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probability space.
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1. Introduction
We consider the system of 2D viscous Primitive Equations (PE) for three dimen-
sional Geophysical Fluid Dynamics in the two dimensional spatial domain [30]. It is
well known that the system of Primitive Equations is derived from the Navier-Stokes
equations, coupled with the thermodynamic equations and the diffusion equations,
replacing vertical momentum balance with a simple static equation, and it is used
as the fundamental model of meteorology and geophysical fluid dynamics [3, 28].

The mathematical study of primitive equations was started by Lions, Temam
and Wang [24–26], where the notions of weak and strong solutions were defined
and existence of weak solutions was proved. Since then, the well-posedness and
regularity of strong solutions with different conditions have been studied, such as
[2,14,16–21,29,30]. There exists an unresolved mathematical problem for viscous PE
is about uniqueness of weak solutions, by introducing the notion of “z-weak” solution
to 3D (or 2D ) viscous PE, we have some results about uniqueness, see [18,20,23,32].

Due to the influence of external force and internal instability process, white
noise driven random term was added to the basic control equations. Research [27]
showed that these random terms meet the basic physical principles. In the past
two decades, there are numerous works about the stochastic primitive equations,
we mention some of them. For the well-posedness, regularity, random attractor and
existence and regularity of invariant measures, we refer the reader to the papers [4–
12,15,31]. For the deviation principles and small time asymptotics of the primitive
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equations, see [6, 7]. As well as we know, above results of the primitive equations
are based on the Lipschitz conditions for the external force term and noise term.
But, these conditions are so strong that they are not appropriate to reflect all
problems. This paper will investigate 2D stochastic primitive equations with non-
Lipschitz conditions which is a much weaker condition than Lipschitz one. The
non-Lipschitz stochastic evolution equations have been considered by many authors,
such as [1,34]. Due to complex nonlinear term of primitive equations, the previous
results cannot be applied here. Furthermore, it is known that the well-posedness of
solutions to the stochastic non-Lipschitz Navier-Stokes equations was obtained by
Taniguchi [33]. In this paper, we follow the lines of [33]. The difference between
the primitive equations and the Navier-Stokes equations is that the nonlinear term
of the primitive equations is more complicated, we want to fill the gap of well-
posedness under non-Lipschitz conditions for primitive equations. The main work
is to deal with nonlinear terms and study the well-posedness of solutions which
closely related to the notion of z-weak solutions.

This paper is organized as follows. Firstly, the preliminaries are given in §2. We
introduce the model, the related function spaces and some properties of operators.
Some assumptions are also provided. Secondly, in §3, we construct the auxiliary
stochastic primitive equations, in which external force term and noise term are
determined, then using Galerkin method to prove the existence and uniqueness of
the functions. On the basis of the conclusions in §3, combining iterative method
and moment estimations, the existence and uniqueness of solutions on local time
are obtained in §4. Finally, the global existence of solutions is considered in §5.

2. Preliminaries
We consider the following two dimensional stochastic primitive equations [10,13]:

∂tu− ν∆u+ u∂xu+ w∂zu+ ∂xp = f + g(t, u)Ẇ (t), (2.1)
∂xu+ ∂zw = 0, (2.2)

in the bounded domain M = {(x, z)|0 ≤ x ≤ L,−h ≤ z ≤ 0}, where L, h are
constants. We denote by (u,w), p the unknown the field of the flow and the pressure
respectively. Note that p does not depend on the vertical variable z. In this paper,
in order to focus main attention on the difficulties arising from the nonlinear term,
we ignore the temperature and salinity equations.

The boundary is divided into the top Γi = {z = 0}, the bottom Γb = {z = −h}
and the sides Γs = {x = 0} ∪ {x = L}. The following boundary conditions are
proposed:

on Γs : u = 0,

on Γi ∪ Γb : ∂zu = 0, w = 0.

Generally, we make on further assumptions (see [13]):∫ 0

−h

fdz = 0,

∫ 0

−h

gdz = 0,

∫ 0

−h

udz = 0.
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From (2.2) we have w(x, z) = −
∫ z

−h
∂xu(x, z̃)dz̃. We will be working on the Hilbert

spaces:

H =
{
u ∈ L2(M) |

∫ 0

−h

udz = 0
}
,

V =
{
u ∈ H1(M) |

∫ 0

−h

udz = 0, u = 0 on Γs

}
.

These spaces are endowed with the L2 and H1 norms which we respectively denote
by | · | and | · |V . The inner product and norms on H,V are given by (u, v) =∫
M uvdxdz, and |u| = (u, u)

1
2 , |u|V = (|u|2 + ‖u‖2) 1

2 , where u, v ∈ H and ‖u‖ =

|∇u| = (∇u,∇u) 1
2 . Let V ∗ be the dense and continuous embedding V ↪→ H ≡

H∗ ↪→ V ∗ and denote by 〈u, ψ〉 the duality between u ∈ V and ψ ∈ V ∗. Consider
an unbounded linear operator A : D(A) → H with D(A) = V ∩H2(M) and define

〈Au, v〉 = (∇u,∇v), ∀ u, v ∈ D(A).

The Stokes-type operator A is self-adjoint and positive, with compact self-adjoint
inverse. Next we address the nonlinear term. Take W(v) = −

∫ z

−h
∂xv(x, z̃)dz̃ and

B(u, v) = u∂xv +W(u)∂zv, where u, v ∈ V.
Define the bilinear operator B(u, v) : V × V → V ∗ according to 〈B(u, v), w〉 =

b(u, v, w), where b(u, v, w) =
∫
M(u∂xvw +W(u)∂zvw)dM. In the sequel, when no

confusion arises, we denote by C a constant which may change from one line to the
next one.

Lemma 2.1 (see [13,31]). The trilinear forms b and B have the following properties.
There exists a constant C > 0 such that

|b(u, v, w)|≤C
(
|u| 12 ‖u‖ 1

2 ‖v‖|w| 12 ‖w‖ 1
2 +|∂xu||∂zv||w|

1
2 ‖w‖ 1

2

)
, u, v, w ∈ V, (2.3)

b(u, v, v) = 0, u, v ∈ V, (2.4)
〈B(u, u), ∂zzu〉 = 0, u ∈ V. (2.5)

For u ∈ V , define E(u) = −Au−B(u). We obtain the monotonicity property of
E.

Lemma 2.2 (see [31]). Assume that u, v ∈ V, we have

〈E(u)− E(v), u− v〉+ 1

2
‖u− v‖2 ≤ C|u− v|‖u− v‖‖v‖+ C(1 + |∂zv|4)|u− v|2.

Let K be another separable Hilbert space with the inner product (·, ·)K . Let
L(K;H) denote the space of all bounded linear operators from K to H. Let Q ∈
L(K;K) be a positive self-adjoint operator. Furthermore, L0

2(K;H) denotes the
space of all ξ ∈ L(K;H) such that ξ

√
Q is a Hilbert-Schimdt operator and so

tr(ξQξ∗) <∞. The norm is given by |ξ|2
L0

2
= |ξ

√
Q|2HS = tr(ξQξ∗).

Let (Ω, P,F ) be a complete probability space on which an increasing and right
continuous family (Ft)t∈[0,∞] of complete sub-σ-algebra of F is defined. F0 con-
tains all the null sets of F . Let en(n = 1, 2, 3...) be a complete orthonormal basis in
K. We consider a K-valued cylindrical Wiener process W (t) given by the following
series:

W (t) =

∞∑
n=1

βn(t)
√
Qen, t ≥ 0, Q ∈ L(K;K).
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Let u0 be an F0-random variable. The stochastic 2D primitive equations can
be rewritten in the abstract mathematical setting with an initial value u(0) = u0
as follows:

du(t) + [νAu(t) +B(u(t))]dt = f(t, u(t))dt+ g(t, u(t))dW (t). (2.6)

In this paper we use the following conditions.
Assumption 1. There exist the functions Fk(t, u),Hk(t, u) : R

+ ×R+ → R+(k =
1, 2) such that they are locally integrable in t ≥ 0 for any fixed u ≥ 0 and continuous,
monotone nondecreasing in u for any fixed t ≥ 0 with Fk(t, 0) = Hk(t, 0) = 0. The
following inequalities are satisfied:

E|f(t, u)|2kV ∗ + E|g(t, u)|2kL0
2
≤ Fk(t,E|u|2k), u ∈ L2k(Ω;H), (2.7)

E|∂zf(t, u)|2kV ∗ + E|∂zg(t, u)|2kL0
2
≤ Hk(t,E|∂zu|2k), ∂zu ∈ L2k(Ω;H). (2.8)

Assumption 2. There exist the functions Gk(t, u) : R+ × R+ → R+(k = 1, 2)
which are locally integrable in t ≥ 0 for any fixed u ≥ 0 and continuous, monotone
nondecreasing in u for any fixed t ≥ 0 with Gk(t, 0) = 0, k = 1, 2. Furthermore, the
functions Gk(k = 1, 2) satisfy the following inequalities:

E|f(t, u)− f(t, v)|2kV ∗ + E|g(t, u)− g(t, v)|2kL0
2
≤ Gk(t,E|u− v|2k). (2.9)

If for any given constants Ck ≥ 0, non-negative functions zk(t) satisfy that zk(0) = 0
and

zk(t) ≤ Ck

∫ t

0

Gk(s, zk(s))ds, k = 1, 2,

for all t ∈ R+, then zk(t) = 0 on R+.

3. The existence and uniqueness of the auxiliary
equations

Let 0 ≤ t ≤ T ≤ 1, we study the following stochastic differential equation:

u(t) = u0 +

∫ t

0

[−νAu(s)−B(u(s))]ds

+

∫ t

0

f∗(s, ξ(s))ds+

∫ t

0

g∗(s, ξ(s))dW (s), (3.1)

with an initial =0-random variable u0, where ξ(s) is a stochastic process, f∗ :
[0,∞]×V → V ∗ and g∗ : [0,∞]×H → L0

2(K;H) are both progressively measurable.
Now we consider the Galerkin approximation to (3.1) as follows:

un(t) = Pnu0 +

∫ t

0

[−νAun(s)− PnB(un(s))]ds

+

∫ t

0

Pnf∗(s, ξ(s))ds+

∫ t

0

Png∗(s, ξ(s))dW (s). (3.2)
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Assumption 3. Let 0 ≤ t ≤ T and ξ(t) be a stochastic process and satisfy the
following conditions:

f∗(t, ξ(t)) ∈ L2([0, T ]× Ω;V ∗) ∩ L4([0, T ]× Ω;V ∗),

g∗(t, ξ(t)) ∈ L2([0, T ]× Ω;L0
2(K;H)) ∩ L4([0, T ]× Ω;L0

2(K;H)),

∂zf∗(t, ξ(t)) ∈ L2([0, T ]× Ω;V ∗) ∩ L4([0, T ]× Ω;V ∗),

∂zg∗(t, ξ(t)) ∈ L2([0, T ]× Ω;L0
2(K;H)) ∩ L4([0, T ]× Ω;L0

2(K;H)).

Note that for ψ ∈ V, the map un 7−→ 〈−νAun, ψ〉 is globally Lipschitz, while
using Lemma 2.1, the map B(un) is locally Lipschitz. Furthermore, because ξ(s) is
a given function and f∗, g∗ are unrelated with un. Hence by a well-posedness result
for stochastic ordinary differential equations [22], there exists a solution un(t) to
(3.2) and satisfies

d〈un, ψ〉+ 〈νAun + PnB(un), ψ〉dt = 〈Pnf∗, ψ〉dt+ 〈Png∗dW (t), ψ〉,
un(0) = Pnu0.

We next establish some uniform a priori estimates on un (independent of n) in
the following lemmas.

Lemma 3.1. Let u0 be an initial value with E|u0|2p,E|∂zu0|2p < ∞, (p = 1, 2).
Suppose that Assumption 3 is satisfied. Then for the solution un(t) to (3.2), there
exists a constant Ki > 0 (i = 1, 2) such that

E
(

sup
0≤s≤t

|un(s)|2p
)
+ E

∫ t

0

|un(s)|2(p−1)‖un(s)‖2ds ≤ K1,

E
(

sup
0≤s≤t

|∂zun(s)|2p
)
+ E

∫ t

0

|∂zun(s)|2(p−1)‖∂zun(s)‖2ds < K2,

uniformly in all n ≥ 1.

Lemma 3.2. Let u0 be an initial value with E|u0|4 <∞. Then the solution to (3.2)
satisfies

E
(∫ t

0

‖un(s)‖2ds
)2

≤ C(|f∗|2L2(Ω;L2(0,T ;V ∗)), |g∗|
2
L2(Ω;L2(0,T ;L0

2))
)E|u0|4.

Uniform estimates of Lemmas 3.1-3.2 are similar as the proofs of Lemmas 4.1-
4.5, even more easier. We give only the sketch proofs of Lemma 3.1 for |un(t)|2p
and Lemma 3.2.

Proof of Lemma 3.1 for |un(t)|2p. Using Itô formula for |un(s)|2p, we deduce
that

|un(s)|2p + 2pν

∫ t

0

‖un‖2|un|2(p−1)ds

=|un(0)|2p + 2p

∫ t

0

〈Pnf∗, un〉|un|2(p−1)ds+ p(2p− 1)

∫ t

0

|Png∗|2L0
2
|un|2(p−1)ds

+ 2p

∫ t

0

|un|2(p−1)〈un, Png∗dW (s)〉
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=|un(0)|2p + J1 + J2 + J3. (3.3)

For the deterministic term, we estimate

J1 ≤ C

∫ t

0

|Pnf∗|2V ∗ |un|2(p−1)ds+ νp

∫ t

0

‖un‖2|un|2(p−1)ds

≤ C
(

sup
s∈[0,t]

|un|2(p−1)
)∫ t

0

|Pnf∗|2V ∗ds

+ νp

∫ t

0

‖un‖2|un|2(p−1)ds

≤ 1

6
sup

s∈[0,t]

(|un(s)|2p) + νp

∫ t

0

‖un‖2|un|2(p−1)ds+ C|f∗|2pL2(0,t;V ∗), (3.4)

J2 ≤ C

∫ t

0

|Png∗|2L0
2
|un|2(p−1)ds

≤ C
(

sup
s∈[0,t]

|un|2(p−1)
)∫ t

0

|Png∗|2L0
2
ds

≤ 1

6
sup

s∈[0,t]

(|un(s)|2p) + C|Png∗|2pL2(0,t;L0
2)
. (3.5)

For the term J3, we apply the Burkholder-Davis-Gundy inequality. This yields the
following:

J3 ≤ CE sup
s∈[0,t]

∣∣∣ ∫ t

0

|un|2(p−1)〈un, Png∗dW (s)〉
∣∣∣

≤ CE
(∫ t

0

|un|2(p−1)|Png∗|2L0
2
ds
) 1

2

≤ 1

6
sup

s∈[0,t]

(|un(s)|2p) + C(|Png∗|2pL2(0,t;L0
2)
+ 1). (3.6)

Combining (3.4)–(3.6), we can easily obtain

E
(

sup
0≤s≤t

|un(s)|2p
)
+ E

∫ t

0

|un(s)|2(p−1)‖un(s)‖2ds ≤ K1.

Proof of Lemma 3.2. By (3.3) for p = 1, we get

4ν2
(∫ t

0

‖un(s)‖2ds
)2

≤
(
|u0|2 + 2

∫ t

0

|〈un(s), Pnf∗〉|ds+
∫ t

0

|Png∗|2L0
2
ds

+ 2
∣∣∣ ∫ t

0

〈un, Png∗dW (s)〉
∣∣∣)2

≤ 4(|u0|4 + I21 + I22 + I23 ).

The Hölder’s inequality and Young’s inequality imply that

I21 ≤ ν2

2

(∫ t

0

‖un(s)‖2ds
)2

+
8

ν2
(|f∗|2L2(0,T ;V ∗))

2.
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Applying the Burkholder-Davies-Gundy inequality, we get

E
(

sup
0≤s≤t

|I23 |
)
≤ CE

(∫ t

0

|un(s)|2|P∗g|2L0
2
ds
)

≤ CE
[(

sup
0≤s≤t

|un(s)|2
)∫ t

0

|Png∗|2L0
2
ds
]

≤ CE
(

sup
0≤s≤T

|un(s)|4
)
+ C(|g∗|2L2(0,T ;L0

2)
)2.

Thus we have

E
(∫ t

0

‖un(s)‖2ds
)2

≤ CE
(
|u0|4 + sup

0≤s≤t
|un(s)|4 + (|f∗|2L2(0,T ;V ∗))

2

+ (|g∗|2L2(0,T ;L0
2)
)2
)
.

By Lemma 3.1, the above formula means

E
(∫ t

0

‖un(s)‖2ds
)2

≤ C(|f∗|2L2(Ω;L2(0,T ;V ∗)), |g∗|
2
L2(Ω;L2(0,T ;L0

2))
)E|u0|4.

Then the proof of the lemma is complete.
With the uniform estimates on the solutions of the Galerkin systems in hands,

we proceed to identify a limit u(t) and obtain the following proposition.

Proposition 3.1. Let u0 is an initial value of (3.2) with

E|u0|2p <∞,E|∂zu0|2p <∞, p = 1, 2.

There exists a unique solution u(t) to (3.2) in

u(t) ∈ L4(Ω;L∞(0, T ;H) ∩ L2(Ω× [0, T ];V )),

and it satisfies the following energy equality:

|u(t)|2 = |u0|2 + 2

∫ t

0

〈u(s),−νAu(s)−B(u(s))〉ds

+ 2

∫ t

0

〈u(s), f∗(s, ξ(s))〉ds+
∫ t

0

|g∗(s, ξ(s))|2L0
2
ds

+ 2

∫ t

0

〈u(s), g∗(s, ξ(s))dW (s)〉.

Proof. By Lemma 3.1, we obtain that the subsequence un(t) converges weakly
to u(t) in L4(Ω;L∞(0, T ;H) ∩ L2(Ω × [0, T ];V )). By an application of (2.3) and
Lemmas 3.1-3.2,

E
∫ T

0

|PnB(un(t))|2V∗

≤CE
[

sup
t∈[0,T ]

(|un(t)|4 + |∂zun(t)|4) +
(∫ T

0

‖un(t)‖2ds
)2]

<∞.
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Furthermore since {Aun}, {B(un)} are uniformly bounded in L2(Ω × [0, T ];V ∗),
there exists a χ ∈ L2(Ω× [0, T ];V ∗) such that as n→ ∞,

−νAun −B(un)⇀ χ weakly in L2(Ω× [0, T ];V ∗).

We have that in V ∗

u(t) = u0 +

∫ t

0

χ(s)ds+

∫ t

0

f∗(s, ξ(s))ds+

∫ t

0

g∗(s, ξ(s))dW (s).

According to Lemma 2.2, we use the Young inequality to get κ > 0 such that for
any u, v ∈ V,

〈E(u)− E(v), u− v〉 ≤ κ(1 + |∂zv|4 + ‖v‖2)|u− v|2. (3.7)

Given a function ω and let

ρ(t) =

∫ t

0

(1 + |∂zω|4 + ‖ω‖2)ds.

Then, we have that

Ee−2κρ(t)|u(t)|2 = E|u0|2 − 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|u(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈u(s), χ(s)〉ds

+ 2E
∫ t

0

e−2κρ(s)〈u(s), f∗(s, ξ(s)))〉ds

+ E
∫ t

0

e−2κρ(s)|g∗(s, ξ(s)))|2L0
2
ds.

By the Itô formula from (3.2) we also have

Ee−2κρ(t)|un(t)|2 = E|un(0)|2 − 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|un(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈un(s),−νAun(s)− PnB(un(s))〉ds

+ 2E
∫ t

0

e−2κρ(s)〈un(s), Pnf∗(s, ξ(s)))〉ds

+ E
∫ t

0

e−2κρ(s)|Png∗(s, ξ(s))|2L0
2
ds.

It is not difficult to get

Ee−2κρ(t)|un(t)|2 − E|un(0)|2 − 2E
∫ t

0

e−2κρ(s)〈Pnf∗(s, ξ(s)), un(s)〉ds

− E
∫ t

0

e−2κρ(s)|Png(s, ξ(s))|2L0
2
ds

= −2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|un(s)|2ds
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+ 2E
∫ t

0

e−2κρ(s)〈−νAun(s)− PnB(un(s)), un(s)〉ds.

According to Fatou lemma, we have

lim inf
n→∞

(
− 2κE

∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|un(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈−νAun(s)−B(un(s)), un(s)〉ds
)

= lim inf
n→∞

(
Ee−2κρ(t)|un(t)|2 − E|un(0)|2 − 2E

∫ t

0

e−2κρ(s)〈Pnf∗(s, ξ(s)), un(s)〉ds

− E
∫ t

0

e−2κρ(s)|Png∗(s, ξ(s))|2L0
2
ds
)

≥ Ee−2κρ(t)|u(t)|2 − E|u0|2 − 2E
∫ t

0

e−2κρ(s)〈f∗(s, ξ(s)), un(s)〉ds

− E
∫ t

0

e−2κρ(s)|g∗(s, ξ(s))|2L0
2
ds

= −2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|u(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈χ(s), u(s)〉ds.

By (3.7)

2E
∫ t

0

e−2κρ(s)〈E(un(s)− E(ω(s)), un(s)− ω(s)〉ds

− 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|un(s)− ω(s)|2ds ≤ 0.

Namely

− 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|un(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈E(un(s)), un(s)〉ds

≤ −2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)(2un(s)− ω(s), ω(s))ds

+ 2E
∫ t

0

e−2κρ(s)〈E(un(s)), ω(s)〉ds

+ 2E
∫ t

0

e−2κρ(s)〈E(z(s)), un(s)− ω(s)〉ds.

Letting n→ ∞ and combining above formula, we get

− 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|u(s)|2ds
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+ 2E
∫ t

0

e−2κρ(s)〈χ(s), u(s)〉ds

≤ −2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)(2u(s)− ω(s), ω(s))ds

+ 2E
∫ t

0

e−2κρ(s)〈χ(s), ω(s)〉ds

+ 2E
∫ t

0

e−2κρ(s)〈E(ω(s)), u(s)− ω(s)〉ds.

Reorganizing the terms, we have

− 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|u(s)− ω(s)|2

+ 2E
∫ t

0

e−2κρ(s)〈χ(s)− E(ω(s)), u(s)− ω(s)〉ds ≤ 0.

Set ϕ(s) is arbitrary. If we note ω(s) = u(s)− µϕ(s), µ > 0, we have

− κµE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|ϕ(s)|2

+ E
∫ t

0

e−2κρ(s)〈χ(s)− E(u(s)− µϕ(s)), ϕ(s)〉ds ≤ 0.

Letting µ→ 0, we obtain∫ t

0

χ(s)ds =

∫ t

0

−νAu(s)−B(u(s))ds.

Therefore it holds that in V ∗

u(t) = u0 +

∫ t

0

−Au(s)−B(u(s))ds+

∫ t

0

f(s, u(s))ds+

∫ t

0

g(s, u(s))dW (s).

Finally, the uniqueness of solution is similar as in Theorem4.1, we omit here.

4. The proof of the main theorem
In this section, using the Proposition 3.1, we obtain the existence and uniqueness
of the weak solution on local time to the non-Lipschitz 2D stochastic primitive
equations as follows.

Theorem 4.1. Let u0 be a F0-random variable which is an initial value of (2.6).
Suppose that Assumptions 1-2 are satisfied and let E|u0|2p,E|∂zu0|2p <∞(p = 1, 2).
Then there exist a time Tϵ > 0 and a weak energy solution u(t) to (2.6) satisfy

u(t) ∈ L2(Ω;L2(0, Tϵ;V )) ∩ L2(Ω;L∞([0, Tϵ];H))

and the solution u(t) is unique in this space.
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To prove the Theorem 4.1, we use iterative method, several moment estimations
are required. Let 0 ≤ t ≤ 1. Set u1(t) = u0 and let E|u0|2p, E|∂zu0|2p < ∞ for
p = 1, 2. Assume that the process un(s), n ≥ 1 satisfies

f(t, un(t)) ∈ L4(Ω× [0, T ];V ∗),

g(t, un(t)) ∈ L4(Ω× [0, T ];L0
2(K;H)).

Proposition 3.1 implies that for a given process un(t), we have the unique energy
weak solution un+1(t) to the following stochastic equation

un+1(t) = u0 +

∫ t

0

[−νAun+1(s)−B(un+1(s))]ds

+

∫ t

0

f(s, un(s))ds+

∫ t

0

g(s, un(s))dW (s). (4.1)

Then the sequence {un(t)} is well defined.
Firstly, we give some moment estimates of the process un+1(t).

Lemma 4.1. If (2.7) with k = 1 is satisfied and E|u0|2 < ∞, then there exists a
time t1 ∈ (0, 1] such that

E
(

sup
0≤s≤t

|un+1(s)|2
)
< 4E|u0|2 and

∫ t

0

E‖un+1(s)‖2ds < 2

ν
E|u0|2

for t ∈ (0, t1], uniformly for all n ≥ 1.

Lemma 4.2. If (2.7) with k = 2 is satisfied and E|u0|4 < ∞, then there exists a
time t2 ∈ (0, 1] and a positive constant δ such that

E
(

sup
0≤s≤t

|un+1(s)|4
)
< 8E|u0|4 and

∫ t

0

E|un+1(s)|44ds < δ4
2

ν
E|u0|2

for t ∈ (0, t2], uniformly for all n ≥ 1.

Lemma 4.3. If (2.8) with k = 1 is satisfied and E|∂zu0|2 <∞, then there exists a
time t3 ∈ (0, 1] such that

E
(

sup
0≤s≤t

|∂zun+1(s)|2
)
< 4E|∂zu0|2 and

∫ t

0

E‖∂zun+1(s)‖2ds < 2

ν
E|∂zu0|2

for t ∈ (0, t3], uniformly for all n ≥ 1.

Lemma 4.4. If (2.8) with k = 2 is satisfied and E|∂zu0|4 <∞, then there exists a
time t4 ∈ (0, 1] and a positive constant δ such that

E
(

sup
0≤s≤t

|∂zun+1(s)|4
)
< 8E|∂zu0|4 and

∫ t

0

E|∂zun+1(s)|44ds < δ4
2

ν
E|∂zu0|2

for t ∈ (0, t4], uniformly for all n ≥ 1.

For the sake of simplicity, we just give the proof of Lemma 4.4, the others are
similar and more easier.
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Proof of Lemma 4.4. It is obviously that the case where n = 1 holds. Assume
that E

(
sup0≤s≤t |∂zun(s)|4

)
< 8E|∂zu0|4 for any fixed n ≥ 1. Applying the Itô

formula to the function |∂zun+1(t)|4 = (|∂zun+1(t)|2)2, we obtain

|∂zun+1(t)|4 = |∂zu0|4

+ 4

∫ t

0

|∂zun+1(s)|2〈−∂zzun+1(s),−νAun+1(s)−B(un+1(s))〉ds

+ 4

∫ t

0

|∂zun+1(s)|2〈−∂zzun+1(s), f(s, un(s))〉ds

+ 4

∫ t

0

|∂zun+1(s)|2〈−∂zzun+1(s), g(s, un(s))dW (s)〉

+ 6

∫ t

0

|∂zun+1(s)|2|∂zg(s, un(s))|2L0
2
ds.

Furthermore, we have

E
(

sup
0≤s≤t

|∂zun+1(s)|4
)
+ 4νE

(∫ t

0

|∂zun+1(s)|2‖∂zun+1(s)‖2ds
)

≤ E
(

sup
0≤s≤t

|∂zu0|4
)

+ 4E
(

sup
0≤τ≤t

∫ τ

0

|∂zun+1(s)|2|∂zun+1(s)|V |∂zf(s, un(s))|V ∗ds
)

+ 4E
(

sup
0≤τ≤t

∣∣∣ ∫ τ

0

|∂zun+1(s)|2〈−∂zzun+1(s), g(s, un(s))〉dW (s)
∣∣∣)

+ 6E
(

sup
0≤τ≤t

∫ τ

0

|∂zun+1(s)|2|∂zg(s, un(s))|2L0
2
ds
)

= E|∂zu0|4 + T1 + T2 + T3.

By Young inequality and Hölder inequality, we get

T1 ≤ 1

4
E
(

sup
0≤s≤t

|∂zun+1(s)|4
)
+ νE

∫ t

0

|∂zun+1(s)|2‖∂zun+1(s)‖2ds

+ (32 +
32

ν2
)

∫ t

0

E|∂zf(s, un(s))|4V ∗ ,

T3 ≤ 1

4
E
(

sup
0≤s≤t

|∂zun+1(s)|4
)
+ 6

∫ t

0

E|∂zg(s, un(s))|4L0
2
ds.

By the Burkholder-Davis-Gundy inequality, there exists a k > 0 such that

T2 ≤ 1

4
E
(

sup
0≤s≤t

|∂zun+1(s)|4
)
+ k

∫ t

0

E|∂zg(s, un(s))|4L0
2
ds.

Thus we have

E
(

sup
0≤s≤t

|∂zun+1(s)|4
)
+ 12νE

(∫ t

0

|∂zun+1(s)|2‖∂zun+1(s)‖2ds
)
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≤4E
(

sup
0≤s≤t

|∂zu0|4
)
+ 4(

32

ν2
+ 38 + k)

∫ t

0

H2(s,E|∂zun(s)|4)ds.

Let t4 > 0 be a time such that

4(
32

ν2
+ 38 + k)

∫ t4

0

H2(s,E|un(s)|4)ds < 4E|∂zu0|4. (4.2)

Then for t ∈ (0, t4]

E
(

sup
0≤s≤t

|∂zun+1(s)|4
)
< 8E|∂zu0|4.

By the Gagliardo-Nirenberg inequality we have a δ > 0 such that

|∂zun+1(s)|4 ≤ δ|∂zun+1(s)| 12 ‖∂zun+1(s)‖ 1
2 for all n ≥ 0.

Furthermore, we have

E
∫ t

0

|∂zun+1(s)|44 ≤ δ4E
(∫ t

0

|∂zun+1(s)|2‖∂zun+1(s)‖2ds
)
< δ4

2

ν
E|∂zu0|2.

Consequently, by the mathematical induction, the proof of the lemma is completed.

Remark 4.1. In Lemma 4.1–Lemma 4.4, we obtain the moment estimates of the
process {un(t)} with some strict inequalities. These seem to be unusual and confus-
ing. However, in order to obtain the uniform boundedness, these strict inequalities
are not contradictory to the usual inequalities. Here, we choose strict inequality (as
in [33]) for two reasons. Let’s take Lemma 4.4 as an example. First, by Assump-
tion 1, Hk(t, u) : R

+ × R+ → R+(k = 1, 2) are locally integrable in t ≥ 0 for any
fixed u ≥ 0 and continuous, monotone nondecreasing in u for any fixed t ≥ 0 with
Hk(t, 0) = 0. therefore in (4.2), we can easily find small enough t4 > 0 and satisfy

4(
32

ν2
+ 38 + k)

∫ t4

0

H2(s,E|un(s)|4)ds < 4E|∂zu0|4,

there is no need for us to discuss whether there exists a t∗ and satisfies

4(
32

ν2
+ 38 + k)

∫ t∗

0

H2(s,E|un(s)|4)ds = 4E|∂zu0|4.

Second, since Fk(t, 0) = 0, Hk(t, 0) = 0, if let initial value u0 ≡ 0, we obtain a
constant solution u ≡ 0. It doesn’t make any physical sense. To summarize, it is
reasonable that we get the strict inequalities.

Lemma 4.5. Let u0 be an F0-random variable with E|u0|4 <∞. Then there has a
solution to (4.1) and satisfies

E
(∫ t

0

‖un(s)‖2ds
)2

≤ C(|f |2L2(Ω;L2(0,T ;V ∗)), |g|
2
L2(Ω;L2(0,T ;L0

2))
)E|u0|4.

Proof. We get

4ν2
(∫ T

0

‖un(s)‖2ds
)2
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≤
(
|u0|2 + 2

∫ T

0

|〈un(s), f(s, un−1(s))〉|ds+
∫ T

0

|g(s, un−1(s))|2L0
2
ds

+ 2
∣∣∣ ∫ T

0

〈un, g(s, un−1(s))dW (s)〉
∣∣∣)2

≤ 4(|u0|4 + I21 + I22 + I23 ).

The Hölder’s inequality and Young’s inequality imply that

I21 ≤ ν2

2

(∫ T

0

‖un(s)‖2ds
)2

+
8

ν2
(|f(s, un−1(s))|2L2(0,T ;V ∗))

2.

Applying the Burkholder-Davies-Gundy inequality, we get

E
(

sup
0≤s≤T

|I23 |
)
≤ CE

(∫ T

0

|un(s)|2|g(s, un−1(s))|2L0
2
ds
)

≤ CE
[(

sup
0≤s≤T

|un(s)|2
)∫ T

0

|g(s, un−1(s))|2L0
2
ds
]

≤ CE
(

sup
0≤s≤T

|un(s)|4
)
+ C(|g(s, un−1(s))|2L2(0,T ;L0

2)
)2.

Thus we have

E
(∫ T

0

‖un(s)‖2ds
)2

≤ CE
(
|u0|4 + sup

0≤s≤T
|un(s)|4 + (|f(s, un−1(s))|2L2(0,T ;V ∗))

2

+ (|g(s, un−1(s))|2L2(0,T ;L0
2)
)2
)
.

Since un−1(s) is well-defined, by Lemma 4.2, the above formula means

E
(∫ T

0

‖un(s)‖2ds
)2

≤ C(|f |2L2(Ω;L2(0,T ;V ∗)), |g|
2
L2(Ω;L2(0,T ;L0

2))
)E|u0|4.

Then the proof of the lemma is complete.
Set Tϵ = min{t1, t2, t3, t4}. By Assumption 1 and Lemma 4.2, it follows that

f(t, un+1(t)) ∈ L4(Ω× [0, Tϵ];V
∗),

g(t, un+1(t)) ∈ L4(Ω× [0, Tϵ];L
0
2(K;H)).

Then we consider the sequence {un(s)}, t ∈ [0, Tϵ].

Lemma 4.6. If Assumption 1 and 2 are satisfied and E|u0|2p,E|∂zu0|2p < ∞(p =
1, 2), then the sequence {un(t)}, t ∈ [0, Tϵ], which is defined by (4.1), is a Cauchy
sequence in L2(Ω;L∞(0, Tϵ;H)) ∩ L2(Ω× [0, Tϵ];V ), moreover, it is also a Cauchy
sequence in L4(Ω;L∞(0, Tϵ;H)) ∩ L4(Ω× [0, Tϵ];L

4(M)).

Proof. We only give the proof in L4(Ω;L∞(0, Tϵ;H)) ∩ L4(Ω × [0, Tϵ];L
4(M)).

According to Lemma 2.2, we use the Young inequality to get a λ > 0 such that for
any u, v ∈ V,

〈E(u)− E(v), u− v〉 ≤ −ν‖u− v‖2 + λ(1 + |∂zv|4 + ‖v‖2)|u− v|2. (4.3)
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Set
ζn(t) = exp

(
− 4λ

∫ t

0

(1 + |∂zun|4 + ‖un‖2)ds
)
, 0 ≤ t ≤ Tϵ.

By applying the energy equality to the function ζn(t)|un+m(t)− un(t)|4, we obtain

ζn(t)|un+m(t)− un(t)|4

= −4λ

∫ t

0

ζn(s)(1 + |∂zun(s)|4 + ‖un‖2)|un+m(s)− un(s)|4ds

+ 4

∫ t

0

ζn(s)|un+m(t)− un(t)|2〈un+m(s)− nn(s), E(un+m(s))− E(un(s))〉ds

+ 4

∫ t

0

ζn(s)|un+m(t)− un(t)|2〈un+m(s)− nn(s), f(s, un+m−1)− f(s, un−1)〉ds

+ 6

∫ t

0

ζn(s)|un+m(t)− un(t)|2|g(s, un+m−1)− g(s, un−1)|2L0
2
ds

+ 4

∫ t

0

ζn(s)|un+m(t)− un(t)|2

× 〈un+m(s)− nn(s), (g(s, un+m−1)− g(s, un−1))dW (s)〉.

By (4.3) it follows that

4

∫ t

0

ζn(s)|un+m(t)− un(t)|2〈un+m(s)− nn(s), E(un+m(s))− E(un(s))〉ds

≤ −4ν

∫ t

0

ζn(s)|un+m(s)− un(s)|2‖un+m(s)− un(s)‖2ds

+ 4λ

∫ t

0

ζn(s)(1 + |∂zun(s)|4 + ‖un‖2)|un+m(s)− un(s)|4ds.

Define the stopping time as follows:

τnN = inf
{
t ≤ Tϵ :

∫ t

0

(1 + |∂zun(s)|4 + ‖un(s)‖2)ds ≥ N
}
.

Then we have exp(−4λN) ≤ ζn(t ∧ τnN ) < 1. It follows that

E
(

sup
0≤s≤t∧τn

N

ζn(s)|un+m(s)− un(s)|4
)

+ 4νE
(∫ t∧τn

N

0

ζn(s)|un+m(s)− un(s)|2‖un+m(s)− un(s)‖2ds
)

≤ 4E
(

sup
0≤s≤τ∧τn

N

∣∣∣ ∫ τ

0

ζn(s)|un+m(s)− un(s)|2

× 〈un+m(s)− un(s), f(s, un+m−1(s))− f(s, un−1(s)〉ds
∣∣∣)

+ 6E
(

sup
0≤s≤τ∧τn

N

∣∣∣ ∫ τ

0

ζn(s)|un+m(s)− un(s)|2

× |g(s, un+m−1(s))− g(s, un−1(s)|2L0
2
ds
∣∣∣)
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+ 4E
(

sup
0≤s≤τ∧τn

N

∣∣∣ ∫ τ

0

ζn(s)|un+m(s)− un(s)|2

× 〈un+m(s)− un(s), (g(s, un+m−1(s))− g(s, un−1(s))dW (s)〉
∣∣∣)

= N1 +N2 +N3.

And then this yields

N1 ≤ 4E
∫ t∧τn

N

0

ζn(s)|un+m(s)− un(s)|2|un+m(s)− un(s)|V

× |f(s, un+m−1(s))− f(s, un−1(s)|V ∗ds

≤ 1

4
E
(

sup
0≤s≤t∧τn

N

ζn(s)|un+m(s)− un(s)|4
)

+ νE
∫ t∧τn

N

0

ζn(s)|un+m(s)− un(s)|2‖un+m(s)− un(s)‖2ds

+ (
4

ν
+ 16)E

∫ t∧τn
N

0

ζn(s)|f(s, un+m−1(s))− f(s, un−1(s))|4V ∗ds,

N2 ≤ 1

4
E
(

sup
0≤s≤t∧τn

N

ζn(s)|un+m(s)− un(s)|4
)

+ 36E
∫ t∧τn

N

0

ζn(s)|g(s, un+m−1(s))− g(s, un−1(s))|4L0
2
ds,

and there exists a k > 0 such that

N3 ≤ 1

4
E
(

sup
0≤s≤t∧τn

N

ζn(s)|un+m(s)− un(s)|4
)

+ kE
∫ t∧τn

N

0

ζn(s)|g(s, un+m−1(s))− g(s, un−1(s))|4L0
2
ds.

Thus by Assumption 2 we have a β > 0 such that for any fixed n,m ≥ 1

E
(

sup
0≤s≤t∧τn

N

ζn(s)|un+m(s)− un(s)|4
)

+ 12ν

∫ t∧τn
N

0

ζn(s)|un+m(s)− un(s)|2‖un+m(s)− un(s)‖2ds

≤ β

∫ t∧τn
N

0

G2(s,E|un+m−1(s)− un−1(s)|4)ds.

Then we have

E
(

sup
0≤s≤t

|un+m(s ∧ τnN )− un(s ∧ τnN )|4
)

+ 12ν

∫ t

0

|un+m(s ∧ τnN )− un(s ∧ τnN )|44ds

≤ βe4λN
∫ t

0

G2

(
s ∧ τnN ,E

(
sup

0≤τ≤s
|un+m−1(τ ∧ τnN )− un−1(τ ∧ τnN )|4

))
ds. (4.4)
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For any fixed N > 0, 0 < t ≤ Tϵ, let

N (t) = lim sup
n,m→∞

E
[(

sup
0≤s≤t∧τn

N

|un+m(s)− un(s)|4
)

+ 12νE
(∫ t∧τn

N

0

|un+m(s)− un(s)|44ds
)]
,

(t) = lim sup
n,m→∞

E
[(

sup
0≤s≤t

|un+m(s)− un(s)|4
)
+ 12νE

(∫ t

0

|un+m(s)− un(s)|44ds
)]
.

Since G2(t, u) is continuous, monotone nondecreasing in u, and we already have

E
(

sup
0≤s≤t

|un+m(s ∧ τnN )− un(s ∧ τnN )|2
)

+ 2νE
(∫ t

0

‖un+m(s ∧ τnN )− un(s ∧ τnN )‖2ds
)

≤ αe2λN
∫ t

0

G1

(
s ∧ τnN ,E

(
sup

0≤τ≤s
|un+m−1(s ∧ τnN )− un−1(s ∧ τnN )|2

))
ds, (4.5)

by Fatou lemma, it follows that

N (t) ≤ βe4λN
∫ t

0

G2(s, N (s))ds,

which implies N (t) ≡ 0. By Chebyshev inequality and Lemma 4.1, 4.4, we have

P (τnN ≤ t) = P
(∫ t

0

(1 + |∂zun|4 + ‖un‖2)ds ≥ N
)

≤
E
∫ t

0
(1 + |∂zun|4 + ‖un‖2)ds

N
.

It follows that as N → ∞, P (τnN ≤ t) → 0 and so N (t) → (t). Consequently
we obtain that (t) ≡ 0 for 0 < t ≤ Tϵ and so {un(t)} is a Cauchy sequence in
L4(Ω;L∞(0, Tϵ;H)) ∩ L4(Ω× [0, Tϵ];L

4(M)).
By Lemma 4.6, we say {un(t)} is a Cauchy sequence, then we can find its limit

u(t) as n→ ∞. Finally, we proof the main Theorem 4.1 as follows.
Proof of Theorem 4.1. By lemma 4.6, we have an u(t) such that as n→ ∞

un(t) → u(t) strongly in L2(Ω;L2(0, Tϵ;V )) ∩ L4(Ω;L∞([0, Tϵ];H)).

By (2.9), as n→ ∞

f(t, un(t)) → f(t, u(t)) strongly in L2(Ω× [0, Tϵ];V
∗),

g(t, un(t)) → g(t, u(t)) strongly in L2(Ω× [0, Tϵ];L
0
2(K;H)).

Furthermore there exists a χ ∈ L2(Ω× [0, Tϵ];V
∗) such that as n→ ∞

−νAun(t)−B(un(t))⇀ χ(t) weakly in L2(Ω× [0, T ];V ∗).

Therefore letting n→ ∞, we have that in V ∗

u(t) = u0 +

∫ t

0

χ(s)ds+

∫ t

0

f(s, u(s))ds+

∫ t

0

g(s, u(s))dW (s).
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Define

ρ(t) =

∫ t

0

(1 + |∂zω|4 + ‖ω‖2)ds,

where ω ∈ L2(Ω× [0, Tϵ];V ), and ∂zω ∈ L4(Ω× [0, Tϵ];H). Then, we have that

Ee−2κρ(t)|u(t)|2 = E|u0|2 − 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|u(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈χ(s), u(s)〉ds

+ 2E
∫ t

0

e−2κρ(s)〈f(s, u(s)), u(s)〉ds

+ E
∫ t

0

e−2κρ(s)|g(s, u(s)))|2L0
2
ds.

By the application of Itô formula to (4.1), we also have

Ee−2κρ(t)|un(t)|2 = E|u0|2 − 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|un(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈−νAun(s)−B(un(s)), un(s)〉ds

+ 2E
∫ t

0

e−2κρ(s)〈f(s, un−1(s)), un(s)〉ds

+ E
∫ t

0

e−2κρ(s)|g(s, un−1(s))|2L0
2
ds.

It is not difficult to get

Ee−2κρ(t)|un(t)|2 − E|u0|2 − 2E
∫ t

0

e−2κρ(s)〈f(s, un−1(s)), un(s)〉ds

− E
∫ t

0

e−2κρ(s)|g(s, un−1(s))|2L0
2
ds

= −2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|un(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈−νAun(s)−B(un(s)), un(s)〉ds.

According to Fatou lemma, we have

lim inf
n→∞

(
− 2κE

∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|un(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈−νAun(s)−B(un(s)), un(s)〉ds
)

= lim inf
n→∞

(
Ee−2κρ(t)|un(t)|2 − E|u0|2 − 2E

∫ t

0

e−2κρ(s)〈f(s, un−1(s)), un(s)〉ds

− E
∫ t

0

e−2κρ(s)|g(s, un−1(s))|2L0
2
ds
)
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≥ Ee−2κρ(t)|u(t)|2 − E|u0|2 − 2E
∫ t

0

e−2κρ(s)〈f(s, u(s)), u(s)〉ds

− E
∫ t

0

e−2κρ(s)|g(s, u(s))|2L0
2
ds

= −2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|u(s)|2ds+ 2E
∫ t

0

e−2κρ(s)〈χ(s), u(s)〉ds.

By (4.3)

− 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|un(s)− ω(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈E(un(s)− E(ω(s)), un(s)− ω(s)〉ds ≤ 0,

then we have

− 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|un(s)|2ds

+ 2E
∫ t

0

e−2κρ(s)〈E(un(s)), un(s)〉ds

≤ −2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)(2u(s)− ω(s), ω(s))ds

+ 2E
∫ t

0

e−2κρ(s)〈E(un(s)), ω(s)〉ds+ 2E
∫ t

0

e−2κρ(s)〈E(ω(s)), un(s)− ω(s)〉ds.

Letting n→ ∞ and combining above formulas, we get

− 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|u(s)|2ds+ 2E
∫ t

0

e−2κρ(s)〈χ(s), u(s)〉ds

≤ −2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)(2u(s)− ω(s), ω(s))ds

+ 2E
∫ t

0

e−2κρ(s)〈χ(s), ω(s)〉ds+ 2E
∫ t

0

e−2κρ(s)〈E(ω(s)), u(s)− ω(s)〉ds.

Reorganizing the terms, we have

− 2κE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|u(s)− ω(s)|2

+ 2E
∫ t

0

e−2κρ(s)〈χ(s)− E(ω(s)), u(s)− ω(s)〉ds ≤ 0.

If we note ω(s) = u(s)− µϕ(s), µ > 0, we have

− κµE
∫ t

0

e−2κρ(s)(1 + |∂zω|4 + ‖ω‖2)|ϕ(s)|2

+ E
∫ t

0

e−2κρ(s)〈χ(s)− E(u(s)− µϕ(s)), ϕ(s)〉ds ≤ 0.
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Letting n→ ∞, since ϕ(s) is arbitrary, we obtain∫ t

0

χ(s)ds =

∫ t

0

−νAu(s)−B(u(s))ds.

Therefore it holds that

u(t) = u0 +

∫ t

0

−Au(s)−B(u(s))ds+

∫ t

0

f(s, u(s))ds+

∫ t

0

g(s, u(s))dW (s).

Thus the existence has been proved.
Finally we still need to prove the uniqueness of solution. Assume that v(t)

is another solution with the same initial value v0 = u0. Then we have E
∫ t

0
(1 +

|∂zv|4+‖v‖)ds <∞. Set τN = inf
{
t ≤ Tϵ :

∫ t

0
(1+ |∂zv(s)|4+‖v(s)‖2)ds ≥ N

}
and

η(t) = exp
(
− 2λ

∫ t

0
(1 + |∂zv(s)|4 + ‖v(s)‖)ds

)
, where λ is the same one as (4.3).

Applying the Itô formula to the function η(t)|u(t)− v(t)|2, we have

η(t)|u(t)− v(t)|2

= −2λ

∫ t

0

ηn(s)(1 + |∂zv(s)|4 + ‖v(s)‖2)|u(s)− v(s)|2ds

+ 2

∫ t

0

η(s)〈u(s)− v(s), E(u(s))− E(un(s))〉ds

+ 2

∫ t

0

η(s)〈u(s)− v(s), f(s, u(s))− f(s, v(s))〉ds

+ 2

∫ t

0

η(s)〈u(s)− v(s), (g(s, u(s))− g(s, v(s)))dW (s)〉

+

∫ t

0

η(s)|g(s, u(s))− g(s, v(s))|2L0
2
ds

According to (4.3), it follows that

E
(

sup
0≤s≤t∧τN

η(s)|u(s)− v(s)|2
)
+ 2νE

(∫ t∧τN

0

η(s)‖u(s)− v(s)‖2ds
)

≤ 2E
(

sup
0≤s≤τ∧τN

∣∣∣ ∫ τ

0

η(s)〈u(s)− v(s), f(s, u(s))− f(s, v(s)〉ds
∣∣∣)

+ 2E
(

sup
0≤s≤τ∧τN

∣∣∣ ∫ τ

0

η(s)〈un+m(s)− un(s), (g(s, u(s))− g(s, v(s))dW (s)〉
∣∣∣)

+ E
(

sup
0≤s≤τ∧τN

∣∣∣ ∫ τ

0

η(s)|g(s, u(s))− g(s, v(s)|2L0
2
ds
∣∣∣).

Therefore we deduce that there exists a γ > 0 such that

E
(

sup
0≤s≤t

|u(s ∧ τN )− v(s ∧ τN )|2
)
+ 2νE

(∫ t

0

‖u(s ∧ τN )− v(s ∧ τN )‖2ds
)

≤ γe2λN
∫ t

0

G1

(
s ∧ τN ,E

(
sup

0≤τ≤s
|u(s ∧ τN )− v(s ∧ τN )|2

))
ds.
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By Assumption 2, we know

E
(

sup
0≤s≤t

|u(s ∧ τN )− v(s ∧ τN )|2
)
+ 2νE

(∫ t

0

‖u(s ∧ τN )− v(s ∧ τN )‖2ds
)
= 0.

Notice that t∧ τN → t as N → ∞. Hence we have that u(t) = v(t) in L2(Ω;L∞([0,
Tϵ];H)) ∩ L2(Ω× [0, Tϵ];V ). So the proof of theorem is completed.

5. Global existence of solutions
In this section, we consider the global existence of solutions to (2.6) under following
assumption.
Assumption 4. Let the function F1(t,X) be the same as given in Assumption 1.
Then for any constant C > 0 and any initial value X0, the differential equations
dX(t)
dt = CF1(t,X(t)) have unique solutions X(t)(0 ≤ t ≤ T ), respectively(T = ∞

means [0, T ] = [0,∞]).

Theorem 5.1. Suppose that Assumptions 1, 2 and 4 are satisfied and E|u0|2p,
E|∂zu0|2p <∞(p = 1, 2). Then the solution u(t) to (2.6) exists and satisfies u(t) ∈
L2(Ω;L∞([0, T ];H)) ∩ L2(Ω× [0, T ];V ).

Proof. From Theorem 4.8, there exists unique solution u(t) in local time to (2.6)
with the initial value u0 under Assumptions 1 and 2. Using the same method as
Lemma 4.1, we know there exists a real number $ > 0 such that for any t ∈ [0, T ],

E
(

sup
0≤s≤t

|u(s)|2
)
+ 2ν

∫ t

0

E‖u(s)‖2ds

≤ 2E|u0|2 +$

∫ t

0

F1

(
s,E

(
sup

0≤τ≤s
|u(τ)|2

))
ds.

Let X0 > 2E|u0|2. Then

X(t)− E
(

sup
0≤s≤t

|u(s)|2
)

> $

∫ t

0

F1

(
s,X(s)

)
ds−$

∫ t

0

F1

(
s,E

(
sup

0≤τ≤s
|u(τ)|2

))
ds.

Owing to the continuity and monotonicity of F1(t,X), we have

X(t) > E
(

sup
0≤s≤t

|u(s)|2
)
,

2ν

∫ t

0

E‖u(s)‖2ds < 2E|u0|2 +$

∫ t

0

F1(s,X(s))ds,

for 0 ≤ t ≤ T . Since X(t) is continuous on [0, T ], the proof of theorem is completed
as in [33].
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