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ANALYSIS FOR 3D DEGENERATE
CAHN-LARCHE MODEL WITH PERIODIC
BOUNDARY CONDITIONS

Lixian Zhao'?1, Xingzhi Bian® and Fang Cheng*

Abstract Our aim in this article is to study the existence of weak solu-
tions to the degenerate Cahn-Larché model. Under appropriate assumptions
on the degenerate mobility and chemical free energy density, we prove the
existence of weak solutions to the approximate problem with positive mobil-
ity by applying the method of continuation of local solutions, then we use
the solutions of approximate problem to approach the solutions of degenerate
problem. Furthermore, we perform the numerical simulations to investigate
the microstructure evolution during the spinodal decomposition by utilizing
this model.

Keywords Degenerate Cahn-Larché model, weak solutions, phase-field sim-
ulations.
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1. Introduction

Spinodal decomposition is a kind of solid phase transition, it refers to the super-
saturated solid solution decomposes into two phases with the same structure but
different components at a certain temperature. In the process of decomposition,
the solute atoms diffuse from the low concentration area to the high concentration
area, which is called uphill diffusion, then the solute atoms in the rich area will be
further enriched, and the solute atoms in the poor area will be gradually depleted,
moreover, there is no clear boundary between the two regions and the composition
at the interface is continuous. Since the product of spinodal decomposition is the
rich and poor regions of solute atoms, it has certain influence on the strength and
magnetism of materials.

Spinodal decomposition is a phase transition dominated by concentration diffu-
sion, the evolution of each phase in the phase transition process can be represented
by a conserved order parameter S, we usually use the Cahn-Hilliard nonlinear diffu-
sion equation to describe the evolution of S. Cahn [4] presented a theory to describe
the phase separation process of spinodal decomposition in binary alloys, and used
this theory to simulate the microstructure evolution during phase transformation
of alloys in 1965.
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A number of studies in recent years have shown that the elastic strain energy
comes from the difference of lattice parameters between parent and product phases
is the resistance of phase transition, which affects the shape and the volume fraction
of product phase. Therefore, the Cahn-Hilliard equation with elastic effect (which
is also called Cahn-Larché model [16]) has caused concern of many researchers (see,
e.g, [3,10-14,17]), Garcke [11] studied the Cahn-Larché model without considering
the volume force (b = 0)

dive = b,
o = D(e(Vu) — &S),

. SF
Sy = dlv(mvg),

in which, mobility m is a constant matrix, ‘g—g is a variational derivative of the

total free energy F'(e(Vu), S, V.S) with respect to order parameter S, the total free
energy of system is

F(e(Vu), 5, VS) = /Q 0(S) + LIVSP 4 fulS, (V) + fealo(V))

the chemical free energy density 1/;(5 ) was selected as a logarithmic double well func-
tion, the elastic strain energy density fei(S,e(Vu)) = 3(D(e(Vu) — £S)) - (e(Vu) —
£5), then the existence of weak solution to that model was obtained. After that,
Garcke and Kuak [12] studied the total free energy of the model does not con-
clude the external load energy [, fez(€(Vu))dz, the above model converges to the
sharp interface model when the interface thickness tends to 0. The mobility is a
function dependent on order parameter S, which is more accord with the physical
phenomenon, [5,8,19] studied the existence of weak solutions to the above model
without considering the elastic strain energy and the external load energy. To our
knowledge, when the mobility dependents on the order parameter S and degener-
ates, the existence of weak solutions to the Cahn-Larché model has not been studied.
In this paper we consider periodic boundary conditions and study the Cahn-Larché
model with nonnegative mobility.

Let Q = (0, L)%, L € (0,00), be a cube in R%. We write I'; = 92N {x; = 0} and
I'jyqa =00QN{z; = L}, where j = 1,---,d. The different phases are characterized by
the order parameter S(t,z) € R, the other unknowns are the displacement u(¢,x) €
R? of the material point = at time ¢ and the Cauchy stress tensor o(t,x) € S¢,
where S¢ denotes the set of symmetric d x d-matrices. Then we study the following
initial-boundary value problem for d = 3

—dive=0b, z€Q,t>0, (1.1)
o=D(E(Vu) —&S), ze€Q, t>0, (1.2)
Sy = div(m(S)V(Y'(S) —&-0 —vAS)), ze€Q, t>0, (1.3)

periodic boundary and initial conditions are

U|Fj = U|Fj+d7 vu|Fj = VU‘|F]‘+d7 (14)
VS|F]‘ = VS|Fj+d? VWS - VAS)|F]' = V(ws - VAS)|Fj+d7
m(S)V (' (S) —&-0 —vAS)|r, = m(S)V(E)'(S) —&-0 —vAS)|r,,,,  (1.6)
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S(0,z2) = So(z), ze€Q, (1.7)

here, m(S) > 0 represents the coefficient of atomic mobility; D : S — &% is a linear,
symmetric, positive definite mapping, the elastic modulus tensor of material; Vu
denotes the 3 x 3-matrix of the first order spatial derivatives of u, the deformation
gradient; £(Vu) = 3(Vu+ (Vu)T) is the strain tensor; € € 8% is a given matrix, the
misfit strain; v > 0 represents the interfacial energy coefficient; b : [0, 00) x Q — R?
is the volume force and Sy : 2 — R is a given initial function.

The total free energy of system is

F(e,5,VS) = / Y* (g, 8, VS)dz, (1.8)
Q
where y
w*(EaSavs) :¢(5a5>+§|vs|27 (19)
in the free energy
U(e, 8) = 5(Dle ~28)) - (e — £) +B(S), (1.10)

the scalar product of two matrices is expressed as A - B = > a;b;5, @(S) is the
chemical free energy density.

When the mobility depends on the order parameter S and degenerates, it in-
creases the difficulty of studying the model. For m(S) and ¥(S), we make the
following assumptions
(1) m(S) € C*(R;[0,00)), and for any Sy, Sy € R, there exist constants My, M7 > 0
such that

OSm(S) SM(), |m(51)fm(52)| §M1‘51752| (111)

(2) ¥(S) € C3(R;R), there is a constant C' > 0, such that for all § € R

C(S* T2 —1) < () < C(S* 2 +1), (1.12)
['(S) < CUSPH + 1), (1.13)
["(S)] < C(ISPP + 1), (1.14)
[9"(S)] < C(SP +1). (1.15)

We write Qr, := (0,T,) x Q, T, is a positive constant, H () (W:P(£)) is

per per
the Sobolev spaces with periodic boundary conditions, X’ denotes the dual space
of X and | - || denotes the usual L?-norm. Then the main result of this article is

Theorem 1.1. We define
Gs = {(t,) € Qr,; m(S(t,2)) > O}, (1.16)

For all Sy € H2,.(Q), b € L*°(0,T.; L*(Q)) and b, € L*(Q7.,). A function (u,o,S)

P
with

uwe L®(0,Te; H2, (), o€ L=(0,T.; HL, (), (1.17)
S e L>=(0,T,; ngr(m) N L*0,T.; ngr((z)), (1.18)

VAS € L*(Gg), m(S)2VAS € L*(Gy) (1.19)
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is a weak solution to initial-boundary value problem (1.1)-(1.7), if (1.1), (1.2) and
(1.4) are satisfied weakly, and if for all p € C§°(—00,Te; Cpe,(£2))

(S, @) @r, + (S0 9(0))a — (M(S)V(W'(S) =0 - 2), V)ar,
=0.

+v(m(S)VAS, Vo), (1.20)

The method to prove Theorem 1.1 is: replacing the degenerate parabolic equa-
tion by the following non-degenerate equation

Sy = div(m,(S)V(¢'(S) — & - 0 — vAS)), (1.21)

here
me(S) =m(S) +k, ke (0,1]. (1.22)

By making uniform a-priori estimates independent of « for the solutions (u*, ", S*)
of approximate problem(1.1), (1.2) and (1.21), we study the convergence of (u" ¢ S*)
as k — 0 to get the solutions of degenerate problem (1.1)—(1.7). However, although
(1.21) is a non-degenerate parabolic equation, we don’t know whether the solutions

of (1.1), (1.2) and (1.21) exist or not, we replace m,(S5) in (1.21) by m,(S), S
represents the smoothing of a given function S, then (1.21) becomes a semilinear
parabolic equation with smooth coefficient

Sy = div(m(S)V('(S) — -0 — vAS)), (1.23)

in this case we can use the classical theory of the fourth order parabolic equation
to obtain Holder continuous solutions, and we derive suitable uniform a-priori esti-
mates, then apply the method of continuation of local solutions to get the existence
of weak solutions to approximate problem (1.1), (1.2) and (1.21).

It is easy to get from (1.11) and (1.22) that

k<mg(S) <m(S)+1< My+1. (1.24)

2. Existence of weak solutions to approximate prob-
lem

For a given k > 0, we study the following quasilinear, uniformly parabolic initial-
boundary value problem

—divoe=b, €, t >0, (2.1)
o= D(e(Vu) —&9), x€Q, t >0,
Sy = div(m (S)V(§'(S) — -0 —vAS)), 2 €Q, t >0, (2.3)

periodic boundary and initial conditions are

u|Fj = u‘Fjer’ vu|Fj = VU‘FHM (2.4)
VSIr, = VSIr,.uy V(s —vAS)|r, = V(s — vAS)|r,. . (2.5)
M (S)V(W'(S) — &-0 — vAS)|r, = mu(S)V(@'(S) —&-0 — vAS)|r, ... (2:6)
S(0,z) = So(x), =z €. (2.7)

We are going to prove the existence of weak solutions to approximate problem
(2.1)—(2.7).
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Theorem 2.1. For any Sy € H].(Q), b e L>(0,T,; L*(Q)) and b, € L*(Qr,). A
function (u,0,S) with

uw€ L®(0,Te; H2 (), o€ L™(0,T.; H) (), (2.8)
S e L>(0,T,; H;er(ﬂ)) N L*0,T.; Hg’er(Q)) (2.9)

is a weak solution to approzimate problem (2.1)—~(2.7), if (2.1), (2.2) and (2.4) are
satisfied weakly, and if for all ¢ € C§°(—o00, Te; C52,(£2))

per
(57 th)QTe + (507 @(O))Q - (mH(S)V(Qﬁ/(‘S’) —€:0— VAS)’ V@)QTG =0. (210)
In addition, for almost all t € [0,T.], we have the following energy inequality

||VS(t)||2+V/ me(S)[VASd(r, z)

Qr.
<||VSo|* + /Q m(S)VY'(S) - VAS(r, z) + / m(S)V (- o) - VASd(T, z).

Qr,
(2.11)

The way to prove the Theorem 2.1 is: applying the method of continuation of
local solutions. We take a change of the S in (2.2) by S and replace the m(.S)

in (2.3) by m,(S), where S denotes the smoothing of a given function S, we thus
obtain the following semilinear problem

—divoe=b, €, t >0, (2.12)
o =D(e(Vu) —&5), z€Q, t >0, (2.13)
S, = div(mu (S)V('(S) — -0 — vAS)), 2 € Q, t >0, (2.14)
periodic boundary and initial conditions are

ulr; = ulr;, ., Vulr, = Vulr,,,, (2.15)
VSIr, = VS|r,,., V(s —vAS)|r, = V(s —vAS)|r, 4 (2.16)
me(S)V(W(S) — 20— vAS)|r, = mu(S)VE(S) — -0 — vAS)|p,,,.  (2.17)
S(0,z) = Sp(x), x €, (2.18)

where, S € L2(0,Ty; H]..(€)) is a given function, and
5.2) = ()60 = [ e —mr—n)SEdny. 219

with the standard mollifier x, € C§°({z € R?| |z| < n}).

Lemma 2.1. Let 0 < a < 1, to every S € L*(0,Te; H) . (), b € C’ﬁe}a(QTe)

and Sy € C33(Q), the initial-boundary value problem (2.12)~(2.18) exists a unique

solution (u,0,S), and the solution belongs to the following spaces
L0, T3 Gp™ () x L(0, T Cpd () x Cper 7 (Qr ),
and AS; € L*(Qr,).
Proof. Since (2.14) is a semilinear, strictly parabolic equation with Hélder con-

tinuous coefficient, we can prove the lemma by applying the theorem on page 616
in [15]. O



Analysis for 3D degenerate Cahn-Larché model 1499

2.1. Local solutions

In what follows, C, denotes a constant depending on ¢, but independent of n, ¢y
is a sufficiently small positive constant; Cy, . is a constant depending on t; and
K but independent of n; Cy is a constant dependent on x; C denotes a constant
independent of n and k.

Using the elliptic regularity theory to the linear elasticity system (2.12), (2.13)
and (2.15), we have

lull 2., 0) + lollmy, @) < CUISIm, @) + [|1blz2@)- (2.20)
For a sufficiently small constant ¢y, we assume that for a given function S satisfies
HSHLOO(O’Tc;Hl @) < K, then

per

ol (o) < C (IS @ FIbllz2(0)) < C(K +1). (2.21)

per per

Lemma 2.2. Assume that ty is a sufficiently small constant, then for a given
function S € L>(0,T.; H...(2)), there hold

per
||S||L°°(O,t0;H}§er(Q)) S Ct07 (222)
[l Lo (0,80 112, (2)) F [l L0 (0,051, (2)) < Cto (2:23)
me(S) V(¥ (S) — vAS)[2d(r,z) < Cy,. (2.24)

Qtq

Proof. We consider the following energy density
* v 7
Ui(S,V8) = ZIVSP +9(8),

differentiating it with respect to ¢ and substituting (2.14) to the resulting equation,
we obtain

d ) )
" /Q WS, VS)dz = /Q VS - VS, + 0/(S)Sdw = /Q(WS) _ VAS)S,dx

- /Q (@ (S) — vAS)div(ma (S)V(W (S) — & - 0 — vAS))dz

_ /Q V(W (S) — vAS) - mn()V (@ (S) — & - 0 — vAS))dz

- [ SV S) - vas)F

+/ V(l[il(S) —vAS) -m.(S)V (- o)d, (2.25)
Q

integrating the above equality with respect to ¢t from 0 to ¢

/Q VS, V) (t, z)dx + : mﬁ(§)|V(1/A/(S)—VAS)|2d(T7x)

- /Q Bi(S,VS)(0,z) + ) V({/(S) — vAS) -m (S)V (e - 0)d(r, 7). (2.26)
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Invoking that Sy € H}. s(€2), then from (1.12) we deduce that

| [ 4598001 = | | 195 + (S0l

< / g|v50|2 +C(|So* ™2 + 1)dx
Q

< C(HSOH%II{M(Q)) + ||SOH§;§;_2(Q)) +1)
<C, (2.27)
and
], V(' (S) — vAS) - mu($)V(E - 0)d(r, )
=1/, ma(8)EV((S) — vAS) - ma($)3V (e - 0)d(r, )]
Sé/czto mn(§)|V(¢A}’(S)—VAS)|2d(T,:L“)+/to me(S)|V (2 - o)2d(r,2), (2.28)

it follows from (2.26)-(2.28) and (1.24) that

/Q i (S, VS)(Lx)dx—k% : me(S)|V (@ (S) - vAS)2d(r,z)
} to

<3 Jo

SC(M; +1)

We thus deduce from (1.12) that

mu(9)|V (5 - o) d(r, )

(K +1)%t < Cy,. (2.29)

/ (LIVSP + 4S* )+ | mu(8)IV(W(S) — vAS)Pd(r,2) < Cupy (2:30)
Q Qto

then we get (2.24). Combining r > £ with (2.30) we obtain that SEL>(0, to;H} e (2)).
Because of b € L°°(0,T,; L*(£2)), then we use (2.20) to arrive at (2.23). O

Lemma 2.3. For a sufficiently small constant tqy, there hold

/ IVASd(7,2) < Cty (2.31)
Q

to

||S\|L2(0,to;ngr(Q)) < Ciy - (2.32)

Proof. From the estimates (1.24) and (2.24) we get

/Q V(@' (S) — vAS)|2d(r,z) < Cyy s (2.33)

to

we infer from the inequality (a + b)? < 2a? + 2b? that

Q

IVAS|2d(T,z) < 2/

V(§(S) — vAS)d(r,x) + 2 / V0 (5) P, )
Q1

Quo

to
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<204 . +2 / |V (9)2d(r, z), (2.34)
Qg

utilizing (1.14), (2.22) and Holder’s inequality, we find

J

VIS Pdir) = [ WS)PITSPdlr, o)

to Qt,

< c/ (|S>" + 1)%|VS|2d(r, x)

0

<C |S|* |V S|?d(r,z) + C |VS|2d(T, x)
Qg Qi

< c/ S| VS 2d(r, ) + Co,
Qg

to
<C [T ISIIVSI s, dr+Co

3-27 (Q)

to
<c / VS OS]
0 L3=2r (

here we used the Sobolev inequality |S| s < C|VS||. By the Gagliardo-
Nirenberg inequality, we deduce that

7+ Cio: (2.35)

191 s, o < CIVSIT

3=27 (Q

|IVAS||z 4 C||VS|2. (2.36)

Substituting (2.36) into (2.35), and using the Young inequality, we have

J

2—r

to t(J
V3 (S)Pd(r,z) < C / IVS|* (VS| [VAS|Fdr + C / VS|V S|2dr

to

Tr42

to tU
gc/ VS| ||VA5||%dT+c/ IVS|[4+2dr
0 0

2 to
<% [ IVASPd(ra)+C, / VS| 55 dr
Qs+, 0

to
+C/ VS|4 +2dr. (2.37)
0

Then, we derive from (2.34)-(2.37) that

J

therefore, (2.31) is proved.
In order to prove (2.32), we apply the Gagliardo-Nirenberg inequality again

4r

to L 4 to
|VAS2d(T,2) < Chy . + CV/ VS| S dr 4 c/ |VS|[*+2dr < Cyy .,
0 0

to

(2.38)

|AS|| < CVS|2|VAS||z +C|[VS],

integrating the above inequality with respect to ¢ from 0 to ¢g, using (2.22), (2.31)
and Holder’s inequality, we obtain

to to to
/ |AS|%dr < C/ IVSIIIVAS||dr + C/ |V S|*dr
0 0 0
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to . to L to
< (/ HVSHQdT)f(/ IVAS|2dr)? + c/ IVS|2dr
0 0 0
é Cto,km (239)

thus
AS € L*(Qy,). (2.40)

Let
AS = f,

A is a isomorphic mapping: H}. () is mapped onto (H_..(22))". We suppose G is
a inverse operator, then
S(t)=Gf(t), a.e.
According to the elliptic regularity theorem of linear elliptic system, we can prove
that
15112 0,105 122, (2)) < Cto (2.41)

per

Combination of this estimate with (2.31) yield (2.32). O

Lemma 2.4. For a sufficiently small constant ty, there holds

IS¢l 2 (0,t0:(E2,. (2))) < Cton- (2.42)

per

Proof. For any ¢ € L*(0,t0; H2,,(Q)), by (1.24), Lemma 2.2 and Lemma 2.3, we
infer that

| St(pd(Tv LU)|
Qg
= | : div(m, (S)V@)' (S) — £ - 0 — vAS))pd(T, )|
=1, ma($)V((S) — &+ 0 — VAS) - Vgd(r, z)|
<c / " IVE(S) - V(e - o) — vVAS|||Viplldr
0

< C|VP'(S) = V(- 0) = vVAS||L2(Q,) IVEll L2 (@1
< CUIVY' (92 (@ry) + IVOllLe(uy) + IVASI L2 ) IVEl L2 (G,
<OVl < CllellLzo.t0:m2,, ) (2.43)

we thus get (2.42). O

Lemma 2.5 (Aubin-Lions, [18]). Let By, B, By be Banach spaces which satisfy
that By, B1 are reflexive and that By —<— B < By, here << denotes compact
embedding. For 0 < pg,p1 < 0o, we define
s df
W= {f|f € LPO(OvT;BO)a f = % eL” (OvTaBl)}a
(i) If 1 < pg < 00, p1 = 1, then the embedding of W in LP°(0,T; B) is compact.
(it) If po = 00, 1 < p1 < 00, then the embedding of W in C([0,T]; B) is compact.
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We now prove that (u,0,5) is a weak solution to approximate problem (2.1)—
(2.7) for t € [0,¢]. In order to construct a sequence of approximate solutions of
(2.1)-(2.7), we select a sequence of functions (b, Si') € Cyer (Q,) X Ca£4(Q), such
that for n — oo

16" = bllL2(Q.y) + 156 — Sollmy,, @) = 0, (2.44)

here (b, Sp) are the functions given in Theorem 2.1. Using S~ ! instead of S as a
given function, then (u™, 0™, S™) be a sequence of approximate solutions of (2.1)—
(2.7). Let n = % in (2.19), by Lemmas 2.2-2.4, there exist constants Cy, and Cy,
independent of n such that

@) F 10" o 0,t0:118,, (@) < Cros (2:45)

[1S™ 222 (0,t05112,..(2)) + 14" ([0 (0,80; 152, Lor

5™ 22(0,t0;: 13, (2)) + 1571 22(0,t0: (52, (2))) < Cho - (2.46)

per per

We choose Py = Py = 2, By = H3..(Q), B = CL3%(Q) or HZ,.(Q), B1 = (H2,.(Q)),
here 0 < a < % Estimate (2.46) implies that those spaces satisfy the assumptions
of Lemma 2.5, then for n — oo

||Sn - S||L2(O,t0;cl+a(ﬂ)) — 0, (247)

per

1S™ = Sllz2(0,t0: 52, (2)) — 0. (2.48)

per

By (2.20), (2.44) and (2.48), there is (u, o) € L2(0,to; H2,,(Q) x H},,.(Q)) such that

per per
" = ullL2(0,t0;m2,,.(2)) + 110" = ol L2(0,20;112,, (02)) — O- (2.49)

per per

Then, estimates (2.45)—(2.49) and the uniqueness of limit imply
S € L>(0,to; H:..(Q)) N L2(0,t0; H3,.()), Si € L*(0,t0; (H>,,(Q))), (2.50)

per per per
u € L=(0,to; H (), o € L=(0,t0; H),(Q)). (2.51)

From (2.46) we can choose a subsequence such that
VAS"™ =~ VAS weakly in L?(Qy,). (2.52)

(1.11) and (1.24) yield

—

(5771 = mi(8)] = [m(5" 1) + 5 —m(S) — ] = [m(5"~1) — m(S)]
< My |Sn1 -8, (2.53)
combination of this inequality with the property of mollifier and (2.48) imply
1577 = Sllia(@uy) < 1571 = S 1aquy) + 115"~ = Slliz@uy) = 0, (254)
therefore
[ (570) = () 121y < M| ST = Sz = 0. (2.55)
from (2.47), we also have

7 (571) = (S 20 sz (@) < Ml = 820 ppszw 9y = 0. (256)
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Invoking that V4 (S™)=4"(S")VS", from (2.31) and (2.34) we infer that Vi)'(S™) €
L?*(Qq,), then there is a function y € L?(Qy, ), such that

V' (8™) — x  weakly in L%(Qy,), (2.57)

we need to prove that x = Vi/(S). When 4r — 2 < 6, that is r < 2, by (1.15),
(2.22), (2.47) and Holder’s inequality, we conclude that

167(5™) = 4" (8) 32,y = /Q [4(8™) — 0" (8) Pd(r, )

to

- / [ (€)(S™ — )Pd(r, )
Qg
<c / (€271 + 125" — S[2d(r. )

Qg

fo 4 2
<C [ (et gy + DIS” = Sl i

to
<C [ Ulell e+ DIS" = Sl oydr

< C/Oto 157 = S||7 00 (ydr — 0, (2.58)
where, £ is valued in S and S™, that is
(8™ — " (S) strongly in L*(Qy,). (2.59)
Combination of the following convergence property
VS™ = VS weakly in L*(Qy,), (2.60)
we obtain
" (S")VS™ — " (S)VS  weakly in L*(Qy,), (2.61)

then, (2.57) and (2.61) imply x = ¢"(S)VS, and
V' (S™) = Vi'(S)  weakly in L2(Qy,). (2.62)
It thus follows from (2.55) and (2.62) that
M (SP1)VY (S™) = m,e(S)V' () weakly in L (Qs, ). (2.63)
Similarly, by
VT" = VT weakly in L*(Qy,),

(2.64)

(2.52) and (2.55) we deduce that
M (ST )VT™ = me(S)VT  weakly in L(Qy,), (2.65)
M (SP1)VAS™ — m,(S)VAS  weakly in L'(Qy, ). (2.66)

In summary, approximate problem (2.1)—(2.7) has local solutions for a suffi-
ciently small constant ty. Next, we derive uniform a-priori estimates for a arbitrar-

ily positive constant T, which implies the global solutions of approximate problem
(2.1)-(2.7) are obtained.
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2.2. Global solutions
Lemma 2.6. There hold for any t € [0,T,]

||S|‘L°°(0,T8;ngr(9)) + HStHL2(O,T8;(ngr(Q))’) <C, (2.67)

[ull Lo 0,712, () + ol L2 (0,750, (0)) < C, (2.68)

/ me(S)[V (s — vAS)2d(7,2) < C, (2.69)
Qr,

/ m,(S)[VAS[Pd(r,z) < C, (2.70)
Qr,

151 22(0,7.: 13, (0)) < Ck- (2.71)

per

Proof. We consider the following total free energy density
¥'(,5,V8) = S|V + (e, ),

where

(e, §) = %(D(e _25)) - (e — £S) + B(S).

Differentiating * (e, .S, V.S) with respect to t, integrating by parts with respect to
x over €, and substituting (2.3) into the resulting equation, we obtain

i/w*(e, S,VS)dx = / vVS - VS + e - e + s Sidx
= /(ws — Z/AS)StdZ‘ +/ ’(/)E . €td.13
Q Q
= /(wg - yAS)diV(mK(S)V(¢5—VAS))dx+/ Ve - erdx
Q Q
= —/ V(s — vAS) - mK(S)V(ws—VAS)dx—F/ Y - erdx
Q Q
= f/ m(9)|V (s — vAS)|*dx Jr/ e - erd. (2.72)
Q Q
The symmetry of o implies

/ Ye - gpdr = / o-egdx = / o - Vudr = —/ divo - updx = / b-udr. (2.73)
Q Q Q Q Q

Integration of (2.72) with respect to t from 0 to T, by (2.73) we know
[ e Vs tade+ [ m()[Vws — vAS)Pd(r, o)
Q Qr,
_ / V™ (e, 5, VS)(0,) + / b wd(r, 7). (2.74)
Q Qr,
Noting that Sy € H],(€2)), the elliptic regularity theory implies uo € Hp,,(€2), then

per

| [ 07 (5.98)0.0) =1 [ Z19S0+5(D(elu0r)=E50)-elunr) ~250) +(S0)da
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S / g|v50|2 -+ %‘5(U0m) — §S0|2 + C(|So|2r+2 + 1)d.’£

Q
< O(IVSoll? + lle(uoa)II” + [1Sol1* + 1ol 72522 g + 1)
C(HSO”Hl () +||U0||H2 () +||SO||H1 Q)"’HSOHQHZQ)‘*‘U
C. (2.75)

IN

we know

/ b-wd(r,x) = / b-u\édz—/ by - ud(T, x)
T, Q QT,
= / b(t) - u(t)dx — / b(0 0)dx — / by - ud(r,x), (2.76)
Q Qe

by the assumption of b

|/ (0)dz| < C. (2.77)

We let b = ([ () YY)y Jobdy = 0, it follows from b € L>(0, T.; L2(Q)), b, €
L?(Q7.), the Poincaré inequality and the Young inequality that

|/b (t)da| = |/ / bdy) Vudz| < ||/ bdy||[| V|

< pl[Vul? + C,| / o bdy|? < pl|Vul?® + Cy, (2.78)
zo

and

|/ by - udTa:\—\/ // bdy)Vudxdr|
0

<np/(ﬂww>m«hwnvmann><cwmeaQn>

Zo
Te

:c/ Vul2dr. (2.79)
0

Invoking that |e(Vu)|? > 2|Vu|?, then (2.74)—(2.79) yield

1
2

[ Es.vs) st [ m($)V(ws - vAS)Pd(ra)
Q Qr,
Te
<Ctulel+C [ lelpar (2.80)
0
let p be sufficiently small, from (1.12) we deduce that

/ (g\vsﬁ +C8*+2 4 %(D(e —&9)) - (¢ — &S))dx
Q

Te
—|—/ my(S)|V (s — vAS)[2d(r,z) < C + C/ lle||?dr. (2.81)
Qr, 0
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By
JelP < 2 = 2SI + 2SI < [ (OS¥4 4 S(De ~ £5)) - (e - 28))da, (282)
Q
thus
/ (g|v5|2 + 082 4 %(D(e —&9)) - (e — &9))dx
Q
[ m)[9s - vAS)Pd(r, o)
Q.
<C (S%r+2 4 %(D(E —&9)) - (e —&9))d(r,x)
Q.

< [ GIvsE st %(D(s _28))- (e — E8))d(r, 2). (2.83)
Q.

Applying the Gronwall inequality in the integral form we obtain
1
/ (%|VS|2 +C8* 2 4+ 5(D(e —29)) - (¢ — £9))da
Q
+/ me(S)|V (s — vAS)|[2d(r,z) < C, (2.84)
Qr,

then (2.69) is proved. Owing to r > 1, we have S € L>(0,Te; HY.,(€)), by (2.20)

)
we get (2.68). For all p € L2(0,ty; H2.,(Q)), we infer from (1.24) and (2.69) that

per

\ Sypd(t, )| = | my(S)V (s — vAS) - Vd(r, )|
Qr, Qr,

< [ 1mn($)3V (s — vAS)ma($)} Vild(r,a)
Qr,

<C [ mu(9)|V(ps—vAS)Pd(r,z)+ [ mu(9)|Ve|*d(r, )
Qr, Qr,

<c+cC / Vol2d(r,z)

e

< Clellz2(0,1.:m2,,0)) + 1),

thus Sy € L2(0,to; (H2,,(€2))’). Similar to the proof of (2.32), taking into account

per

(2.67) and (2.68), we obtain (2.71) and
[ wiPrdns <c. (2.89
Q.

In order to prove (2.70). One obtains from (2.69) and the inequality (a + b)? <
2a” + 2b% that

2, meSITASFdra) <2 | (ST (vs ~ A8 )

Te

+ 2/ m(S)|Vips|?d(T, x)

e
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<C+2 / ma(8)|VisPd(r,z),  (2.86)
Qr,
here

/ 1(8)| Vs Pd(r, ) = / ma(S)[ VI (S) - V(e - 0)|2d(r, 2)

Qr, Qr,

< / (Mo + DIV (S) — V(- 0)|2d(r, 7)
QT,

<C VY (S)P +C V(g-0)?d(r, z)
Q. Qr,

<, (2.87)

we used (2.85). Thus (2.70) is obtained. O
Therefore, we complete the proof of the existence of weak solutions global in
time to approximate problem (2.1)—(2.7).

Lemma 2.7. For anyt € [0,T.], there holds the following energy inequality

VS ()2 +u/ me(S)[VASd(r, z)

Qr,

<[V Soll? + / ma(S)VI'(S) - VASA(r, 2)

Te

- / m(S)V (- o) - VASd(T, ). (2.88)
Qr,

Proof. Let (u", 0™, S™) be the sequence of asymptotic solution constructed in the
proof of Theorem 2.1, we replace the S in (2.14) by S"~1

87 = div(me (ST 1)V (P (S™) — & o™ — vAS™)). (2.89)

Multiplying (2.89) by —AS™ and integrating the resulting equation over Qr,, we
have

|\VS"(t)H2+u/ me(S7 )| VAS™ 2d(r, 2)
Qr,
= VS22 +/ My (SP=1)V (S™) - VAS™d(r, x)

Te
- / mH(ST”\jl)V(é -o™) - VAS™ (T, x),
Qr,
then taking liminf,,
lim inf [|V.S™ ()2 + yliminf/ M (57 1) VAS"2d(7, z)
n—oo n—oo QTe

—liminf [ VS22 + liminf [ m. (S 1)V (S™) - VAS™d(T, z)
n—oo n—oo QTe

—lim inf/ me(SP1)V (2 0™) - VAS™d(7, z). (2.90)
Qr,

n—oo
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We are going to prove
IVS@)|2 + u/ me(S)[VASd(r, z)

< liminf || V.57 (1) +yliminf/ me (S 1) VAS™ 2d(r, ), (2.91)

lim inf [|VS5 | + lim inf / e (ST 1)V (™) - VAS™d(r, 2)
n o0 n o QTe

n—oo

~ Jiminf / M (ST )V (- ™) - VAS (T, 7)
Qre

= VSo||? + / me(S)VY'(S) - VASd(r, z) — /Q m(S)V(& - o) - VASd(r, z).

(2.92)

In order to prove (2.91). From (2.22) and the lower semi-continuity of the LP-
norm
[VS(#)||* < liminf ||[V.S™(t)? (2.93)
n—oo

It follows from (2.31) and (2.34) that fQT |V (S™)|2d(r, ) < C, then (2.24) and
the inequality (a + b)? < 2a® + 2b imply

/ me (ST 1) VAS2d(r,2) < C, (2.94)
Qr.
thus there is a function ¢ € L?(Qr,) satisfies

m,@(Sﬁ’:)%VAS" — ¢ weakly in L*(Qr,), (2.95)

we now prove ¢ = m,(S)2VAS. Applying estimate (1.11) and the inequality

Vizl=Vlyl < Iz —y], z,y eR

me (57712 —mi(8)%] =

Kl
@
3
L
o
!
2
=
_I\J\H
A
2
nn
3
L
|
=
&
-

then S, ) o
a5 — ()21 < ME|5R - 5P,

integrating the above inequality over Q. , from (2.48) and (2.53) we infer

~— . —
Im(Sm=1)% = muc(8) 2 |23y, ) < MTIS™! = Slli2(gs,) = O (2.97)

that is ., )
me(S"=1)2 — m,(S)2 strongly in L*(Qr.). (2.98)

From (2.52) we know
VAS"™ —~ VAS weakly in L*(Qr.), (2.99)
then

M (ST EVAS™ — m,.(S)EVAS  weakly in L# (Qr,), (2.100)
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thus, (2.95) and (2.100) yield ¢ = m,.(S)2VAS, and
M (SP1)EVAS™ — m,(S)2VAS  weakly in L2(Qr, ), (2.101)

we infer from the lower semi-continuity of the LP-norm that

y/ ()| VASPd(r,z) < yhmmf/ M (57 )| VAS™Pd(r, ), (2.102)
QTe Te

n—oo

therefore, (2.91) is derived.
For the proof of (2.92). By (2.44) we have

liminf [|V.Sg | = || VSo||*. (2.103)
We now study the convergence of [, ~m (,S/"?*/l)VdA/(S") -VAS"d(7,z).

/ M (ST (S™) - VAS™d(r, z)

Qr,

:/ M (SP1)2m, (S7-1) 24 (SM)VS™ - VAS™d(T, )
Qr,

- /Q (M (SP1)% — m,e ()% )me (ST—1) 34" (S")V.S™ - VAS™d(7, x)

/-\_/

+ / () ¥ ma (S 1) (@ (S™) — §(S))VS™ - VAS"d(r, 2)
Qr,

e (S) Eme (SP1) 247 () (VS™ — VS) - VAS™d(7, 2)
4 m(S) Em, (SP1) 347 (S)VS - VAS™d(r, z)
=Ju + Jiz+ Jis + Jia. (2.104)
For Ji1, the Gagliardo-Nirenberg inequality implies

IVS™ | Lagq) < CIVAS™||Z[VS™||F + C|VS™. (2.105)

.. s . . 3
From (2.22), (2.56) and Hélder’s inequality, when 8 <6, r < §

[l =1 ] (M (57 1) — my(S))my (SP=1)24) (S")VS™ - VAS (7, )|

1

SC/ M (S771) = () Fm, (SP=1) 3 (|S™ 2 + 1)| VS| VAS"|d(r, z)
Qr,

Te
<C/ [ (S71) = (S )IILw(Q e (S71)EAS™ (15" [F5r ) + 1)
X IV S| a(ydr

Te

Te o 1 —— 1
§0</0 ||mn<sn*1>—mn<5>||%wm>d7>z</o I (571)}VAS |2dr)t

Te
n r n 1
(5”5, o0 + D[ IV eir)?
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T. T.
o 1 n) 2 n 2 n 1
SC(/O HmK(S”‘l)—mH(S)HQLoom)dT)4(/0(IIVAS IZIVS™ |2+ VS™[")dr)

T. o
< C’(/ |lme(S™—1) — m,{(S)H%w(Q)dT)% — 0. (2.106)
0
For the convergence of Ji5. From the following interpolation inequality

[fllzoe @) < CIALIZIV I + ClA
and (2.48), we have

Te Te
/ 157 = )[4 < c/ IAS™ — AS|[2dr — 0. (2.107)
0 0

Applying the Gagliardo-Nirenberg inequality to obtaion

IVS™| 2 < C|[VAS™||5||VS™||F + C||VS". (2.108)

|L?(Q) =

Then from (2.107), (2.108) and Hélder’s inequality, when 247 — 12 < 6, r < 2
[Tial = | [ () m(S771)F (0(8™) — 4"(5))VS™ - VAS d(r, z)|

= | M (S) 2 M (S7=1) 24" (£)(S™ — S)VS™ - VAS™d(, z)|
Qr,

< C(My+1)2 / (€21 + 1)|S™ — S||VS™||m. (SP=1)EVAS™|d(r, z)
QT

e

Te .1
< Cf (€l 7ammre gy FDIS™ = SllLae@ VSl 12 g [Imn (S 1) 2 VAS™||dr
o L5 (Q)

Te .
< Csup(€l oy + D[ 15" = Sl yar)}
Te 1 Te —~— 1
x(/ IVSm4 L, dm(/ I (571)E VAS™|2dr) t
0 L5 (Q) 0
Te 1 Te 1 7 1
sO(/O HS"—SII‘ioo(Q)dT)Z(/O (IVAS™[}[VS™|F + C[vS™|*)dr)*

Te L
<o / 15" = 4w ydr) 0, (2.100)

here, ¢ is a suitable number between S and S™.
To study Ji3, by virtue of (2.47)

IVS™ = VS| L2011 (2)) = O-

From (2.22), (2.94) and Hélder’s inequality, when 4r < 6, r < 3

| Jis| < CMO/ M (S7=1)2 [|[VAS™|(|S|>" + 1)|VS™ — VS|d(r, z)

Te

Te —
<c / (57 AV AS™ (]2 g + DIVS™ — VS| ey
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Te 1 1
<[ Imu(57)VAS ) sup(ISI5 o+ 1

Te .
% ( / V5™ — V8|2 )’
Te .

< C(/0 [VS™ = VS|[] o0 (ydr)* — 0. (2.110)

For the proof of Ji4 — 0. The estimates (1.20), (2.31) and (2.34) imply
m(S) 24" (S)VS belongs to L2(Qr, ) then can be regarded as a test function, from
(2.101) we infer that m,{(.S/"T*/l)%VAS” — m(S)2VAS weakly in L2(Qy,), thus
Jia — 0.

From the foregoing, we have that

n—oo

Jim inf / M (ST )V (S™) - VAS d(r, 7) = / me(S)V (S) - VASd(r, z).
o o (2.111)

In a similar way we obtain

n—oo

lim inf / me(SP)V (2 0™) - VAS™d(, ) = / m(S)V( - o) - VASd(r,z).
Qr, Qr,
(2.112)

Consequently, Lemma 2.7 is proved. At the same time we complete the proof of
Theorem 2.1. O

3. Existence of weak solutions to degenerate prob-
lem

In this section we are devoted to prove the existence of weak solutions to degen-
erate problem (1.1)—(1.7). We first construct a-priori estimates independent of x
for the solutions (u”,c",S") of approximate problem (2.1)—(2.7), it can be seen
from the proof of Theorem 2.1, the bounds on the right hand side of (2.67)—-(2.70)
independent of k, then there exists a constant C' independent of x, such that

15" | 0,112, (2)) + 1S (220,72 812, (02))) < €, (3.1)

w012, () + 10" e 0,18, (2) < € (3.2)

/ M (S7)|V (se — vAS®)Pd(r,7) < C, (3.3)
Qr,

/ m(S%)|VAS®2d(r, 2) < C. (3.4)
Q.

Lemma 3.1. There is a constant C' independent of k such that

1AS™ | L2(qn, ) < C, (3.5)
15" 220, 12: 12, (20)) < C.

per
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Proof. We denote

A4

SR ATRU

A
Go(S) :—/S gu(1)dl,

where, A > max|S”| for all small k. Then

GL(9) = 9x(9),

1
1" o o
We know (u”, 0", S") satisfies
SF = div(m, (S*)V () (SF) — &- 0% — vAS")). (3.7)

We multiply the above equality by g, (S5), and integrate with respect to = over Q

d .
%/QGH(S“)dx - /QmH(Sﬂ)vw'(s“) 0% — UASS) - Vgn(S¥)da
K QR = K K 1 K
= Qm,.i(S )V(w (S )—E'O' —vAS ) WVS dx
= / V(' (S%) — - 6" — vAS®) - VS"dx
Q

_ / (@ (S%) — & 0% — AS®)AS"da, (3.8)
Q
then we have
d
— GR(S“)dz+V/ |AS”|?dx (3.9)

= */(ﬁl(S“)fé-an)AS“d:c
Q
S/ Iﬁ’(S”)AS”\dx+/ & 0" AS*|dx
Q Q
Sz/ |ASH|2dx—|—C/ |1/3’(5”)|2dm+z/ |ASH|2dx—|—C/ & 0" 2d
4 /g Q 4 Jq O
Sz/ |ASH|2d1'+C/ |1[)/(Sm)|2dx+c/ |€—'0_M|2d1,7 (310)
2 /o . A
when 4r + 2 < 6, r < 1, we infer from (3.1) and (3.2) that

/|,([}/(Sm)‘2d$§ C/(|55|2r+1+1)2dm§0/(lsm‘4r+2+1)d$
Q Q Q

< OIS 42y + 1) < CUIS™ 420 + D < C (301)

and

[ -0 < Cllo™ ey < Cllo™y, @ < C- (3.12)
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It follows from (3.9)—(3.12) that

d v
K v K|2 <C.
dt/QGﬁ(S )dx+2/Q|AS 2dz < C

Integration of above inequality with respect to ¢ from 0 to T,

/ G (S%(t))dx + 5/ |AS”|?d(T,z) < / G.(So)dz + C, (3.13)
Q 2 Qr. Q
for initial value, from the assumption of Sy we know
\/ Gr(So)dz| < C. (3.14)
Q

Therefore, (3.1) and (3.5) yield (3.6). O

We are going to prove the existence of weak solutions to degenerate problem
(1.1)—(1.7).

We choose

Py=P =2, By=H2,), B=C%(Q) or H'.(Q), By = (H2.(Q)),

per per per per
here, & € (0,1). The estimates (3.1) and (3.6) imply those spaces satisfy the
assumptions of Lemma 2.5. Hence, there exists a subsequence of S*, not relabeled,
satisfies

18" = Sliz2(0,1.5¢8.,(2) = 0, (3.15)
18" = Sll2(0,1.5m2,,(22)) = 0- (3.16)
Lemma 3.2. There holds
VAS € L*(Gs), m(S)?VAS € L*(Gs). (3.17)
Proof. We denote
Gs ={(t,x) € Qr,; m(S(t,z)) >}, 6 >0. (3.18)

For any fixed § > 0, we choose ko(d) > 0, such that (¢,z) € G5, 0 < k < Ko(0)

" 4]
m, (S%) > 3 (3.19)

By (3.4) we have

m,(S*)|VAS™2d(r,z) < C, (3.20)
Gs

then

(3.21)

>l Q)

/ VAS®2d(r,z) <
Gs

Thus, we choose a subsequence of VAS”, not relabeled, satisfies

VAS® —~ VAS weakly in L*(G5). (3.22)
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From (3.20) we know there is a function x € L?(Gs), such that
me(S¥)T7VAS® — x  weakly in L*(Gy), (3.23)

We Now prove Y = m(S)%VAS. Applying the inequalities \/|z| — /]y| < ]z — yl,
2,y € R and (a +b)? < 2a? + 2b2

Mo (S7)% —m(S) 5| < [m,e(S%) — m(S)[* < 2/m(S") — m(S)|* + 2|’
< 2M3E|S" — S|? + 2k (3.24)

Integration of above inequality over Gy

/ Im,.(S%)2 —m(S)z |*d(r, z) §2M12/ |S~—S|2d(7,x)+2/ K2d(T, ),
Gs

Gs Gs
from (3.16), when Kk — 0
I (5™)% = m(8)2 Ly < CUIS™ = Sllia(a,) +26°IGsl 50, (3.25)
where, |Gs| denotes the measure of Gs, that is
m(S)7 = m(S)?  strongly in L*(Gs), (3.26)
which together with (3.22) imply
M, ()2 VAS® = m(S)2VAS weakly in L3 (Gj), (3.27)

by (3.23) and the uniqueness of limit we get that x = m(S)%VAS, and
m,(S)2VAS® — m(S)2VAS weakly in L*(Gs), (3.28)

then fGa m(S)|[VAS|?d(r,x) < C, by the arbitrariness of § we complete the proof
of Lemma 3.2. O
Lemma 3.3. When k — 0

S*pud(T,x) — Seid(T, ), (3.29)
Qr, Qr,

/ SE(@)p(0, 2)dx — / So(@)p(0, 2)dz, (3.30)
Q Q
/Q m(S¥)V () - Vod(r, ) — j m(S)V(S) - Ved(r,z),  (3.31)

/Q m(ST)V(E- ") - Vpd(r,2) — . m(S)V (- o) - Ved(r, ), (3.32)

/ m(S")VAS” - Vd(T,z) — m(S)VAS - Vd(r, ). (3.33)
Qr. Gs

Proof. (3.29) and (3.30) is obvious. Similar to the derivation of (2.62), we obtain

V' (S%) — Vi (S), weakly in L*(Qr,). (3.34)
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Since
My (S7) =m(S)] < [m(S") —m(S) + k| < My[S* = 5] + &, (3.35)
from (3.16), one obtains for k — 0 that
m(S*) — m(S) strongly in L*(Qr,), (3.36)

and
m(S™) — m(S) strongly in L?(0, T; L>=(S2)), (3.37)

then (3.34) and (3.36) result in
My (S*)VY (S%) = m(S)Ve'(S)  weakly in L'(Qr,), (3.38)

we thus arrive at (3.31).
According to (3.2) and the weak compactness lemma, there exists a subsequence
of Vo, not relabeled, and a limit function Vo € L?(Qr,), such that

Vo — Vo weakly in L*(Qr,), (3.39)
(3.36) and (3.39) yield
m(SF)V(&- ") = m(S)V(e-0) weakly in L' (Qr.), (3.40)

then we obtain (3.32). We now prove (3.33), for any given 6 > 0

| my(S®)VAS™ - Vd(r, z) — / m(S)VAS - Vd(T,x)|

Qr, Gs
<| / M (S¥)VAS™ - Vod(r, )| + | m(S)VAS - Vipd(r, 2)|
Q1. \Gs Gs\Gs
1 [ ma(SH)VASE - Vipd(r,z) — / m(S)VAS - Ved(r,2)|,  (3.41)
G5 Gzi

here, 0 < k < Ko(0). From (3.20) we know

| m(S®)VAS”® - Vpd(r,z)| < sup |V / m(S*)VAS®d(r,z)|
Q1. \Gs

Qr \Gs
< C(6+1)sup|Vyl, (3.42)
and
| / m(S)VAS - Ved(r, z)| < C8sup |V, (3.43)
Gs\Gs
since
[ me(SY)VAS" - Vid(r,z) — / m(S)VAS - Vod(r, 7)|
G5 G5
< |mn(5”)—m(S)HVASKHV@W(T»$)+/ Im(S)[|[VAS®=VAS||Veld(r, z)
G5 Gé

=1 —i—IQ, (344)
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where, (3.16) and (3.22) result in
B [ ma(s) = m(s)|[VAS" | Vpli(r.a)
5

< sup Vil [ fma(5") = m(5)][VAS"d(r.a)
S5

< sup |[Vy| ; |m(S™) — m(S) + ||VAS®|d(r, x)
)

< M sup \V<p|/G (IS = S|+ k)|VAS®|d(T, x)

5

< My sup [Vol([[S™ = Sl z2as) + 15l 2@ IIVAS™ || L2 ()
< CMysup |[Vol([|S™ = Slz2as) + Ikl L2 as)) — 0, (3.45)

for I, owing to

/ m(8)Vpl2d(r,z) = / m(S)2IVePd(r,z) < sup Vel [ [m(S)d(r, )
Gs Gs Gs

< sup |w|2/ (Mo +1)2%d(r,z) < C, (3.46)

Gs

then m(S)Ve € L?(Gs). By VAS® — VAS weakly in L?(Gs), we make use of the
definition of weak convergence to conclude that Is — 0, therefore

| m(S®)VAS® - Vd(T,2) — / m(S)VAS - Ved(r,z)| — 0. (3.47)
G5 G6

From (3.41)—(3.47) and the arbitrariness of d, (3.33) is derived. O
Consequently, (u,o,S) is the weak solution to degenerate problem (1.1)—(1.7)

which has the regularity properties stated in Theorem 1.1. The proof of Theorem
1.1 is complete.

4. Numerical experiments

In this section we perform a series of numerical simulations to describe the process
of spinodal decomposition in binary alloys by applying the above model in two-
dimensional space. We choose a degenerate mobility m(S) = (sin(—%2) +1) - (1 —
cos%) and a positive mobility m = 1, then we compare the results. The chemical

free energy density is represented by
() = $*(1- S)2,

which is phenomenological double-well potential. The following nondimensional
parameters are used: the gradient energy coefficient v = 1; the misfit strain

0.01 0
0 —-0.01
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the dimensionless elastic modulus tensor of material

1400 600 O
D=1 600 1400 0 |3
0 0 400

and the number of grid points is N, = N, = 128.

Figure 1. Evolution of the concentration during the spinodal decomposition with positive mobility
m = 1 at dimensionless time t* = 80, 500, 2000, 4000 (the top row) and degenerate mobility m(S) =
(sin(—Z£) +1) - (1 — cosZ2) at dimensionless time t* = 500, 1200, 2000, 4000 (the bottom row).

As can be seen from Figure 1, we choose the average composition of binary
alloy Sy = 0.4, then add a small perturbation to this component, with the increase
of aging time, the system generates two new phases spontaneously with different
components but the same structure. The red region and the blue region represent
the two new phases with different components, and the other regions represent
the transitional phase interfaces. In order to minimize the interfacial energy of
the system, coarsening of the new phases is achieved by absorbing small particles
into large particles, we can find easily from the figures on the top row that the
size of new phases increase and the number of new phases decrease, this implies
that the coarsening process is going on. Generally speaking, the variable mobility
will reduce the diffusion of the system, it is obvious that the coarsening behaviour
does not occur between the new phase of the same type when the mobility m/(S) is
degenerate at the minimum points of chemical free energy density ’(/AJ(S ). Comparing
the figures on the top row with the figures at the bottom row we can easily discover
that the coarsening of the new phases are easier to achieve when the mobility is
positive. The existence of elastic strain energy caused by the difference of lattice
parameters between the parent and new phases increases the resistance of phase
transition, in order to minimize the elastic strain energy so as to minimize the total
free energy, the new phases are arranged regularly along the elastic soft direction
in the process of microstructure evolution.
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