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LEAST ENERGY SIGN-CHANGING
SOLUTIONS FOR SUPER-QUADRATIC

SCHRÖDINGER-POISSON SYSTEMS IN R3

Sofiane Khoutir

Abstract In this paper, we study the following Schrödinger-Poisson systems{
−∆u+ V u+ λϕu = f(u), x ∈ R3,

−∆ϕ = u2, x ∈ R3,

where V, λ > 0 and f ∈ C (R,R). Under some relaxed assumptions on f , using
variational methods in combination with the Pohozăev identity, we prove that
the above system possesses a least energy sign-changing solution and a ground
state solution provided that λ is sufficiently small. Moreover, we prove that
the energy of a sign-changing solution is strictly larger than that of the ground
state solution. Our results generalize and extend some recent results in the
literature.
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1. Introduction and main results
Consider the following Schrödinger-Poisson system{

−∆u+ V u+ λφu = f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.1)

where V > 0 is constant, λ > 0 is a parameter. Moreover, we assume that f : R → R
is continuous and satisfies the following assumptions:

(f1) lim
t→0

f(t)
t = 0.

(f2) lim
t→∞

f(t)
t5 = 0.

(f3) lim
t→+∞

F (t)
t2 = +∞, where F (t) =

∫ t

0
f(s)ds.

(f4)
f(t)
|t| is a non-decreasing function of R \ {0}.
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System (1.1) is also called Schrödinger-Maxwell system, arises in an interesting
physical context. In fact, according to a classical model, the interaction of a charge
particle with an electromagnetic field can be described by coupling the nonlinear
Schrödinger’s and Poisson’s equations. For more information on the physical rele-
vance of the Schrödinger-Poisson system, we refer the readers to the papers [4,8,20]
and the references therein.

Recently, Schrödinger-Poisson systems setting on the the whole space R3 have
attracted a lot of attention. Many solvability conditions on the nonlinearity have
been given to obtain the existence and multiplicity of solutions for Schrödinger-
Poisson systems in R3, we refer the readers to [2,3,6,11,15,17–19,22–24,27–30] and
references therein. Besides, the existence of sign-changing solutions for problem
(1.1) was studied in [1, 7, 16,21,25].

In [25], Wang and Zhou considered the following system{
−∆u+ V (x)u+ λφu = |u|p−1u, x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.2)

where, p ∈ (3, 5) and V ∈ C(R3,R). Using variational methods in combination
with the Brouwer degree theory, the authors proved that system (1.2) has a sign-
changing solution. Furthermore, they also proved that the energy of any sign-
changing solution of (1.2) is strictly larger than twice the least energy, that is,
the“energy doubling” property of sign-changing solutions of (1.2).

Alves et al. [1] studied the following class of Schrödinger-Poisson system{
−∆u+ V (x)u+ φu = f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.3)

where V ∈ C(R3,R) and f ∈ C1(R,R) satisfies (f1)− (f2) and

(f ′
3) lim

t→+∞
F (t)
t4 = +∞,

(f ′
4)

f(t)
|t|3 is a non-decreasing function of R \ {0}.

Under more assumptions on the potential V , the authors proved that system (1.3)
has a least energy sing-changing solution by means of variational methods combined
with the deformation lemma and Miranda’s theorem.

Shuai and Wang [21] investigated the existence of sign-changing solution for
the system (1.1) with a non-constant potential V (x) instead of V and f ∈ C1(R)
satisfies (f1) − (f2) and (f ′

3) − (f ′
4). Based on variational methods in association

with the deformation lemma and the implicit function theorem, they obtained the
existence of a least energy sign-changing solution. Moreover, the“energy doubling”
property and the asymptotic behavior of the sign-changing solution was discussed
there.

Chen and Tang [7] have improved the results obtained in [16, 21, 25] by relaxed
the condition (f ′

3) to the following one:

(F3) there exists θ0 ∈ (0, 1) such that for all t > 0 and τ ∈ R \ {0}[
f(τ)

τ3
− f(tτ)

(tτ)3

]
sign(1− t) + θ0V (x)

|1− t2|
(tτ)2

≥ 0.
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Inspired by the above facts, in the present paper, we investigate the existence
of least energy sign-changing solution for problem (1.1) with the nonlinearity f is
only continuous and satisfies a relaxed assumptions (f3) and (f4) instead of (f ′

3)
and (f ′

4) respectively.
Before stating our main results, we introduce the following notations. As usual,

for 1 ≤ p < +∞, we let

∥u∥p :=

(∫
R3

|u|pdx
) 1

p

, u ∈ Lp(R3).

Let
H1(R3) =

{
u ∈ L2(R3) : ∇u ∈ L2(R3)

}
.

with the inner product and norm

⟨u, v⟩ =
∫
R3

(∇u∇v + V uv) dx, ∥u∥ =

(∫
R3

(
|∇u|2 + V u2

)
dx

) 1
2

.

It is well known that the embedding H1(R3) ↪→ Lp
(
R3

)
is continuous for p ∈ [2, 6],

that is, there exist τp > 0 such that

∥u∥p ≤ τp∥u∥, ∀u ∈ H1(R3), p ∈ [2, 6]. (1.4)

Define our working space

H := H1
r (R3) =

{
u ∈ H1(R3) : u(x) = u(|x|)

}
.

Therefore, the embedding H ↪→ Lp(R3) is compact for p ∈ (2, 6) (see [26]).
Let D1,2(R3) :=

{
u ∈ L6(R3) : ∇u ∈ L2(R3)

}
be the Sobolev space equipped

with the norm
∥u∥2D1,2 =

∫
R3

|∇u|2dx.

Then, the embedding D1,2(R3) ↪→ L6(R3) is continuous (see [26]), and the following
Sobolev inequality holds

S := inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx(∫
R3 |u|6dx

)1/3 . (1.5)

For every u ∈ H1(R3), by the Lax-Milgram theorem, we know that there exists
a unique φu ∈ D1,2(R3) such that

−∆φu = u2, in R3.

Moreover, φu has the following properties (for a proof, see [6, 19])

Lemma 1.1. For u ∈ H1(R3) we have

(i) φu ≥ 0, ∀u ∈ H1(R3);
(ii) φtu = t2φu, ∀t > 0, ∀u ∈ H1(R3);
(iii) If un ⇀ u in H, then φun

⇀ φu in D1,2(R3) and

lim
n→∞

∫
R3

φunu
2
ndx =

∫
R3

φuu
2dx;
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(iv) There exists a constant C0 > such that

∥φu∥2D1,2 =

∫
R3

φuu
2dx ≤ C0∥u∥4, ∀u ∈ H.

(v) If u is a radial function (i.e., u(x) = u(|x|)), the φu is radial.

Now, we define the energy functional Jλ : H → R associated with problem (1.1)
by

Jλ(u) =
1

2

∫
R3

(
|∇u|2 + V |u|2

)
dx+

λ

4

∫
R3

φuu
2dx−

∫
R3

F (u)dx. (1.6)

Therefore, under the assumptions (f1)− (f2), Jλ is well defined and J ∈ C1(H,R)
with

⟨J ′
λ(u), v⟩ =

∫
R3

(∇u∇v + V uv) dx+λ

∫
R3

φuuvdx−
∫
R3

f(u)vdx, ∀v ∈ E. (1.7)

Note that (u, φu) ∈ H1(R3)×D1,2(R3) is a solution of (1.1) if and only if u ∈ H1(R3)
is a critical point of Jλ and φ = φu. Furthermore, by the principle of symmetric
criticality, the critical points of Jλ on H are the critical points of Jλ on H1(R3),
see [8]. Consequently, find a weak solution to problem (1.1) is equivalent to finding
a critical point of the functional Jλ.

Throughout this paper, we denote

u+ = max{u(x), 0} and u− = min{u(x), 0},

then u = u+ + u−.
As usual, for problem (1.1), we define the associated Nehari manifold by

Nλ =
{
u ∈ H \ {0}, ⟨J

′

λ(u), u⟩ = 0
}
, (1.8)

and the nodal-Nehari manifold by

Mλ =
{
u ∈ H, u± ̸= 0 and ⟨J ′

λ(u), u
±⟩ = 0

}
. (1.9)

Moreover, we denote

cλ := inf
u∈Nλ

Jλ(u) and mλ := inf
u∈Mλ

Jλ(u). (1.10)

Now, we are ready to state the main results of this paper.

Theorem 1.1. Assume that (f1)− (f4) hold. Then there exists λ̃ > 0 such that for
all λ ∈ (0, λ̃) the problem (1.1) has a least energy sign-changing solution wλ ∈ Mλ

which has exactly two nodal domains. If in addition f ∈ C1(R), then for all
λ ∈ (0, λ̃) the problem (1.1) has a ground state solution uλ ∈ Nλ which is constant
sign. Furthermore, it holds that

mλ = Jλ(wλ) > Jλ(uλ) = cλ.

Remark 1.1. Compared with the results obtained in [1, 16, 21], we only need f ∈
C(R,R) for establishing the existence of sign-changing solutions, also, the weaker
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conditions (f3) and (f4) are employed to replace (f ′
3) and (f ′

4) respectively. Thus,
our results extend and generalize the existing results to more general nonlinearity.
Further, there are many functions satisfying (f3) − (f4), but not (f ′

3) − (f ′
4). For

example, let
f(t) = t|t|p−2, ∀t ∈ R,

where p ∈ (2, 4]. Then, by a simple calculation, we have F (t) = 1
p |t|

p. Therefore,
it is easy to check that f satisfies (f1) − (f4) and does not satisfy (f ′

3) − (f ′
4).

Consequently, our results extend the results of [1, 7, 16,21,25].

The paper is organized as follows. In Section 2, we provide some lemmas, which
are crucial to prove the main results of this paper. Section 3 is devoted to the proof
of Theorem 1.1.

2. Preliminaries
In the sequel, Ci or C will denote different positive constants and → (⇀) denotes
the strong (weak) convergence.

Motivated by [29], we shall use a truncated technique which is due to Jeanjean
and Le Coz [13] (see also [3, 14]). Therefore, we define the cut-off function ξ ∈
C1(R+,R) satisfying 0 ≤ ξ(t) ≤ 1, ∥ξ′∥∞ ≤ 2,

ξ(t) =

{
1, t ∈ [0, 1],

0, t ∈ [2,∞),

and ξ is decreasing on [1, 2]. Similar to [29], we consider the truncated functional
Jλ,T : H → R defined by

Jλ,T (u) =
1

2
∥u∥2 + λ

4
BT (u)

∫
R3

φuu
2dx−

∫
R3

F (u)dx, (2.1)

where BT (u) = ξ
(

∥u∥2

T 2

)
. Under assumptions (f1) − (f2), it is easy to check that

JT
λ ∈ C1(H,R) and

⟨J
′

λ,T (u), v⟩ =⟨u, v⟩+ λBT (u)

∫
R3

φuuvdx+
λ

2T 2
ξ′
(
∥u∥2

T 2

)
⟨u, v⟩

∫
R3

φuu
2dx

−
∫
R3

f(u)vdx.

(2.2)

In what follows, we try to find a critical point wλ of Jλ,T on H for small λ > 0.
Then we will show that wλ also solves the original problem (1.1) By showing that
∥wλ∥ ≤ T . Define the Nehari manifold of Jλ,T as

Nλ,T =
{
u ∈ H \ {0}, ⟨J

′

λ,T (u), u⟩ = 0
}

(2.3)

and the nodal-Nehari manifold

Mλ,T =
{
u ∈ H, u± ̸= 0 and ⟨J ′

λ,T (u), u
±⟩ = 0

}
. (2.4)



Sign-changing solutions. . . 1525

Furthermore, we denote

cλ,T := inf
u∈Nλ,T

Jλ,T (u) and mλ,T := inf
u∈Mλ,T

Jλ,T (u). (2.5)

We have the following results.

Theorem 2.1. Assume that (f1) − (f4) hold. Then there exists λ∗ > 0 such that
for all λ ∈ (0, λ∗) the functional Jλ,T has a least energy sign-changing critical point
wλ ∈ Mλ,T . If in addition f ∈ C1(R), then for all λ ∈ (0, λ∗) the functional Jλ,T
has a critical point uλ ∈ Nλ,T which is constant sign. Furthermore, it holds that

cλ,T = Jλ,T (uλ) < Jλ,T (wλ) = mλ,T .

Lemma 2.1. For each u ∈ H with u± ̸= 0, there exists a pair (tu, su) ∈ R×R with
tu, su > 0 such that tuu+ + suu

− ∈ Mλ,T , moreover

Jλ,T (tuu
+ + suu

−) = max
t,s≥0

Jλ,T (tu
+ + su−).

Proof. For any u ∈ H with u± ̸= 0, we define the function G : R+ × R+ → R by

G(t, s) = Jλ,T (tu
+ + su−).

Obviously, G is well defined on R+ ×R+ and G ∈ C1(R+ ×R+) due to Jλ,T ∈ C1.
For (t, s) ∈ R+ × R+, by a simple computation we obtain

∇G(t, s) =
(
⟨J ′

λ,T (tu
+ + su−), u+⟩, ⟨J ′

λ,T (tu
+ + su−), u−⟩

)
=

(
1

t
⟨J ′

λ,T (tu
+ + su−), tu+⟩, 1

s
⟨J ′

λ,T (tu
+ + su−), su−⟩

)
.

Therefore, tu+ + su− ∈ Mλ,T if and only if the pair (t, s) is a critical point of
G with t, s > 0. By (f1) and (f2), for any ε > 0 and p ∈ (2, 6), there exist Cε > 0
such that

|f(u)| ≤ ε|u|+ Cε|u|5 and |F (u)| ≤ ε
1

2
|u|2 + Cε

6
|u|6, ∀u ∈ R. (2.6)

Hence, using (1.4), (2.6) and the conclusion (i) of Lemma 1.1, we get

G(t, s) = Jλ,T (tu
+ + su−)

≥ t2

2
∥u+∥2 + s2

2
∥u−∥2 −

∫
R3

(
F (tu+) + F (su−)

)
dx

≥ t2

2
∥u+∥2+ s2

2
∥u−∥2−ε

t2

2
∥u+∥22−ε

s2

2
∥u−∥22−Cε

t6

6
∥u+∥66−Cε

s6

6
∥u−∥66

≥ t2

2
∥u+∥2

(
1−ετ22

)
+
s2

2
∥u−∥2

(
1−ετ22

)
−C1τ

6
6

t6

6
∥u+∥6−C2τ

6
6

s6

6
∥u−∥6,

for some positive constant Ci (i = 1, 2). Thus, G(t, s) > 0 for (t, s) small. On the
other hand, for t > 0 sufficiently large, it follows from (f3) that there exist a large
M > 0 such that

f(t) ≥ M |t| and F (t) ≥ M |t|2. (2.7)
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Consequently, for (t, s) large, it has

G(t, s) =Jλ,T (tu
+ + su−)

=
1

2
∥tu+ + su−∥2 + λ

4
BT (tu

+ + su−)

∫
R3

φtu++su−(tu+ + su−)2dx

−
∫
R3

F (tu+ + su−)dx

=
t2

2
∥u+∥2 + s2

2
∥u−∥2 −

∫
R3

(
F (tu+) + F (su−)

)
dx

≤ t2

2
∥u+∥2 + s2

2
∥u−∥2 −Mt2

∫
R3

|u+|2dx−Ms2
∫
R3

|u−|2dx.

This implies that G(t, s) → −∞ as |(t, s)| → +∞. We conclude that there exists a
pair (tu, su) ∈ R+ × R+ such that

G(tu, su) = max
t,s≥0

G(t, s).

Next, we show that tu, su > 0. Without loss of generality, we may assume that
(tu, 0) is the maximum point of G(t, s). Then, we have

∂G(tu, s)

∂s
=⟨J ′

λ,T (tuu
+ + su−), u−⟩

=s∥u−∥2 + λsBT (tuu
+ + su−)

∫
R3

φtuu++su−(u−)2dx

+
λs

2T 2
ξ′
(
∥tuu+ + su−∥2

T 2

)
∥u−∥2

∫
R3

φtuu++su−(tuu
+ + su−)2dx

−
∫
R3

f(su−)u−dx

≥s∥u−∥2 −
∫
R3

f(su−)u−dx− λs

T 2
∥u−∥2

∫
R3

φtuu++su−(tuu
+ + su−)2dx

≥s∥u−∥2 −
∫
R3

f(su−)u−dx− λs

T 2
C0∥u−∥2∥tuu+ + su−∥4,

by virtue of (f1), for λ, s sufficiently small, we see that ∂G(tu,s)
∂s > 0, which implies

that G(tu, s) is increasing for s small. This is a contradiction with the fact that
(tu, 0) is the maximum point of G(t, s). We conclude that tu, su > 0.

Finally, since (tu, su) is a positive maximum point of G(t, s) it follows that

∂G(t, s)

∂t
|(tu,su) =

∂G(t, s)

∂s
|(tu,su) = 0,

and then

⟨J ′
λ,T (tuu

+ + suu
−), u+⟩ = ⟨J ′

λ,T (tuu
+ + suu

−), u−⟩ = 0,

which implies that tuu++suu
− ∈ Mλ,T , since tu, su > 0. This completes the proof.

Corollary 2.1. For each u ∈ H \ {0}, there exists a tu ∈ R with tu > 0 such that
tuu

+ ∈ Nλ,T , moreover

Jλ,T (tuu
+) = max

t≥0
Jλ,T (tu

+).
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Lemma 2.2. Assume that (f1)− (f4) hold. Then, for any u ∈ H with ∥u∥2 > 2T 2,
it has

Jλ,T (u) ≥ Jλ,T (tu) +
1− t2

2
⟨J

′

λ,T (u), u⟩, ∀t ≥ 0.

Proof. It follows from (f4) that for any t > 0 and τ ̸= 0[
f(τ)

τ
− f(tτ)

tτ

]
sign(1− t) ≥ 0,

which implies that

1− t2

2
f(τ)τ + F (tτ)− F (τ) =

∫ 1

t

[
f(τ)

τ
− f(sτ)

sτ

]
sτ2ds ≥ 0, ∀t ≥ 0, τ ∈ R \ {0}.

(2.8)
On the other hand, from the definition of BT (u) we have

Jλ,T (u) =
1

2
∥u∥2 + λ

4
BT (u)

∫
R3

φuu
2dx−

∫
R3

F (u)dx

=
1

2
∥u∥2 −

∫
R3

F (u)dx,

(2.9)

and
⟨J

′

λ,T (u), u⟩ = ∥u∥2 −
∫
R3

f(u)udx. (2.10)

Hence, by (2.8), (2.9) and (2.10), we have

Jλ,T (u)− Jλ,T (tu) =
1− t2

2
∥u∥2 +

∫
R3

(F (tu)− F (u))dx

=
1− t2

2
⟨J

′

λ,T (u), u⟩+
∫
R3

[
1− t2

2
f(u)u+ F (tu)− F (u)

]
dx

≥ 1− t2

2
⟨J

′

λ,T (u), u⟩, ∀t ≥ 0.

Thus, the proof is completed.

Lemma 2.3. Let {un} ⊂ Nλ,T be a minimizing sequence of cλ,T , then {un} is
bounded in H.

Proof. Let {un} ⊂ Nλ,T be a minimizing sequence of cλ,T , that is,

Jλ,T (un) → cλ,T , as n → ∞.

We claim that {un} is bounded in H. To this end, arguing by contradiction, suppose
that ∥un∥ → ∞ as n → ∞. Setting vn := un/∥un∥, then ∥vn∥ = 1. Going if
necessary to a subsequence, we may assume that

vn ⇀ v in H;

vn → v in Lp(R3), 2 < p < 6;

vn → v a.e. in R3.

So, we have two cases need to be considered: v = 0 or v ̸≡ 0.
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If v = 0, then vn → 0 strongly in Lp(R3), for p ∈ (2, 6). Let L =
√

2(cλ,T + T 2).
Then, it follows from (f1) − (f2), for any ε > 0 and p ∈ (2, 6), there exists Cε > 0
such that

|f(u)| ≤ ε(|u|+ |u|5) + Cε|u|p−1 and |F (u)| ≤ ε(
1

2
|u|2 + 1

6
|u|6) + Cε

p
|u|p, ∀u ∈ R.

(2.11)
Combining (2.11) with Lemma 2.2, for n large enough so that L2/∥un∥2 ≤ 1, one
has

cλ,T = Jλ,T (un) + o(1)

≥ Jλ,T (Lvn) +

(
1

2
− L2

2∥un∥2

)
⟨J

′

λ,T (un), un⟩+ o(1)

≥ Jλ,T (Lvn) +

(
1

2
− L2

2∥un∥2

)
⟨J

′

λ,T (un), un⟩+ o(1)

=
L2

2
−
∫
R3

F (Lvn)dx+ o(1)

≥ L2

2
−
∫
R3

|F (Lvn)| dx+ o(1)

≥ 1

2
L2 − ε

(
L2∥vn∥22 + L6∥vn∥66

)
− CεL

p∥vn∥pp + o(1)

= cλ,T + T 2 − ε
(
L2∥vn∥22 + L6∥vn∥66

)
− CεL

p∥vn∥pp + o(1)

≥ cλ,T + T 2 − εC3 + o(1).

This is an obvious contradiction in view of the arbitrariness of ε.
Now, we consider the case v ̸≡ 0. Set A = {x ∈ R3 : v(x) ̸= 0}. Then, for

x ∈ A we have lim
n→∞

|un(x)| = ∞. By (f3) and Fatou’s Lemma, we obtain

0 = lim
n→∞

Jλ,T (un)

∥un∥2

= lim
n→∞

[
1

2
−
∫
R3

F (un)

u2
n

v2ndx

]
≤ 1

2
− lim inf

n→∞

∫
A

F (un)

u2
n

v2ndx

≤ 1

2
−
∫
A

lim inf
n→∞

F (un)

u2
n

v2ndx

= −∞.

This is a contradiction. Hence {un} ⊂ H is bounded.

Corollary 2.2. Let {un} ⊂ Mλ,T be a minimizing sequence of mλ,T , then {un} is
bounded in H.

Lemma 2.4. Assume that (f1)− (f4) hold. Then, there exists λ > 0 such that for
all λ ∈ (0, λ), mλ,T is achieved by some wλ ∈ Mλ,T .

Proof. Let {un} ⊂ Mλ,T be such that

Jλ,T (un) → mλ,T , as n → ∞.
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Then, {un} is bounded in H in view of Corollary 2.2, that is, there exists a constant
d > 0 such that

∥un∥ ≤ d, ∀n ∈ N. (2.12)
On the other hand, since un ∈ Mλ,T , we have

∥u±
n ∥2 + λBT (un)

∫
R3

φun
(u±

n )
2dx+

λ

2T 2
ξ′
(
∥un∥2

T 2

)
∥u±

n ∥2
∫
R3

φun
u2
ndx

=

∫
RN

f(u±
n )u

±
n dx

(2.13)

Then, it follows from (1.4), Lemma 1.1(iv), (2.6), (2.12) and (2.13) that(
1− λd4

T 2
C0

)
∥u±

n ∥2 ≤∥u±
n ∥2 −

λ

T 2
C0∥un∥4∥u±

n ∥2

≤∥u±
n ∥2 + λBT (un)

∫
R3

φun(u
±
n )

2dx

+
λ

2T 2
ξ′
(
∥un∥2

T 2

)
∥u±

n ∥2
∫
R3

φun
u2
ndx

=

∫
RN

f(u±
n )u

±
n dx

≤ε

∫
R3

|u±
n |2dx+ Cε

∫
R3

|u±
n |6dx

≤C4∥u±
n ∥2 + C5∥u±

n ∥6.

Therefore, there exists a constant ρ > 0 such that

∥u±
n ∥2 ≥ ρ, ∀λ ∈

(
0,

T 2

d4C0

)
. (2.14)

By Ekeland’s variational principle (see [9]), {un} is a (PS)mλ,T
sequence for Jλ,T

∣∣Mλ,T
,

that is,
Jλ,T (un) → mλ,T , J ′

λ,T (un) → 0 in H∗. (2.15)
Since {un} is bounded in H, going if necessary to a subsequence, there exists a

u ∈ H so that
un ⇀ u in H;

un → u in Lp(R3), 2 < p < 6;

un → u a.e. in R3.

(2.16)

It follows from (1.4), (2.11), (2.12), (2.16) and the Hölder inequality∫
R3

f(un)(un − u)dx → 0 as n → ∞. (2.17)

On the other hand, by (1.5), Lemma 1.1-(iv), (2.16) and the Hölder inequality we
obtain∫

R3

φunun(un − u)dx ≤ ∥φun∥6∥un∥2∥un − u∥3

≤ S− 1
2 ∥φun∥D1,2∥un∥2∥un − u∥3

≤ C∥un∥2∥un∥2∥un − u∥3 −→ 0 as n → ∞.

(2.18)
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Then combining (2.15), (2.17) and (2.18) with (2.2), for a large n, we infer that

o(1) =⟨J
′

λ,T (un), un − u⟩

=⟨un, un − u⟩+ λBT (un)

∫
R3

φunun(un − u)dx

+
λ

2T 2
ξ′
(
∥un∥2

T 2

)
⟨un, un − u⟩

∫
R3

φun
u2
ndx−

∫
R3

f(un)(un − u)dx

=

(
1 +

λ

2T 2
ξ′
(
∥un∥2

T 2

)∫
R3

φun
u2
ndx

)
⟨un, un − u⟩+ o(1),

which implies that ∥un∥ → ∥u∥. Since un ⇀ u in H which is a uniformly convex
Banach space, we deduce that

un → u, u+
n → u+, u−

n → u− in H as n → ∞. (2.19)

Moreover, from (2.14) we have ∥u±∥2 ≥ ρ > 0, thus u± ̸= 0.
Using (2.6), (2.19) and the compactness lemma of Strauss (see [5, Theorem A1]),

we derive

lim
n→∞

∫
R3

f(u±
n )u

±
n dx =

∫
R3

f(u±)u±dx,

lim
n→∞

∫
R3

F (u±
n )dx =

∫
R3

F (u±)dx.

(2.20)

Note that from un ∈ Mλ,T , we have

⟨J ′
λ,T (un), u

±
n ⟩ = 0,

by (2.20), Lemma 1.1-(iii) and passing to the limit, we deduce that

⟨J ′
λ,T (u), u

±⟩ = 0,

which implies that u ∈ Mλ,T and Jλ,T (u) = mλ,T for all λ ∈ (0, λ) where

λ =
T 2

d4C0
. (2.21)

Thus, Jλ,T |Mλ,T
attains its minimum mλ,T at wλ := u ∈ Mλ,T for all λ ∈ (0, λ).

The proof is completed.

Corollary 2.3. Assume that (f1) − (f4) hold. Then for all λ ∈ (0, λ), cλ,T is
achieved by some uλ ∈ Nλ,T , where λ is given by (2.21).

Proof of Theorem 2.1. To complete the proof of Theorem 2.1, we consider the
following four steps.

Step 1. We first show that the minimizer wλ obtained in Lemma 2.4 for
the minimization problem (2.5) is a sign-changing critical point of Jλ,T , that is
J ′
λ,T (wλ) = 0. To this end, using Lemma 2.1 to replace Lemmas 2.1 and 2.3 in [21],

the rest proof can be concluded by some slightly modifications of the proof of The-
orem 1.1 in [21]. Noting that it only needs f(u) ∈ C(R) throughout the proof.

Step 2. Next, we prove that uλ obtained in Corollary 2.3 is a critical point of
Jλ,T in H. By corollary 2.3, we know that uλ is a critical point of Jλ,T in Nλ,T .
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If f ∈ C1(R), then Nλ,T is manifold of C1 and the critical points of the functional
Jλ,T on Nλ,T are critical points of Jλ,T on H in view of Corollary 2.9 in [10], thus
uλ is a critical point of Jλ,T in H with Jλ,T (uλ) = cλ,T .

Step 3. Finally, we show that the energy of the sign-changing solution is strictly
greater than the least energy, i.e.,

mλ,T > cλ,T .

Let wλ be the sign-changing critical point of Jλ,T obtained in Lemma 2.4. For w+
λ ,

by Corollary 2.1, there exists a t = tw+
λ
> 0 such that tw+

λ
w+

λ ∈ Nλ,T . Therefore, it
follows from Lemma 2.1, Corollary 2.1 and Corollary 2.3 that

0 < cλ,T = Jλ,T (uλ) ≤Jλ,T (tw+
λ
w+

λ )

=Jλ,T (tw+
λ
w+

λ + 0w−
λ ) < Jλ,T (w

+
λ + w−

λ ) = Jλ,T (wλ) = mλ,T .

Step 4. Finally, we prove that uλ is constant sign. Suppose to the contrary
that uλ is sing-changing, then uλ ∈ Mλ,T and

cλ,T = Jλ,T (uλ) ≥ Jλ,T (wλ) = mλ,T ,

which is absurd. The proof is completed.

3. Proof of the main results
To establish the proof of Theorem 1.1, we shall make use of the following Pohozăev
identity (see [29]).

Lemma 3.1. If u ∈ H is a critical point of Jλ,T , then for λ > 0 small, u satisfies

1

2

∫
R3

|∇u|2dx+
3

2

∫
R3

V |u|2dx+
5λ

4
BT (u)

∫
R3

φuu
2dx

+
3λ

T 2
ξ′
(
∥u∥2

T 2

)
∥u∥2

∫
R3

φuu
2dx

=3

∫
R3

F (u)dx.

Lemma 3.2. For wλ and uλ obtained in Theorem 1.1, if T > 0 large enough and
λ > 0 small enough, then we have ∥wλ∥, ∥uλ∥ ≤ T .

Proof. Part of the proof is similar to that of [29], Lemma 2.3. For the reader’s
convenience, we sketch the proof here briefly. Since J ′

λ,T (wλ) = 0, by Lemma 3.1
and Lemma 1.1(iv) we have∫

R3

|∇wλ|2dx =3Jλ,T (wλ) +
λ

2
BT (wλ)

∫
R3

φwλ
w2

λdx

+
3λ

T 2
ξ′
(
∥wλ∥2

T 2

)
∥wλ∥2

∫
R3

φwλ
w2

λdx

≤3mλ,T +
λ

2
BT (wλ)C0∥wλ∥4 +

3λ

T 2
C0

∣∣∣∣ξ′ (∥wλ∥2

T 2

)∣∣∣∣ ∥wλ∥6.

(3.1)
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If ∥wλ∥2 > 2T 2, we have BT (wλ) = 0. Therefore, it follows from the last inequality
that ∫

R3

|∇wλ|2dx ≤ C8 + λC9T
4. (3.2)

Furthermore, by (2.6) and ⟨J ′
λ,T (wλ), wλ⟩ = 0, for ε > 0, there exists Cε > 0 such

that

∥wλ∥2 +
(
λBT (wλ) +

λ

2T 2
ξ′
(
∥wλ∥2

T 2

)
∥wλ∥2

)∫
R3

φwλ
w2

λdx

=

∫
R3

f(wλ)wλdx ≤ ε

∫
R3

|wλ|2dx+ Cε

∫
R3

|wλ|6dx.

By D1,2(R3) ↪→ L6(R3) we have

(1− ε

V
)∥wλ∥2 ≤ Cε

∫
R3

|wλ|6dx− λ

2T 2
ξ′
(
∥wλ∥2

T 2

)
∥wλ∥2

∫
R3

φwλ
w2

λdx

≤ C10

(∫
R3

|∇wλ|2dx
)3

+ C11λT
4.

Hence, for ε ≤ V
2 , using (3.2) we then get

∥wλ∥2 ≤ C12

(
C8 + λC9T

4
)3

+ C13λT
4. (3.3)

Arguing by contradiction suppose that ∥wλ∥ > T , then, by (3.3) one has

T 2 ≤ ∥wλ∥2 ≤ C12

(
C8 + λC9T

4
)3

+ C13λT
4

≤ C14

(
1 + λT 4 + λ2T 8 + λ3T 12

)
.

Choosing T 2 > max{1, 4C14} and λ < 1
T 4 , the last inequality yields

T 2 ≤ C14

(
1 + λT 4 + λ2T 8 + λ3T 12

)
< 4C14,

which is impossible. Thus ∥wλ∥ ≤ T , similarly, we obtain ∥uλ∥ ≤ T . This completes
the proof.
Proof of Theorem 1.1. Let T be large enough and λ small. We know from
Theorem 2.1 that Jλ,T has a least energy critical uλ at level cλ,T and a least energy
sign-changing critical point wλ at level mλ,T , and by Lemma 3.2 we have that
∥uλ∥, ∥wλ∥ ≤ T , therefore Jλ,T = Jλ and uλ, wλ are critical points of Jλ with
Jλ(uλ) = cλ and Jλ(wλ) = mλ. Hence, system (1.1) has a least energy sign-changing
solution wλ and a ground state solution uλ which is constant sign. Moreover, since
Jλ,T = Jλ, it follows from Lemma 2.1 that

0 < cλ = Jλ(uλ) < Jλ(wλ) = mλ.

The proof is completed.
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