− ε1) + B1x2(t− ε2),

Dqx2(t) = A2x1(t− ε2) + B2x2(t− ε1),
(3.3)

where A1 = −b1(x10 + β1),B1 = −2c1(x10 + β1)x20,A2 = 2c2(x20 + β2)x10,B2 =
−b2(x20 + β2). The corresponding characteristic equation of (3.3) is given by

det

 sq −A1e
−sε1 −B1e

−sε2

−A2e
−sε2 sq − B2e

−sε1

 . (3.4)

It follows from (3.4) that

s2q − (A1 + B2)s
qe−sε1 +A1B2e

−2sε1 −A2B1e
−2sε2 = 0. (3.5)

If ε1 = ε2 = 0. Then (3.5) takes the form:

λ2 − (A1 + B2)λ+A1B2 −A2B1 = 0. (3.6)

Obviously, A1 + B2 < 0,A1B2 − A2B1 > 0. Then all the roots λi of (3.6) satisfy
|arg(λi)| > qπ

2 (i = 1, 2) By Lemma 3.1, we can conclude that the equilibrium point
(x10, x20) of (3.2) with ε1 = ε2 = 0 is locally asymptotically stable. The proof of
Lemma 3.1 ends.

Next we consider two cases:
Assume that ε1 = 0, ε2 > 0. Then (3.5) takes the form:

s2q − (A1 + B2)s
q +A1B2 −A2B1e

−2sε2 = 0. (3.7)
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Assume that s = iϕ = ϕ
(
cos π2 + i sin π

2

)
is a root of (3.7). Then

A2B1 cos 2ϕε2 = ϕ2q cos qπ − (A1 + B2)ϕ
q cos

qπ

2
+A1B2,

A2B1 sin 2ϕε2 = −ϕ2q sin qπ + (A1 + B2)ϕ
q sin

qπ

2
.

(3.8)

It follows from (3.8) that

ϕ4q + κ1ϕ
3q + κ2ϕ

2q + κ3ϕ
q + κ4 = 0, (3.9)

where

κ1 = −2(A1 + B2)
(
cos qπ cos

qπ

2
+ sin qπ sin

qπ

2

)
,

κ2 = (A1 + B2)
2 + 2A1B2 cos qπ,

κ3 = −2A1B2(A1 + B2) cos qπ cos
qπ

2
,

κ4 = −(A2 + B1)
2.

Denote
χ(ϕ) = ϕ4q + κ1ϕ

3q + κ2ϕ
2q + κ3ϕ

q + κ4. (3.10)

Consider that κ4 < 0 and dχ(ϕ)
dϕ > 0, ∀ ϕ > 0, then Eq.(3.9) has at least one

positive real root. Therefore Eq.(3.7) has at least one pair of purely roots.
Here we suppose that Eq.(3.9) has four positive real roots ϕl(l = 1, 2, 3, 4). By

(3.8), one gets

εk2l =
1

2ϕl

[
arccos

(
ϕ2q cos qπ − (A1 + B2)ϕ

q cos qπ2 +A1B2

A2B1

)
+ 2kπ

]
, (3.11)

where k = 0, 1, 2, · · · , l = 1, 2, 3, 4. Denote

ε20 = min
l=1,2,3,4

{ε02l}, ϕ0 = ϕ|ε2=ε20 . (3.12)

Now the following hypothesis is given:
(A2) K1L1 +K2L2 > 0, where

K1 = (A1 + B2)qϕ
q−1
0 cos

(q − 1)π

2
− 2qϕ2q−1

0 cos
(2q − 1)π

2
,

K2 = (A1 + B2)qϕ
q−1
0 sin

(q − 1)π

2
− 2qϕ2q−1

0 sin
(2q − 1)π

2
,

L1 = A2B1ϕ0 sin 2ϕ0ε20,

L2 = A2B1ϕ0 cos 2ϕ0ε20.

Lemma 3.2. Assume that s(ε2) = µ(ε2)+iϕ(ε2) is the root of (3.7) around ε2=ε20
which satisfies µ(ε20) = 0, ϕ(ε20) = ϕ0, then Re

[
ds
dε2

]
ε2=ε20,ϕ=ϕ0

> 0.

Proof. By (3.7), one has(
ds

dε2

)−1

=
(A1 + B2)qs

q−1 − 2qs2q−1

2A2B1se−2sε2
− ε2

s
, (3.13)
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then

Re
[(

ds

dε2

)−1
]
= Re

[
(A1 + B2)qs

q−1 − 2qs2q−1

2A2B1se−2sε2

]
. (3.14)

Therefore

Re
[(

ds

dε2

)−1
]
ε2=ε20,ϕ=ϕ0

= Re
[
(A1 + B2)qs

q−1 − 2qs2q−1

2A2B1se−2sε2

]
ε2=ε20,ϕ=ϕ0

=
K1L1 +K2L2

L2
1 + L2

2

.

In view of (A2), we get

Re
[(

ds

dε2

)−1
]
ε2=ε20,ϕ=ϕ0

> 0.

This ends the proof of Lemma 3.2.
According to analysis above, one gets the following theorem.

Theorem 3.1. For system (1.5), assume that ε1 = 0 and (A1)and (A2) hold true,
then the equilibrium point (x10, x20) is locally asymptotically stable when ε2 ∈ [0, ε20)
and a Hopf bifurcation appears around the equilibrium point (x10, x20) for ε2 = ε20.

Assume that ε1 > 0, ε2 > 0. Let ε2 ∈ [0, ε20). Choose the ε1 as a bifurcation
parameter. Eq. (3.5) can be written as follows:(

s2q −A2B1e
−2sε2

)
− (A1 + B2)s

qe−sτ1 +A1B2e
−2sε1 = 0. (3.15)

According to (3.15), we have(
s2q −A2B1e

−2sτ2
)
esε1 − (A1 + B2)s

q +A1B2e
−sε1 = 0. (3.16)

Assume that s = iφ = φ
(
cos π2 + i sin π

2

)
is a root of (3.16). ThenE1 cosφε1 + E2 sinφε1 = E3,

E2 cosφε1 + E4 sinφε1 = E5,
(3.17)

where

E1 = φ2q cos qπ −A2B1 cos 2φε2 +A1B2,

E2 = φ2q sin qπ +A2B1 sin 2φε2,

E3 = (A1 + B2)φ
q cos

qπ

2
,

E4 = φ2q cos qπ −A2B1 cos 2φε2 −A1B2,

E5 = (A1 + B2)φ
q sin

qπ

2
.

By (3.17), we have 
cosφε1 =

E3E4 − E2E5
E1E4 − E2

2

,

sinφε1 =
E1E5 − E2E3
E1E4 − E2

2

.

(3.18)
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By (3.18), one gets

(E3E4 − E2E5)2 + (E1E5 − E2E3)2 = (E1E4 − E2
2 )

2. (3.19)

Since

(E3E4 − E2E5)2 = (µ1φ
3q + µ2φ

q)2,

(E1E5 − E2E3)2 = (µ1φ
3q + µ3φ

q)2,

(E1E4 − E2
2 )

2 = (µ4φ
4q + µ5φ

2q + µ6)
2,

where

µ1 = (A1 + B2)
(
cos qπ cos

qπ

2
− sin qπ sin

qπ

2

)
,

µ2 = (A1 + B2)
[
(A1B2 −A2B1 cos 2φε2) cos

qπ

2
−A2B1 sin 2φε2 sin

qπ

2

]
,

µ3 = (A1 + B2)
[
(A1B2 −A2B1 cos 2φε2) sin

qπ

2
−A2B1 sin 2φε2 cos

qπ

2

]
,

µ4 = cos 2qπ,

µ5 = 2A2B1(cos 2φε2 cos qπ + sin 2φτ2 sin qπ),

µ6 = A2
2B2

1 cos 4φε2 −A2
2B2

1.

It follows from (3.19) that

η1φ
8q + η2φ

6q + η3φ
4q + η4φ

2q + η5 = 0, (3.20)

where

η1 = µ2
4,

η2 = 2µ4µ5 − 2µ2
1,

η3 = µ2
5 − 2µ1µ2 − 2µ1µ3,

η4 = 2µ5µ6 − µ2
2 − µ2

3,

η5 = µ2
6.

Set
ρ(φ) = η1φ

8q + η2φ
6q + η3φ

4q + η4φ
2q + η5 (3.21)

and
ψ(ν) = η1ν

8 + η2ν
6 + η3ν

4 + η4ν
2 + η5. (3.22)

Clearly, η1 > 0, η5 > 0. Then we can easily obtain the following results.
Lemma 3.3. For Eq. (3.15), the following conclusions hold:
(1) Assume that ηi(i = 2, 3, 4) > 0, then Eq. (3.15) has no root with zero real parts.
(2) Assume that there exists a constant ζ > 0 such that ψ′

(ζ) < 0, then Eq. (3.15)
has at least two pairs of purely imaginary roots.
Proof. (1) In view of ηi > 0(i = 1, 2, 3, 4, 5), then dρ(φ)

dφ > 0 ∀ φ > 0 and
ρ(0) = η5 > 0. Hence Eq. (3.20) has no positive real root. Therefore Eq.(3.15) has
no purely imaginary root. According to A1B2 −A2B1 > 0, s = 0 is not the root of
Eq. (3.15). The proof of (1) ends.
(2) Since ψ(0) = η5 > 0, ψ(ϑ0) < 0(ϑ0 > 0) and limϑ→+∞

ψ(ϑ)
dϑ = +∞, then there

exist ϑ01 ∈ (0, ϑ0) and ϑ02 ∈ (ϑ0,+∞) which satisfy ψ(ϑ01) = ψ(ϑ02) = 0. Then
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(3.20) has at least two positive real roots. Thus (3.15) has at least two pairs of
purely imaginary roots. The proof of (2) ends.

Here we suppose that (3.20) has eight positive real roots φl(l = 1, 2, 3, 4, 5, 6, 7, 8).
By (3.18), one has

εk1l =
1

φl

[
arccos

(
E3E4 − E2E5
E1E4 − E2

2

)
+ 2kπ

]
, (3.23)

where k = 0, 1, 2, · · · , l = 1, 2, 3, 4, 5, 6, 7, 8. Set

ε10 = min
l=1,2,3,4,5,6,7,8

{ε01l}, φ0 = φ|ε1=ε10 . (3.24)

The following hypothesis is given:
(A3) X1Y1 + X2Y2 > 0, where

X1 =

[
2qφ2q−1

0 cos
(2q − 1)π

2
+ 2A2B1ε2 cosφ0ε2

]
cosφ0ε10

−
[
2qφ2q−1

0 sin
(2q − 1)π

2
− 2A2B1ε2 sinφ0ε2

]
sinφ0ε10

− (A1 + B2)qϕ
q−1
0 cos

(q − 1)π

2
,

X2 =

[
2qφ2q−1

0 cos
(2q − 1)π

2
+ 2A2B1ε2 cosφ0τ2

]
sinφ0ε10

−
[
2qφ2q−1

0 sin
(2q − 1)π

2
− 2A2B1ε2 sinφ0ε2

]
cosφ0ε10

− (A1 + B2)qϕ
q−1
0 sin

(q − 1)π

2
,

Y1 = φ0[A1B2 sinφ0ε10 − cosφ0ε10(φ
2q
0 sin qπ +A2B1 sinφ0ε2)

− sinφ0ε10(φ
2q
0 cos qπ −A2B1 cosφ0ε2)],

Y2 = φ0[A1B2 cosφ0ε10 − cosφ0ε10(φ
2q
0 cos qπ +A2B1 cosφ0ε2)

− sinφ0τ10(φ
2q
0 sin qπ −A2B1 sinφ0ε2)].

Lemma 3.4. Assume that s(ε1) = ϱ(ε1)+iϕ(ε1) is the root of (3.7) around ε1 = ε10

which satisfies ϱ(ε10) = 0, φ(ε10) = φ0, then Re
[
ds
dε1

]
ε1=ε10,φ=φ0

> 0.

Proof. By (3.16), one gets(
ds

dε1

)−1

=
[2qs2q−1 + 2A2B1τ2e

−sε2 ]esε1 − (A1 + B2)qs
q−1

s[A1B2e−sτ1 − esε1(s2q −A2B1e−sε2)]
− ε1

s
, (3.25)

then

Re
[(

ds

dε1

)−1
]
= Re

[
(2qs2q−1 + 2A2B1ε2e

−sε2)esε1 − (A1 + B2)qs
q−1

s(A1B2e−sε1 − esε1(s2q −A2B1e−sε2))

]
. (3.26)

Thus

Re
[(

ds

dε1

)−1
]
ε1=ε10,ϕ=ϕ0

= Re
[
(2qs2q−1 + 2A2B1ε2e

−sτ2)esε1 − (A1 + B2)qs
q−1

s(A1B2e−sτ1 − esτ1(s2q −A2B1e−sτ2))

]
_ε1 = ε10, φ = φ0

=
X1Y1 + X2Y2

Y2
1 + Y2

2

.
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In view of (A3), we get

Re
[(

ds

dε1

)−1
]
ε1=ε10,φ=φ0

> 0.

This ends the proof of Lemma 3.4.
According to the analysis above, one gets the following theorem.

Theorem 3.2. For system (1.5), assume that ε2 ∈ [0, ε20) and (A1)and (A3)
hold true, then the equilibrium point (x10, x20) is locally asymptotically stable for
ε1 ∈ [0, ε10) and a Hopf bifurcation appears around the equilibrium point (x10, x20)
when ε1 = ε10.

Remark 3.1. In [5, 6, 11, 20, 37, 49, 51, 54–58], the authors considered the Hopf
bifurcation of integer-order delayed models. In this paper, we investigate the sta-
bility and Hopf bifurcation of fractional-order competition and cooperation model
of two enterprises with two different delays. All the obtained results and analy-
sis methods [5, 6, 11, 20, 37, 49, 51, 54–58] can not be applied to (1.5) to obtain the
stability and the existence of Hopf bifurcation for (1.5). In [22, 26–28, 50], the au-
thors investigated the Hopf bifurcation of competition and cooperation model of two
enterprises with delay, but they did not involve the fractional-order case. Based
on these viewpoints, the fruit of this paper about the stability and the existence
of Hopf bifurcation for (1.5) are completely new and an important supplement to
some earlier works.
Remark 3.2. In [1, 8, 13–17, 33, 35, 39, 47, 48], the authors dealt with the Hopf
bifurcation of fractional-order models. They did not consider the effect of different
delays on the stability and Hopf bifurcation of involved models. Up to now, there are
no results on the effect of different delays on Hopf bifurcation of involved fractional-
order systems. From the analysis above, the obtained results of this paper is new.
Remark 3.3. Compared with the integer-order competition and cooperation model
of two enterprises, the fractional-order competition and cooperation model of two
enterprises can characterize memory property, history state, nonlocal effects of the
output of two enterprises, which implies that the fractional-order competition and
cooperation model of two enterprises have more advantage than the integer-order
one.
Remark 3.4. In Theorem 3.1, we assume that ε1 = 0 which implies the single
case. In a similar way, we can deal with ε2 = 0. Considering the practical meaning
of competition and cooperation of two enterprises, we focus on the effect of double
delays on Hopf bifurcation of fractional-order competition and cooperation model
of two enterprises.

4. Computer simulations
Consider the following fractional-order model:Dqx1(t) = (x1(t) + 1)

[
0.3− 0.2x1(t− ε1)− 0.1x22(t− ε2)

]
,

Dqx2(t) = (x2(t) + 1)
[
0.3− 0.5x2(t− ε1) + 0.2x21(t− ε2)

]
.

(4.1)

All the coefficients are same as those in Liao [26]. It is not difficult to see that system
(4.1) has the equilibrium point (1, 1). Let ε1 = 0, q = 0.83. Then ϕ0 = 0.6257 and
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ε20 = 1.9939. Then the hypotheses (A1) and (A2) of Theorem 3.1 are fulfilled.
Figures 1–4 indicate that the equilibrium point (1, 1) of system (4.1) is locally
asymptotically stable when ε2 ∈ [0, ε20). Figures 5–8 manifest that system (1.1)
becomes unstable, a Hopf bifurcation appears when ε2 ∈ [ε20,+∞). The relation of
parameters q, ϕ0 and ε20 of (4.1) is displayed in Table 1. One can see that the order
can postpone the emergence of Hopf bifurcation (compared with Liao [3]). Next let
ε2 = 1, q = 0.83. Then φ0 = 0.7125 and ε10 = 1.1530. Then the hypotheses (A1)
and (A3) of Theorem 3.2 are fulfilled. Figures 9–12 reveal that the equilibrium point
(1, 1) of system (4.1) is locally asymptotically stable when ε1 ∈ [0, ε10). Figures 13–
16 imply that system (1.1) becomes unstable, a Hopf bifurcation appears when
ε1 ∈ [ε10,+∞). In Table 2, we have given the relation of q, φ0 and ε10 of (4.1). It
is not difficult to see that the order can make the Hopf bifurcation appear ahead of
time compared with the integer-order ones (see [26]).
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Figure 1. The relation of t-x1(t) when ε1 =
0, ε2 = 1.8 < ε20 = 1.9939.
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Figure 2. The relation of t-x2(t) when ε1 =
0, ε2 = 1.8 < ε20 = 1.9939.
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Figure 3. The relation of x1(t)-x2(t) when
ε1 = 0, ε2 = 1.8 < ε20 = 1.9939.
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Figure 4. The relation of t-x1(t)-x2(t) when
ε1 = 0, ε2 = 1.8 < ε20 = 1.9939.
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Figure 5. The relation of t-x1(t) when ε1 =
0, ε2 = 2.2 > ε20 = 1.9939.
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Figure 6. The relation of t-x2(t) when ε1 =
0, ε2 = 2.2 > ε20 = 1.9939.
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Figure 7. The relation of x1(t)-x2(t) when
ε1 = 0, ε2 = 2.2 > ε20 = 1.9939.
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Figure 8. The relation of t-x1(t)-x2(t) when
ε1 = 0, ε2 = 2.2 > ε20 = 1.9939.

Table 1. The relation of q, ϕ0 and ε20 of (4.1).

q ϕ0 ε20

0.15 1.6771 0.3722

0.24 1.5134 0.5929

0.32 1.4267 0.7875

0.43 1.1093 1.0526

0.51 1.0132 1.2437

0.64 0.8937 1.5511

0.76 0.7348 1.8317

0.83 0.6257 1.9939

0.91 0.5546 2.1781
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Figure 9. The relation of t-x1(t) when ε2 =
1, ε1 = 1.0 < ε10 = 1.1530.
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Figure 10. The relation of t-x2(t) when ε2 =
1, ε1 = 1.0 < ε10 = 1.1530.
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Figure 11. The relation of x1(t)-x2(t) when
ε2 = 1, ε1 = 1.0 < ε10 = 1.1530.
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Figure 12. The relation of t-x1(t)-x2(t) when
ε2 = 1, ε1 = 1.0 < ε10 = 1.1530.
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Figure 13. The relation of t-x1(t) when ε2 =
1, ε1 = 1.2 > ε10 = 1.1530.
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Figure 14. The relation of t-x2(t) when ε2 =
1, ε1 = 1.2 > ε10 = 1.1530.
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Figure 15. The relation of x1(t)-x2(t) when
ε2 = 1, ε1 = 1.2 > ε10 = 1.1530.
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Figure 16. The relation of t-x1(t)-x2(t) when
ε2 = 1, ε1 = 1.2 > ε10 = 1.1530.

Table 2. The relation of q, φ0 and ε10 of (4.1).
q φ0 ε10

0.15 1.8722 0.2217
0.24 1.6309 0.3517
0.32 1.4877 0.4653
0.43 1.2732 0.6189
0.51 1.0833 0.7287
0.64 1.0642 0.9039
0.76 0.8751 1.0621
0.83 0.7125 1.1530
0.91 0.6718 1.2555

5. Conclusions

The competition and cooperation among different enterprises is an important aspect
in production and management of enterprises. In the manuscript, based on earlier
publications, we propose a new fractional-order competition and cooperation model
of two enterprises with two different delays. By regarding two different delays
as bifurcation parameter, we establish two sets of sufficient conditions to assure
the the stability and the existence of Hopf bifurcation for involved competition
and cooperation model of two enterprises. The investigation manifests that the
two different delays have different effect on the stability and Hopf bifurcation of
involved model. Also the relation of fractional-order and bifurcation point are
displayed. The derived results have important theoretical significance and practical
value in managing the production of enterprises. Besides, we point out that how to
control the duration time of output for enterprises is an interesting issue. It involves
the bifurcation control issue. We will study this aspect in the near future. In
addition, we will try to investigate the effect of multiple delays on Hopf bifurcation
for fractional-order delayed competition and cooperation model. Now we still can
not deal with the direction and stability of Hopf bifurcation of fractional order
differential systems due to the lack of theory.
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[19] E. Kaslik, I. R. Rǎdulescu, Dynamics of complex-valued fractional-order neural
networks, Neural Netw., 2017, 89, 39–49.

[20] K. S. Kim, S. Kim, I. H. Jung, Hopf bifurcation analysis and optimal control of
treatment in a delayed oncolytic virus dynamics, Math. Comput. Simul., 2018,
149, 1–16.

[21] A. Kumar, V. Kumar, Performance analysis of optimal hybrid novel interval
type-2 fractional order fuzzy logic controllers for fractional order systems, Exp.
Syst. Appl., 2018, 93, 435–455.

[22] L. Li, C. Zhang, X. Yan, Stability and Hopf bifurcation analysis for a two-
enterprise interaction model with delays, Neurocomputing, Commun. Nonlinear
Sci. Numer. Simul., 2016, 30(1–3), 70–83.

[23] N. Lekdee, S. Sirisubtawee, S. Koonprasert, Bifurcations in a delayed fractional
model of glucose-insulin interaction with incommensurate orders, Adv. in Diff.
Equat., 2019, 318, 22 pages.

[24] M. Li, J. Wang, Exploring delayed Mittag-Leffler type matrix functions to study
finite time stability of fractional delay differential equations, Appl. Math. Com-
put., 2018, 324, 254–265.

[25] Y. Li, T. Zhang, Global asymptotical stability of a unique almost periodic so-
lution for enterprise clusters based on ecology theory with time-varying delays
and feedback controls, Commun. Nonlinear Sci. Numer. Simul., 2012, 17(2),
904–913.

[26] M. Liao, C. Xu, X. Tang, Dynamical behaviors for a competition and coop-
eration model of enterprises with two delays, Nonlinear Dyn., 2014, 75(1–2),
257–66.

[27] M. Liao, C. Xu, X. Tang, Stability and Hopf bifurcation for a competition
and cooperation model of two enterprises with delay, Commun. Nonlinear Sci.
Numer. Simul., 2014, 19(10), 3845–3856.

[28] P. Liu, Y. Li, Permanence for a competition and cooperation model of enter-
prise cluster with delays and feedback controls, Electron. J. Diff. Equa., 2013,
2013(22), 1–9.

[29] D. Matignon, Stability results for fractional differential equations with appli-
cations to control processing, Computational engineering in systems and ap-
plication multi-conference, IMACS. In: IEEE-SMC Proceedings, Lille, 2; 1996.
p.963-8. France; July 1996.

[30] A. S. Mohamadi, A. Pourabbas, S. M. Vaezpour, Periodic solutions of delay dif-
ferential equations with feedback control for enterprise clusters based on ecology
theory, J. Inequa. Appl., 2014, 306, 1–15.

[31] I. Podlubny, Fractional Differential Equations, Academic Press, New York,
1999.

[32] A. Pratap, R. Raja, C. Sowmiya, O. Bagdasar, G. Rajchakit, Robust gener-
alized Mittag-Leffler synchronization of fractional order neural networks with
discontinuous activation and impulses, Neural Netw., 2018, 103, 128–141.

[33] K. Rajagopal, A. Karthikeyan, P. Duraisamy, R. Weldegiorgis, G. Tadesse,
Bifurcation, Chaos and its control in a fractional order power system model
with uncertaities, Asian J. Contr., 2018, 21(1), 1–10.



New insights on bifurcation. . . 1257

[34] K. Rajagopal, A. Karthikeyan, A. Srinivasan, Bifurcation and chaos in time
delayed fractional order chaotic memfractor oscillator and its sliding mode
synchronization with uncertainties, Chaos, Solitons Fract., 2017, 103, 347–356.

[35] R. Rakkiyappan, K. Udhayakumar, G. Velmurugan, J. Cao, A. Alsaedi, Sta-
bility and Hopf bifurcation analysis of fractional-order complex-valued neural
networks with time delays, Adv. Diff. Equat., 2017, 225, 1–25.

[36] T. Shen, J. Xin, J. Huang, Time-space fractional stochastic Ginzburg-Landau
equation driven by Gaussian white noise, Stoch. Anal. Appl., 2018, 36(1), 103–
113.

[37] Y. Song, Spatio-temporal patterns of Hopf bifurcating periodic oscillations in
a pair of identical tri-neuron network loops, Commun. Nonlinear Sci. Numer.
Simul., 2012, 17(2), 943–952.

[38] A. G. Soriano-Sánchez, C. Posadas-Castillo, M. A. Platas-Garza, A. Arellano-
Delgado, Synchronization and FPGA realization of complex networks with
fractional-order Liu chaotic oscillators, Appl. Math. Comput., 2018, 332, 250–
262.

[39] B. Tao, M. Xiao, Q. Sun, J. Cao, Hopf bifurcation analysis of a delayed
fractional-order genetic regulatory networks model, Neurocomput., 2018, 275,
677–686.

[40] W. W. Teka, R. K. Upadhyay, A. Mondal, Spiking and bursting patterns of
fractional-order Izhikevich model, Proceed. Commun. Nonlinear Sci. Numer.
Simul., 2018, 56, 161–176.

[41] G. Velmurugan, R. Rakkiyappan, V. Vembarasan, J. Cao, A. Alsaedi, Dissipa-
tivity and stability analysis of fractional-order complex-valued neural networks
with time delay, Neural Netw., 2017, 86, 42–53.

[42] Y. Wang, J. Jiang, Existence and nonexistence of positive solutions for the
fractional coupled system involving generalized p-Laplacian, Adv. Diff. Equat.,
2017, 337, 1–19.

[43] Y. Wang, L. Liu, Positive solutions for a class of fractional 3-point boundary
value problems at resonance, Adv. Diff. Equa., 2017, 7, 1–13.

[44] X. Wang, Z. Wang, J. Xia, Stability and bifurcation control of a delayed
fractional-order eco-epidemiological model with incommensurate orders, J.
Franklin Inst., 2019, 356(15), 8278–8295.

[45] Z. Wang, X. Wang, Y. Li, X. Huang, Stability and Hopf bifurcation of fractional-
order complex-valued single neuron model with time delay, Int. J. Bifur. Chaos,
2017, 27(13), 1750209.

[46] Z. Wang, Y. Xie, J. Lu, Y. Li, Stability and bifurcation of a delayed generalized
fractional-order prey-predator model with interspecific competition, Appl. Math.
Comput., 2019, 347, 360–369.

[47] M. Xiao, G. Jiang, W. Zheng, S. Yan, Y. Wan, C. Fan, Bifurcation control od
a fractional-order van der pol oscillator based on the state feedback, Asian J.
Contr., 2015, 17(5), 1755–1766.

[48] M. Xiao, W. Zheng, J. Lin, G. Jiang, L. Zhao, Fractional-order PD control at
Hopf bifurcation in delayed fractional-order small-world networks, J. Franklin
Inst., 2017, 354(17), 7643–7667.



1258 C. Xu, M. Liao, P. Li & S. Yuan

[49] C. Xu, Local and global Hopf bifurcation analysis on simplified bidirectional as-
sociative memory neural networks with multiple delays, Math. Comput. Simul.,
2018, 149, 69–90.

[50] C. Xu, Periodic solution of competition and corporation dynamical model of
two enterprises on time scales, J. Quant. Econ., 2012, 29(2), 1–4.

[51] C. Xu, M. Liao, Bifurcation analysis of an autonomous epidemic predator-prey
model with delay, Ann. Mat. Pur. Appl., 2014, 193(1), 23–28.

[52] C. Xu, Z. Liu, M. Liao, P. Li, Q. Xiao, S. Yuan, Fractional-order bidirectional
associate memory (BAM) neural networks with multiple delays: The case of
Hopf bifurcation, Math. Comput. Simul., 2021, 182, 471–494.

[53] C. Xu, Y. Shao, Existence and global attractivity of periodic solution for enter-
prise clusters based on ecology theory with impulse, J. Appl. Math. Comput.,
2012, 39(1–2), 367–384.

[54] C. Xu, X. Tang, M. Liao, Frequency domain analysis for bifurcation in a sim-
plified tri-neuron BAM network model with two delays, Neural Netw., 2010,
23(7), 872–880.

[55] C. Xu, X. Tang, M. Liao, Stability and bifurcation analysis of a delayed
predator-prey model of prey dispersal in two-patch environments, Appl. Math.
Comput., 2010, 216(10), 2920–2936.

[56] C. Xu, X. Tang, M. Liao, Stability and bifurcation analysis of a six-neuron
BAM neural network model with discrete delays, Neurocomput., 2011, 74(5),
689–707.

[57] C. Xu, Y. Wu, Bifurcation and control of chaos in a chemical system, Appl.
Math. Modelling, 2015, 39(8), 2295–2310.

[58] C. Xu, Q. Zhang, Bifurcation analysis of a tri-neuron neural network model in
the frequency domain, Nonlinear Dyna., 2014, 76(1), 33–46.

[59] X. Yang, C. Li, Q. Song, J. Chen, J. Huang, Global Mittag-Leffler stability and
synchronization analysis of fractional-order quaternion-valued neural networks
with linear threshold neurons, Neural Netw., 2018, 105, 88–103.

[60] X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, Nontrivial solutions for a
fractional advection dispersion equation in anomalous diffusion, Appl. Math.
Lett., 2017, 66, 1–8.

[61] Y. Zhi, Z. Ding, Y. Li, Permanence and almost periodic solution for an en-
terprise cluster model based on ecology theory with feedback controls on time
scales, Discrete Dyn . Nat. Soc., Volume 2013, Article ID 639138, 14 pages.

[62] B. Zhu, L. Liu, Y. Wu, Existence and uniqueness of global mild solutions for a
class of nonlinear fractional reaction-diffusion equations with delay, Comput.
Math. Appl., 2019, 78(6), 1811–1818.

[63] F. Zouari, A. Ibeas, A. Boulkroune, J. Cao, M. M. Arefi, Adaptive neural
output-feedback control for nonstrict-feedback time-delay fractional-order sys-
tems with output constraints and actuator nonlinearities, Neural Netw., 2018,
105, 256–276.

[64] M. Zuo, X. Hao, L. Liu, Y. Cui„ Existence results for impulsive fractional
integro-differential equation of mixed type with constant coefficient and an-
tiperiodic boundary conditions, Bound. Value Probl., 2017, 161, 1–15.


	Introduction
	Basic knowledge
	Impact of two different delays on Hopf bifurcation for model (1.5)
	Computer simulations
	 Conclusions

