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NITSCHE’S TYPE STABILIZATION FOR THE
FULLY MIXED NAVIER-STOKES/DARCY

PROBLEM∗

Jiaping Yu1 and Yuhong Zhang2,†

Abstract In this paper, we present and analyze a fully mixed finite element
scheme for the Navier-Stokes/Darcy problem based on the Nitsche’s type in-
terface stabilizations, in the fluid region coupled with the porous media do-
main. The reasonable parameter δ > 0, which is independent of mesh size h,
will guarantee the stability and optimal convergence of our stabilized scheme.
Moreover, we explicitly derive the dependence and requirement of the stabi-
lization parameter δ for the optimal error estimates, while the numerical tests
support the stability and efficiency of this stabilized mixed method.
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method, Beavers-Joseph-Saffman.
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1. Introduction
The Navier-Stokes/Darcy or Stokes/Darcy fluid flow model coupling among surface
flow and subsurface flow [7,14,18,20] is a very classical multi-domain, multi-physics
model, which is popular in industrial processes and the groundwater fluid flow in
the karst aquifer and so on. The coupled Navier-Stokes/Darcy model is composed
of a nonlinear Navier-Stokes equations with Darcy law equation for fluid flow and
porous media flow respectively, with specific interface conditions. Over the last few
decades, lots of work are developed for the (Navier-)Stokes-Darcy model. In [20],
Layton et al investigate a mixed variational formulation in both domains based
on Beavers-Joseph-Saffman interface conditions and utilized a Lagrange multiplier,
such ideas can also be found in [6, 12, 13, 19], other coupled finite element methods
are given in [8,28]. There are also many decoupled schemes developed, such as two-
grid or multi-grid methods [5, 10, 11, 17, 25, 27, 38–40] and domain decomposition
methods [9, 15]. Lots of decouple schemes are developed for the time-dependent
(Navier-)Stokes/Darcy problems, see [26,29,30,36]. More applications of the Navier-
Stokes/Darcy model can be found in [4, 24,31,37].
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In this work, thanks to the conservation of mass on the interface, we will in-
troduce two strongly consistent interface stabilization terms for the fully mixed
formulation of the Navier-Stokes/Darcy model, to guarantee the stability. By the
modified interface condition, we will overcome the technical difficulty caused by
the nonlinear term. Here, the fully mixed stabilized method does not introduce
any Lagrange multiplier and the computation is straightforward. Besides, the sta-
bility of the scheme only requires the reasonable mesh-independent stabilization
parameter δ > 0. This choice of the parameter is better than the condition derived
in [34] (which is with Beavers-Joseph interface conditions), owing to the present
Darcy-pressure consistent interface stabilization. Moreover, the dependence and re-
quirement of stabilization parameter δ for the optimal error estimates are explicitly
derived. The similar Nitsche’s interface stabilized technique can be found in [3,23].
The former one mainly deals with the lowest finite element pairs for Stokes-Darcy
problem to overcome the LBB condition, and also requires the pressure stabilization.
In the later paper, the authors focus on the mixed-Stokes-dual-permeability fluid
flow problems, only one interface stabilization norm is introduced, which will request
the stabilized parameter large enough. Such stabilized techniques are also applied to
deal with different interface problems, such as elliptic interface problems [33], steady
mixed Stokes-Darcy model [32] and time-dependent Stokes-dual-permeability fluid
flow problems [22] and so on.

The present paper is built up as follows. We briefly introduce the classical
Navier-Stokes/Darcy fluid flow model with interface conditions and some prelimi-
naries in section 2. The Nitsche’s stabilized finite element method and its stability
are discussed in section 3 while section 4 presents the error estimates of the sta-
bilized finite element method. The paper ends with numerical experiments and
conclusion.

2. The Navier-Stokes/Darcy model
Let two bounded connect domains Ωf ,Ωp ⊂ Rd(d = 2 or 3) with an interface Γ,
i.e., Ωf

⋂
Ωp = ∅, and Ωf

⋂
Ωp = Γ, Ω = Ωf

⋃
Ωp. Let nf and np denote the unit

outward normal vectors on ∂Ωf and ∂Ωp, respectively, and τi(i = 1, · · · , d− 1), the
unit tangential vectors on the interface Γ. Besides, we denote Γf = ∂Ωf\Γ,Γp =
∂Ωp\Γ.

Given the external force ff and fluid kinematic viscosity ν, the incompressible
flow with the fluid velocity and pressure uf and p satisfy in Ωf :

−∇ · T+ uf · ∇uf = −2ν∇ · D(uf ) +∇p+ uf · ∇uf = ff in Ωf , (2.1)
∇ · uf = 0 in Ωf , (2.2)

with no slip conditions uf = 0 on Γf , and where T = −pI+2νD(uf ) represents the
stress tensor, and D(uf ) = 1

2 (∇uf + (∇uf )
T ) denotes the deformation tensor.

In the porous media domain Ωp, the fluid velocity up and the piezometric head
ϕ satisfy the following Darcy system:

up = −K∇ϕ in Ωp, (2.3)
∇ · up = fp in Ωp. (2.4)

with up ·np = 0 on Γp, on the exterior boundary. Here fp is assumed to satisfy the
solvability condition

∫
Ωp
fpdx = 0, and K is the hydraulic conductivity tensor, and
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for the sake of simplicity, is assumed as the constant scalar matrix K = KI with
K ≤ 1 in the porous medium.

The conservation of mass, balance of forces and a tangential condition on the
fluid region for velocity on the interface on Γ are used:

uf · nf + up · np = 0, (2.5)

p− 2νnf · D(uf ) · nf +
1

2
(uf · uf ) = gϕ, (2.6)

− 2nf · D(uf ) · τi =
αν

√
d√

trace(Π)
uf · τi, 1 ≤ i ≤ (d− 1). (2.7)

Here Π = Kν
g , g the gravitational acceleration.

Denote the L2 norm and the inner product by || · || and (·, ·) for L2(Ωf ) or
L2(Ωp), and the L2 norm by || · ||Γ for L2(Γ) (See Sobolev spaces and norms [1]),
and | · |1, || · ||1 mean the semi H1-norm and H1-norm, repectively. By setting the
space

H(div; Ωp) := {vp ∈ L2(Ωp)
d : ∇ · vp ∈ L2(Ωp)},

we introduce the following modified spaces:

Xf := {vf ∈ H1(Ωf )
d : vf = 0 on Γf ,

∫
Γ

vf · nf = 0}, Qf := L2
0(Ωf ),

Xp := {vp ∈ H(div; Ωp) : vp · np = 0 on Γp,

∫
Γ

vp · np = 0}, Qp := L2
0(Ωp),

equipped with the norms for Xf and Xp

||vf ||1 =
√

||vf ||2 + |vf |21, ||vp∥div =
√

||vp∥2 + ∥∇ · vp∥2.

Noting that the variational formulation related with (3.1) introduced in the next
section under such spaces is equivalent to the classical formulation. The proof can
follow Theorem 1 of [34]. Meanwhile, these modified spaces are much simple.

Then, we will introduce a family of regular triangulation Th of Ω, consisting of
T fh and T ph , with mesh size h > 0, and the interface Γ coincides the two meshes
of T fh and T ph . Assuming the finite element spaces Xfh ⊂ Xf , Q

h
fh ⊂ Qf and

Xph ⊂ Xp, Qph ⊂ Qp which satisfy the classical inf-sup conditions [2], here, we only
consider the P1b-P1/BDM1-P0 pairs.

3. The stabilized mixed finite element method and
its stability

In this section, we present the stabilized finite element scheme for the Navier-
Stokes/Darcy problem.

Find (uhf , p
h
f ,u

h
p , ϕ

h
p) ∈ (Xfh, Qfh;Xph, Qph) satisfying that

L (uhf , p
h,uhp , ϕ

h;vhf , q
h,vhp , ψ

h) +N(uhf ;u
h
f ,v

h
f )

=(ff ,v
h
f ) + g(fp,∇ · vhp ) + g(fp, ψ

h)

∀(vhf , qh,vhp , ψh) ∈ (Xfh, Qfh;Xph, Qph),

(3.1)
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where
L (uhf , p

h,uhp , ϕ
h;vhf , q

h,vhp , ψ
h)

=Lf (u
h
f , p

h;vhf , q
h) + Lp(u

h
p , ϕ

h;vhp , ψ
h) + cΓ(v

h
f − vhp , ϕ

h)− cΓ(u
h
f − uhp , ψ

h)

+
δ

h

∫
Γ

((uhf − uhp) · nf )((vhf − vhp ) · nf )dΓ,

Lf (uf , p;vf , q) = af (uf ,vf )− bf (vf , p) + bf (uf , q),

Lp(up, ϕ;vp, ψ) = ap(up,vp)− bp(vp, ϕ) + bp(up, ψ),

af (uf ,vf ) = 2ν(D(uf ),D(vf )) +
d−1∑
i=1

αν
√
d√

trace(Π)
(uf · τi,vf · τi)Γ,

ap(up,vp) = g(K−1up,vp) + g(∇ · up,∇ · vp),
bf (vf , p) = (p,∇ · vf ), bp(vp, ϕ) = g(ϕ,∇ · vp), cΓ(vf , ϕ) = g(ϕ,vf · nf )Γ.

Thanks to the interface condition (2.6) and divergence free of the velocity, we
can use the following nonlinear term form N as

N(u;w,v) =
1

2
(u · ∇w,v)− 1

2
(u · ∇v,w) (3.2)

and it satisfies the following property [21]:

N(u;v,v) = 0 ∀ u,v ∈ Xf (3.3)
|N(u;w,v)| ≤ CN ||u||1||v||1||w||1 ∀ u,w,v ∈ Xf , (3.4)

with CN > 0 is a bounded constant.
By the inf-sup conditions, for arbitrarily given but fixed ph ∈ Qfh and ϕh ∈ Qph,

there exist wh
f ∈ Xfh

⋂
H1

0 (Ωf )
d and wh

p ∈ Xph

⋂
H1

0 (Ωf )
d, and two constants

βf , βp > 0, independent of h, such that

bf (w
h
f , p

h) ≥ βf ||ph||2, bp(w
h
p , ϕ

h) ≥ βp||ϕh||2. (3.5)

Now, we begin to show the continuity and coercivity of the stabilized mixed
method with the following norm:

|||(vhf , qh,vhp , ψh)||| = ||vhf ||1 + ||qh||+ ||vhp ||div + ||ψh||+ h−1/2||(vhf − vhp ) · nf ||Γ.

Theorem 3.1 (The continuity of L ). There exists a constant Cmax=Cmax{ν, gK−1, δ},
such that

L (uhf , p
h,uhp , ϕ

h;vhf , q
h,vhp , ψ

h)

≤Cmax|||(uhf , ph,uhp , ϕh)||| |||(vhf , qh,vhp , ψh)|||. (3.6)

Proof. It is easy to get the result by applying the Schwarz inequality and inverse
inequality.

Theorem 3.2 (The coercivity of L ). There exists a constant β > 0 such that the
following inequality holds, for all (uhf , ph,uhp , ϕh) ∈ (Xfh, Qfh,Xph, Qph),

sup
(vh

f ,q
h,vh

p ,ψ
h)∈(Xfh,Qfh,Xph,Qph)

L (uhf , p
h,uhp , ϕ

h;vhf , q
h,vhp , ψ

h)

|||(vhf , qh,vhp , ψh)|||

≥β|||(uhf , ph,uhp , ϕh)|||.

(3.7)
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Proof. The proof is similar as that in [34], and can be improved according to the
BJS condition and the Darcy-pressure consistent interface stabilization.

Firstly, for any (uhf , p
h,uhp , ϕ

h)∈(Xfh, Qfh,Xph, Qph), by choosing (vh
f , q

h,vh
p , ψ

h)=

(uh
f , p

h,uh
p , ϕ

h), and we can derive

L (uhf , p
h,uhp , ϕ

h;uhf , p
h,uhp , ϕ

h)

≥2ν||D(uhf )||2 + g||K−1/2uhp ||2 + g||∇ · uhp ||2 +
δ

h
||(uhf − uhp) · nf ||2Γ

≥Cν ||uhf ||21 + gK−1||uhp ||2 + g||∇ · uhp ||2 +
δ

h
||(uhf − uhp) · nf ||2Γ.

Secondly, selecting (vhf , q
h,vhp , ψ

h) = (−γwh
f , 0,−γwh

p , 0), where wh
f , wh

p satisfy
(3.5), respectively, with (wh

f −wh
p ) ·nf = 0 on Γ, and applying Young’s inequalities,

we arrive at

L̃ (uhf , p
h,uhp , ϕ

h;−γwh
f , 0,−γwh

p , 0)

= −γaf (uhf ,wh
f )− γap(u

h
p ,w

h
p ) + γbf (w

h
f , p

h) + γbp(w
h
p , ϕ

h)

≥ −γC1||uhf ||1||ph|| − γC2||uhp ||div||ϕh||+ γβf ||ph||2 + γβp||ϕh||2

≥ −γC
2
1

2βf
||uhf ||21 −

γC2
2

2βp
||uhp ||2div +

γβf
2

||ph||2 + γβp
2

||ϕh||2,

here, the continuity of af , ap are used, namely:

af (uf ,vf ) ≤ C1||uf ||1||vf ||1, ap(up,vp) ≤ C2||up||div||vp||div.

Then, choosing (v̂hf , q̂
h, v̂hp , ψ̂

h) = (uhf − γwh
f , p

h,uhp − γwh
p , ϕ

h), we obtain from
above

L̃ (uhf , p
h,uhp , ϕ

h;uhf − γwh
f , p

h,uhp − γwh
p , ϕ

h)

≥(Cν−
γC2

1

2βf
)∥uhf∥21+(g−γC

2
2

2βp
)∥uhp∥2div+

γβf
2

∥ph∥2+γβp
2

∥ϕh∥2+ δ

h
||(uhf−uhp)·nf ||2Γ.

Then we enforce the following conditions on γ and δ:

Cν −
γC2

1

2βf
≥ Cν

2
, g − γC2

2

2βp
≥ g

2
, δ > 0.

Finally, letting γ = min{βfCν

C2
1
,
βpg

C2
2
} and δ > 0, and then defining a positive constant

Cmin = min{Cν

2 ,
g
2 ,

γβf

2 ,
γβp

2 , δ}, which is independent of h, we can obtain that

L̃ (uhf , p
h,uhp , ϕ

h;uhf − γwh
f , p

h,uhp − γwh
p , ϕ

h)

≥ Cν
2
∥uf∥21 +

g

2
∥uhp∥2div +

γβf
2

∥ph∥2 + γβp
2

∥ϕh∥2 + δ

h
||(uhf − uhp) · nf ||2Γ

≥ Cmin|||(uhf , ph,uhp , ϕh|||2

≥ C̃Cmin(|||(uhf , ph,uhp , ϕh)||| |||(uhf − γwh
f , p

h,uhp − γwh
p , ϕ

h)|||

= β(|||(uhf , ph,uhp , ϕh)|||)(|||(v̂hf , q̂h, v̂hp , ψ̂h)|||).

Therefore, we get the weak coercivity of L .
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4. Error estimates for the stabilized mixed method
In this section, we prove the error estimates for the stabilized mixed finite element
method of the Navier-Stokes/Darcy problem.

First, in order to derive error estimates of the stabilized mixed finite element
solution (uhf , p

h;uhp , ϕ
h), we need the special Galerkin projection as follows,

L (uf , p,up, ϕ;v
h
f , q

h,vhp , ψ
h) = L (Phuf , Php, Phup, Phϕ;v

h
f , q

h,vhp , ψ
h). (4.1)

By introducing (ū, p̄, ūp, ϕ̄) as the interpolation of (uf , p,up, ϕ), the projection
errors can be split as

uf − Phuf = (uf − ūf ) + (ūf − Phuf ) ≜ êf + ehf ,

p− Php = (p− p̄) + (p̄− Php) ≜ η̂ + ηh,

up − Phup = (up − ūp) + (ūp − Phup) ≜ êp + ehp ,

ϕ− Phϕ = (ϕ− ϕ̄) + (ϕ̄− Phϕ) ≜ θ̂ + θh.

By the coercivity and the continuity of L , and according to the interpolation
error held by the chosen mixed finite element spaces, we obtain

β|||(ehf , ηh, ehp , θh)|||

≤ sup
(vh

f ,q
h,vh

p ,ψ
h)∈(Xfh,Qfh;Xph,Qph)

L (ehf , η
h, ehp , θ

h;vhf , q
h,vhp , ψ

h)

|||(vhf , qh,vhp , ψh)|||

= sup
(vh

f ,q
h,vh

p ,ψ
h)∈(Xfh,Qfh;Xph,Qph)

−L (êf , η̂, êp, θ̂;v
h
f , q

h,vhp , ψ
h)

|||(vhf , qh,vhp , ψh)|||

≤ Cmax|||(êf , η̂, êp, θ̂)|||
≤ Cmax(||êf ||1 + ||η̂||+ ||êp||div + ||θ̂||+ h−

1
2 (||êf ||Γ + ||êp||Γ))

≤ CCmaxh.

Using the triangle inequality with the interpolation error, we derive the projection
error estimate,

|||(uf − Phuf , p− Php,up − Phup, ϕ− Phϕ)|||

≤ |||(ehf , ηh, ehp , θh)|||+ |||(êf , η̂, êp, θ̂)||| ≤
CCmax

β
h.

Theorem 4.1. Assume that (uf , p;up, ϕ) is the exact solution of the Navier-
Stokes/Darcy problem, and belongs to (Xf

⋂
H2(Ωf )

d, Qf
⋂
H1(Ωf );Xp

⋂
H2(Ωp)

d, Qp
⋂
H1(Ωp)),

with the uniqueness condition 1 − CN

ν2 ||ff || > 0. By choosing reasonable δ > 0,
(uhf , p

h;uhp , ϕ
h) is the stabilized mixed finite element solution, we can obtain

||uf − uhf ||1 + ||p− ph||+ ||up − uhp ||div + ||ϕ− ϕh|| ≤ CCmax

β
h. (4.2)

Proof. Thank to the interface conditions (2.5)–(2.6), (uf − up) · nf = 0, we re-
write the model (2.1)–(2.4) as follows, ∀(vhf , qh,vhp , ψh) ∈ (Xfh, Qfh,Xph, Qph),

L (uf , p,up, ϕ;v
h
f , q

h,vhp , ψ
h) +N(uf ;uf ,v

h
f )
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= (ff ,v
h
f ) + g(fp,∇ · vhp ) + g(fp, ψ

h). (4.3)

Subtracting (4.3) from (3.1) gives

L (uf − uhf , p− ph,up − uhp , ϕ− ϕh;vhf , q
h,vhp , ψ

h)

+N(uf ;uf ,v
h
f )−N(uhf ;u

h
f ,v

h
f ) = 0. (4.4)

Thanks to the Galerkin projection (4.1), we get

L (ef , ηf , ep, θp;vhf , q
h,vhp , ψ

h) +N(uf − Phuf + ef ;uf ,v
h
f )

+N(uhf ;uf − Phuf + ef ,vhf ) = 0, (4.5)

where (ef , ηf , ep, θp) = (Phuf − uhf , Php − ph, Phup − uhp , Phϕ − ϕh). By choosing
(vhf , q

h,vhp , ψ
h) = (ef , ηf , ep, θp), similarly with the argument as in Theorem 3.2, it

is easy to check that ν||uf ||1, ν||uhf ||1 ≤ ||ff ||, and choosing δ > 0, we obtain

ν(1− N

ν2
||ff ||)||ef ||21 + gK−1||ep||2 + g||∇ · ep||2 + δ

h
||(ef − ep) · nf ||2Γ

≤max{Cν , ν}||ef ||21+gK−1||ep||2+g||∇ · ep||2+ δ

h
||(ef−ep)·nf ||2Γ+N(ef ;uf , e

f )

≤max{1, ν
Cν

}|N(uf − Phuf ;uf , e
f ) +N(uhf ;uf − Phuf , e

f )|

≤max{1, ν
Cν

}CN ||uf − Phuf ||1(||uf ||1 + ||uhf |1)||ef ||1

≤Ch||ef ||1.

Thus, ||ef ||1 ≤ Ch. In view of the triangle inequality, we can obtain ||uf − uhf ||1 ≤
Ch.

Using the coercivity of L and the trilinear inequality again,

β|||(ef , ηf , ep, θp)|||

≤ sup
(vh

f ,q
h,vh

p ,ψ
h)∈(Xfh,Qfh;Xph,Qph)

L (ef , ηf , ep, θp;vhf , q
h,vhp , ψ

h)

|||(vhf , qh,vhp , ψh)|||

= sup
(vh

f ,q
h,vh

p ,ψ
h)∈(Xfh,Qfh;Xph,Qph)

−N(uf − uhf ;uf ,v
h
f ) +N(uhf ;uf − uhf ,v

h
f )

|||(vhf , qh,vhp , ψh)|||

≤ CN ||uf − uhf ||1(||uf ||1 + ||uhf |1) ≤ Ch.

Finally, we get (4.2) by using the triangle inequality.

Remark 4.1. According to Theorem 3.1, 3.2, if the stabilization parameter δ is
very small, then Cmin = δ and β = Cδ, and Cmax is independent of δ, from Theorem
4.1, the error will be large. Otherwise, if δ is very large, then Cmax = Cδ, and β is
independent of δ, from Theorem 4.1, the error will be large too. So to keep optimal
convergence of the scheme, the reasonable parameter δ is required.

5. Numerical tests
In this section, we present two numerical tests to illustrate the stability, efficiency
of the stabilized fully mixed finite element method. The first experiment is a model
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test, mainly shows the stability of this stabilized technique, and the second exper-
iment mainly demonstrates the convergence orders which supports the theoretical
analysis and also the impact of the stabilization parameter. The finite element
spaces are constructed by well-known MINI elements P1b − P1 for Navier-Stokes
problem and to capture the fully mixed technique in the porous medium region,
piecewise constant finite element P0 used for hydraulic( piezometric) head, the
BDM1 space for Darcy velocity. For the nonlinear term, the Newton iterative
technique is used. For computational convenience, in both examples, all the physi-
cal parameters ν, g,K, α are simply taken as 1.0 and the stabilization parameteris
is always chosen δ = 0.1. All the numerical tests executed by a specialized free
domain software FreeFEM++ [16] and figures are drawn by Tecplot.
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Figure 1. The streamlines Left, SFEM without stabilization; Right, Stabilized mixed method.

5.1. Model test
In the first example, we consider the domain Ωf = (0, 1) × (1, 1.25) and Ωp =
(0, 1) × (0, 1) with interface Γ = (0, 1) × {1}. A modified driven cavity flow with
the Dirichlet boundary conditions with ff = 0 for the flow region is used as follows;
See also [35],

u = (sin(πx), 0), on (0, 1)× {1.25}

u = (0, 0), on {0, 1} × (1, 1.25),

and up · np = 0 on Γp with fp = 0 are used for the porous medium domain.
In this test, we test both the standard finite element method (SFEM) without the

stabilization and our stabilized mixed finite element method. The streamline and
contour plots of the pressures p, ϕ obtained by both methods with the finite element
pairs P1b − P1/BDM1 − P0, with a uniform mesh of h = 1/32, are depicted in
Figures 1–2, respectively. From Figure 1, we find that SFEM without stabilization
can not capture the correct flow behavior for the mixed finite element pairs, while the
Streamline shows stable by our stabilized mixed method with P1b−P1/BDM1−P0.
From Figure 2, SFEM without stabilization shows the pressure oscillation, especially
the pressure in the free flow region Ωf , while the stabilized mixed method w captures
the smooth numerical pressure in the fluid region Ωf and the porous domain Ωp.
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Therefore, the interface stabilization terms are necessary and efficient for the mixed
finite element method.
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Figure 2. The pressure contours: Left, SFEM without stabilization; Right, Stabilized mixed method.

5.2. Convergence test
In the second test, the global domain Ω consists of two subdomains with free medium
fluid flow region Ωf = [0, 1]× [1, 2] and porous medium domain Ωp = [0, 1]× [0, 1].
The interface of the current computational domain is Γ = [0, 1] × {1}. The exact
solutions for this test satisfy the Beavers-Joseph-Saffman interface condition is given
by:

uf = [x2(y − 1)2 + y,−2

3
x(y − 1)3 + 2− π sin(πx)],

p = [2− π sin(πx)] sin(0.5πy),

ϕ = [2− π sin(πx)][1− y − cos(πy)],

up = −K∇ϕ.

The boundary conditions and source terms of the model problem are chosen such
that the above-listed functions are the exact solutions of the model problem.

To demonstrate the convergence order of the stabilized mixed method, Table 1
demonstrates the relative errors between the computed solution and exact solution
by our stabilized mixed method with different mesh size h = 1/8, 1/16, 1/32, 1/64.
From Table 1, we can observe that, all the optimal convergence orders obtained
with the stabilized mixed method, which supports the theoretical analysis, and the
pressure shows a little better than 1th order accuracy.

In all, our stabilized mixed finite element method is stable and efficient.
Finally, to investigate the impact of the stabilization parameter δ on the sta-

bilized mixed method as discussed in Remark 4.1, we test with the different value
of δ = 0, 0.0001, 0.01, 0.1, 10, we use Tables 2, 3 to demonstrate the order of the
convergence of ∥uh

p−up∥0,Ωp

∥up∥0,Ωp
and ∥uh

p−up∥div

∥up∥div
, respectively. This study admits that

too large or too small values (δ = 10, 0.0001) of the stabilization parameter δ will
affect significantly the convergence orders, which agree with our theorem and re-
mark. While δ = 0, without the stabilization, the accuracy of SFEM is also not ok.
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Therefore, the reasonable stabilization parameter δ is required, such as δ = 0.01, 0.1
in this test.

Table 1. Errors by Stabilized mixed method

h ∥uh
f−uf∥0,Ωf

∥uf∥0,Ωf

∥uh
f−uf∥1,Ωf

∥uf∥1,Ωf

∥ph−p∥0,Ωf

∥p∥0,Ωf

∥ϕh−ϕ∥0,Ωp

∥ϕ∥0,Ωp

∥uh
p−up∥0,Ωp

∥up∥0,Ωp

∥uh
p−up∥div

∥up∥div

1/8 0.0168591 0.102318 0.304966 0.223899 0.0323872 0.165125
1/16 0.0042179 0.051035 0.099039 0.111179 0.0072510 0.081861
1/32 0.0010541 0.025479 0.033554 0.055468 0.0016684 0.040633
1/64 0.0002629 0.012728 0.011621 0.027729 0.0004451 0.020230
order 2.00274 1.00113 1.52970 1.00026 1.90624 1.00498

Table 2.
∥uh

p−up∥0,Ωp
∥up∥0,Ωp

by Stabilized mixed method with different δ

h\δ 0 0.0001 0.01 0.1 10
1/8 0.28362 0.278862 0.112717 0.0323872 0.0235662
1/16 0.20641 0.192281 0.027536 0.0072510 0.0059825
1/32 0.14909 0.114327 0.005366 0.0016684 0.0024373
1/64 0.10696 0.047898 0.000996 0.0004451 0.0166355

Table 3.
∥uh

p−up∥div
∥up∥div

by Stabilized mixed method with different δ

h\δ 0 0.0001 0.01 0.1 10
1/8 0.97102 0.94802 0.327945 0.165125 0.160148
1/16 1.44487 1.31252 0.159125 0.081861 0.080452
1/32 2.10751 1.49782 0.066386 0.040633 0.040417
1/64 3.04086 1.15836 0.027699 0.020230 0.031035

6. Conclusions
In this contribution, we investigated a new fully mixed finite element method to
solve the Navier-Stokes/Darcy model without introducing any Lagrange multiplier.
The interface stabilization terms were introduced to ensure the well-posedness of the
mixed finite element scheme. The stability and convergence analysis including opti-
mal error estimates were derived for the proposed method. In the further study, we
can extend the present method to the time-dependent Navier-Stokes/Darcy equa-
tions and related coupled problems and so on.
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