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OPTIMAL H1 ERROR ANALYSIS OF A
FRACTIONAL STEP FINITE ELEMENT

SCHEME FOR A HYBRID MHD SYSTEM∗

Jingke Wu1, Rong An1 and Yuan Li1,†

Abstract This paper presents a fractional step finite element scheme for a
hybrid MHD system coupled by the nonstationary Navier-Stokes equations
and the steady Maxwell equations, which can be viewed that the magnetic
phenomena reach their steady state ”infinitely” faster than the fluid hydro-
dynamics phenomena. The proposed fractional step scheme has the following
features: the first one is that the proposed scheme is a decoupled scheme,
which means the magnetic field and velocity field can be solved independently
at the same time discrete level. The second one is that the nonlinearity and
the divergence-free of the Navier-Stokes equations are splitted by introducing
an intermediate velocity field. We focus on a rigorous error analysis and obtain
the optimal H1 convergence order O(∆t+h) for the magnetic and the velocity
under the time step condition ∆t = O(h), where h is the mesh size. Finally,
numerical results are shown to illustrate the theoretical convergence analysis.

Keywords Magnetohydrodynamics equations, fractional step method, finite
element method, error analysis.
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1. Introduction
The incompressible magnetohydrodynamics (MHD) equations are used to describe
the flow of a viscous, incompressible and electrically conducting fluid, and consist
of a coupling system by the incompressible Navier-Stokes equations of continuum
fluid mechanics and the Maxwell equations of electromagnetism. Since it is difficult
to find the analytical solution to the MHD equations in general domains, then
that how to solve the numerical approximation solutions becomes more and more
important. There have an amount of works devoted to the design and the analysis of
numerical algorithms for the numerical simulations of the steady or nonstationary
MHD equations. For example, for the steady MHD system, there have Galerkin
finite element method [11], the stabilized mixed finite element method [6], the mixed
finite element formulation based on H(curl)-element for the approximations of the
magnetic field [17]. For the nonstationary MHD system, there have the first-order
semi-implicit scheme [5, 12, 22], the second-order Crank-Nicolson scheme [23], the
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projection methods [2,16], the viscosity-splitting and fractional-step scheme [3,19–
21]. For a review of numerical methods for the MHD system, we refer the reader
to [9].

Unlike the steady or nonstationary MHD equations, in this paper, we will con-
sider the following hybrid MHD system which are coupled by the nonstationary
Navier-Stokes equations and the steady Maxwell equations:

∂u
∂t

− 1

Re
∆u + (u · ∇)u +∇p+ Sb̃ × curl b̃ = f in Ω× (0, T ], (1.1)

div u = 0 in Ω× (0, T ], (1.2)
1

Rm
curl (curl b̃)− curl (u × b̃) = 0 in Ω× (0, T ], (1.3)

div b̃ = 0 in Ω× (0, T ], (1.4)
u(x, 0) = u0 in Ω, (1.5)
u = 0, b̃ · n = q, curl b̃ × n = 0 on ∂Ω× [0, T ], (1.6)

with some T > 0, where the dependent variables are the fluid velocity u, the
pressure p and the magnetic field b. The domain Ω ⊂ R3 is a bounded and convex
domain with smooth boundary ∂Ω. Three positive constants Re, Rm and S are
the Reynolds number, the magnetic Reynolds number and the coupling number,
respectively. The f represents the body force applied to the fluid. The vector n
denotes the unit outward normal vector on ∂Ω. The initial vector function u0

satisfies the compatibility condition div u0 = 0.
The hybrid MHD system (1.1)–(1.6) introduced in [7, 8] is a simplified nonsta-

tionary MHD system, which are from the fact that the magnetic phenomena are
known to reach their steady state ”infinitely” faster than the hydrodynamics phe-
nomena. From (1.3) we can see that the equation related to the magnetic field is
an elliptic type equation. Moreover, the ellipticity of the equation heavily depends
on the velocity field u. If the velocity field becomes too large in some sense, the
equation (1.3) may become ill-posed. Under some small assumptions of the initial
data in some senses, Gerbeau & Bris in [7, 8] proved that the hybrid MHD system
(1.1)–(1.6) exists a unique local strong solution on a time interval [0, T ⋆] for some
T ⋆ < T . Note that there has a nonhomogeneous boundary condition b̃ · n = q in
(1.6). If q = 0, then b̃ ≡ 0 according to the existence and uniqueness of the local
strong solution. In this case, the hybrid MHD system (1.1)–(1.6) will reduce to the
incompressible Navier-Stokes equations. For the numerical methods of the hybrid
MHD system (1.1)–(1.6), the first-order Euler semi-implicit scheme and the second-
order Crank-Nicolson schemes based on the linear extrapolation were studied in [14]
and [15], respectively.

In this paper, we will proposed a viscosity-splitting fraction step finite element
scheme for the numerical simulations of (1.1)–(1.6) by using the MINI element
and the piecewise linear element to approximate the velocity field, the pressure
and the magnetic field, respectively. This type of viscosity-splitting fraction step
algorithm was introduced by Blasco and Codina in [4] for solving the incompressible
Navier-Stokes equations with the constant density numerically. Recently, it has been
extended to the incompressible Navier-Stokes equations with variable density in [1].
Main feature of the fraction step algorithm is the decoupling of the nonlinearity
and the incompressible condition of the velocity field. The proposed fractional step
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scheme for (1.1)–(1.6) is a three step scheme at a time discrete level in this paper.
Firstly, we solve the magnetic equation by a semi-implicit scheme, and then solve an
intermediate velocity by solving an linearized elliptic problem. Finally, we get the
end-of-step velocity and pressure by solving a generalized Stokes problem. Thus, the
proposed fractional step scheme is a fully decoupled scheme, which means that we
can solve the magnetic and the velocity independently at a time discrete level. The
rigorous error analysis are presented and we derive the optimal H1 temporal-spatial
error estimate O(∆t+h) for the finite element approximations of the magnetic field
and the velocity field.

The rest of this paper is organized as follows. In next section, we begin with
some notation, and recall the existence and uniqueness of the local strong solution
established in [7, 8]. The fractional step finite element fully scheme is proposed
and main result is presented in Section 3. The optimal H1 error estimates for the
magnetic and velocity are given in Section 4. In Section 5, numerical results are
given to confirm the theoretical convergence analysis. Throughout this manuscript,
we always use the symbol C to denote the generic positive constant independent of
the time step ∆t and the mesh size h.

2. Preliminaries
For the mathematical setting, we introduce some notations. For k ∈ N+, 1 ≤ p ≤
+∞, let W k,p(Ω) denote the standard Sobolev space. The norm in W k,p(Ω) is
denoted by ∥ · ∥Wk,p defined by a classical way. Let W k,p

0 (Ω) be the subspace of
W k,p(Ω) of functions with zero trace on ∂Ω. Especially, when k = 0, W 0,p is the
Lebesgue space Lp(Ω). When p = 2, W k,2(Ω) is the Hilbert space which is simply
denoted by Hk(Ω). The boldface notations Hk(Ω),Wk,p(Ω) and Lp(Ω) are used
to denote the vector spaces Hk(Ω)3,W k,p(Ω)3 and Lp(Ω)3, respectively. The L2 or
L2 inner product is denoted by (·, ·). Let X be a Banach space. For some T > 0,
Lp(0, T ;X) is the space of measurable functions from the interval [0, T ] into X such
that ∫ T

0

∥u(t)∥pXdt < +∞, ∀ 1 ≤ p < +∞.

If p = +∞, the functions in L∞(0, T ;X) are required to satisfy

ess sup
t∈[0,T ]

∥u(t)∥X < +∞.

Introduce the following function spaces:

H = {u ∈ L2(Ω), div u = 0 in Ω, u · n = 0 on ∂Ω},
V = H1

0(Ω), V0 = {u ∈ V, div u = 0 in Ω},
W = {u ∈ H1(Ω), u · n = 0 on ∂Ω}, W0 = {u ∈ W, div u = 0 in Ω},

M = L2
0(Ω) = {q ∈ L2(Ω),

∫
Ω

qdx = 0}.

For v ∈ V and w ∈ W, the spaces V and W are equipped with norms

∥v∥V =

(∫
Ω

|∇v|2dx
)1/2

,
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∥w∥W =

(∫
Ω

(|curl w|2 + |div w|2)dx
)1/2

,

which are equivalent to the classical H1 norm. Define the trilinear term

b(u,v,w) =

∫
Ω

(u · ∇)v · wdx+
1

2

∫
Ω

(div u)v · wdx

=
1

2

∫
Ω

(u · ∇)v · wdx− 1

2

∫
Ω

(u · ∇)w · vdx ∀ u,v,w ∈ V.

It is clear that b(u,v,w) satisfies

b(u,v,w) = −b(u,w,v) ∀ u,v,w ∈ V. (2.1)

Let us denote an orthogonal projection operator by PH from L2(Ω) onto H.
Introduce the Stokes operator A which is defined by

Au = −PH∆u ∀ u ∈ V0 ∩ H2(Ω) := D(A).

As we know that ∥Au∥L2 is equivalent to the norm ∥u∥H2 (cf. [18]).
The following regularity results on the Stokes problem and the Maxwell problem

are needed (cf. [9] and [18]).

Lemma 2.1. Assume that the boundary of Ω is smooth such that for given g1 ∈
Lp(Ω), 1 < p < +∞, the Stokes problem

−∆v +∇π = g1, div v = 0 in Ω,

v = 0 on ∂Ω

admits a unique solution (v, π) ∈ W2,p(Ω) ∩ V ×W 1,p(Ω) ∩M such that

∥v∥W 2,p + ∥π∥W 1,p ≤ C∥g1∥Lp .

Lemma 2.2. Assume that the boundary of Ω is smooth such that for given g2 ∈
Lp(Ω), 1 < p < +∞, the Maxwell problem

curl curl v = g2, div v = 0, in Ω,

v · n = 0, curl v × n = 0, on ∂Ω
(2.2)

admits a unique solution v ∈ W2,p ∩ W such that

∥v∥W 2,p ≤ C∥g2∥Lp .

In this paper, we always assume that

u0 ∈ D(A), q ∈ L∞(0, T ;H3/2(∂Ω)), f ∈ L∞(0, T ;H).

Notice that there has a nonhomogeneous boundary condition b̃ · n|∂Ω = q in (1.6).
Thus, we homogenize this boundary condition by the following lemma established
in [7, 8].
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Lemma 2.3. There exist B̃ ∈ L∞(0, T ;H2(Ω) ∩ W0) satisfying

div B̃ = 0 and curl B̃ = 0 in Ω× [0, T ],

and a constant C > 0 such that B̃ · n = q on ∂Ω× [0, T ], and

∥B̃(t)∥L∞(0,T ;H2(Ω)) ≤ C∥q∥L∞(0,T ;H3/2(∂Ω)).

Let b = b̃ − B̃. Then the original system (1.1)–(1.6) can be rewritten as

ut −
1

Re
∆u + (u · ∇)u +∇p+ Sb × curl b + SB̃ × curl b = f, (2.3)

div u = 0, div b = 0, (2.4)
1

Rm
curl (curl b)− curl (u × b)− curl (u × B̃) = 0, (2.5)

with

u(x, 0) = u0, in Ω, (2.6)
u = 0, b · n = 0, curl b × n = 0 on ∂Ω× [0, T ]. (2.7)

The existence and uniqueness of the local strong solution b to the new hybrid
MHD system (2.3)–(2.7) were proved in [7, 8].

Theorem 2.1. If the initial data u0, Re,Rm, f and q are ”small enough” in an
appropriate sense, then there exists a time T ⋆ < T such that the coupled system
(2.3)-(2.7) has a unique solution on [0, T ⋆]. Moreover, the solution satisfies u ∈ K,
p ∈ L2(0, T ⋆;H1(Ω) ∩M) and b ∈ L∞(0, T ⋆;H2(Ω) ∩ W), where

K = {∥u∥L∞(0,T⋆;V) ≤ M, ∥u∥L2(0,T⋆;D(A)) ≤ M, ∥ut∥L2(0,T⋆;H) ≤ M} (2.8)

for some 0 < M <
1

κRm
, where κ > 0 is from

(u × v, curl w) ≤ κ∥u∥V ∥v∥W ∥w∥W .

3. Fractional step scheme and main result
In this section, we will propose a fractional step time-discrete scheme and the fully
discrete finite element scheme for the numerical simulations of the new hybrid MHD
system (2.3)–(2.7). Let 0 = t0 < t1 < · · · < tN = T ⋆ be a uniform partition of the
time interval [0, T ⋆] with time step ∆t = T ⋆/N and tn = n∆t, 0 ≤ n ≤ N , where
[0, T ⋆] is the maximal time interval such that a unique local strong solution exists
and satisfies the regularities mentioned in Theorem 2.1. For 1 ≤ n ≤ N , we denote
un = u(tn), pn = p(tn), bn = b(tn), fn = f(tn) and B̃

n
= B̃(tn). For any sequence

{gn}Nn=0, we denote Dtg
n = gn−gn−1

∆t .
Let U0 = u0 be given. For 1 ≤ n ≤ N , we propose the following fractional step

time-discrete scheme.
Step I: for given Un−1, we solve Bn from the following linearized Maxwell

problem:
1

Rm
curl (curl Bn)− curl (Un−1 × Bn)− curl (Un−1 × B̃

n
) = 0, div Bn = 0,

(3.1)
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with the boundary condition Bn · n = 0 and curl Bn × n = 0 on ∂Ω.
Step II: for given Un−1 and Bn, we solve an intermediate velocity Ũ

n
from

the following linearized elliptic problem:

Ũ
n
−Un−1

∆t
− 1

Re
∆Ũ

n
+ (Un−1 · ∇)Ũ

n
+ SBn × curl Bn + SB̃

n
× curl Bn = fn

(3.2)

with the boundary condition Ũ
n
= 0 on ∂Ω.

Step III: for given Ũ
n
, we solve (Un, Pn) from the following generalized Stokes

problem:

Un − Ũ
n

∆t
− 1

Re
∆(Un − Ũ

n
) +∇Pn = 0, div Un = 0 (3.3)

with the boundary condition Un = 0 on ∂Ω.
Taking the sum of (3.2) and (3.3), we have

DtUn− 1

Re
∆Un+∇Pn+(Un−1 · ∇)Ũ

n
+SBn×curl Bn+SB̃

n
× curl Bn = fn.

(3.4)

Next, we give the finite element fully discretization of (3.1)–(3.3). Let Th be
a quasi-uniform partition of Ω into triangle or tetrahedra of diameters by h with
0 < h < 1. We use the P1b − P1 element to approximate the velocity field and
the pressure, and use the piecewise linear Lagrange element to approximate the
magnetic field and the intermediate velocity field. The finite element spaces of V,M
and W are denoted by Vh, Mh and Wh, respectively. For this choice, the finite
element spaces Vh and Mh are required to satisfy the discrete inf-sup condition.
In addition, with respect to the choice of finite element space to approximate the
intermediate velocity Ũ

n
, we still use the finite element space Vh to get the optimal

H1 error estimate (3.19). However, this choice is not important to get the optimal
error estimate for the end-of-step velocity if we can use the technique in [10].

Define the projection operators (Rh, Qh) : V×M −→ Vh×Mh and Πh : W −→
Wh and Kh : V −→ Vh by

1

Re
(∇(Rhu − u),∇vh)− (div vh, Qhp− p) = 0, ∀ vh ∈ Vh,

(div (Rhu − u), qh) = 0, ∀ qh ∈ Mh,

and

(curl (Πhb − b), curl wh) + (div (Πhb − b),div wh) = 0, ∀ wh ∈ Wh,

and
(∇(Khu − u),∇vh) = 0, ∀ vh ∈ Vh.

Then for any (u, p,b) ∈ D(A)×H1(Ω)×H2(Ω), the following approximations and
stabilities hold:

∥u − Rhu∥L2 + h∥u − Rhu∥V + h∥p−Qhp∥L2 ≤ Ch2(∥Au∥L2 + ∥p∥H1), (3.5)
∥b −Πhb∥L2 + h∥b −Πhb∥W ≤ Ch2∥b∥H2 , (3.6)
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∥u −Khu∥L2 + h∥u −Khu∥V ≤ Ch2∥u∥H2 , (3.7)
∥∇Rhu∥L6 + ∥∇Khu∥L6 + ∥Πhb∥W 1,6 + ∥Qhp∥L6 ≤ C. (3.8)

Let U0
h = ρhU0 = ρhu0, where ρh is the L2 projection operator from V to Vh

and satisfies

∥u0 − ρhu0∥L2 + h∥∇(u0 − ρhu0)∥L2 ≤ Ch2∥Au0∥L2 , (3.9)

For 1 ≤ n ≤ N , the finite element fully discrete scheme of (3.1)–(3.3) is described
as follows.

Step I: for given Un−1
h ∈ Vh, we find Bn

h ∈ Wh such that

1

Rm
(curl Bn

h, curl wh) +
1

Rm
(div Bn

h,div wh)− (Un−1
h × Bn

h, curl wh)

− (Un−1
h × B̃

n
, curl wh) = 0, ∀ wh ∈ Wh. (3.10)

Step II: for given Un−1
h ∈ Vh and Bn

h ∈ Wh, we find Ũ
n

h ∈ Vh such that

1

∆t
(Ũ

n

h − Un−1
h ,vh) +

1

Re
(∇Ũ

n

h,∇vh) + b(Un−1
h , Ũ

n

h,vh)

+ S(Bn
h × curl Bn

h,vh) + S(B̃
n
× curl Bn

h,vh) = (fn,vh), ∀ vh ∈ Vh. (3.11)

Step III: for given Ũ
n

h ∈ Vh, we find (Un
h, P

n
h ) ∈ Vh ×Mh such that

1

∆t
(Un

h − Ũ
n

h,vh) +
1

Re

(
∇(Un

h − Ũ
n

h),∇vh

)
− (div vh, P

n
h ) + (div Un

h, qh) = 0

(3.12)

for any (vh, qh) ∈ Vh ×Mh.
Introduce the following temporal and spatial error splitting:

∥Un
h − un∥ ≤ ∥en∥+ ∥enh∥+ ∥Un − RhUn∥, (3.13)

∥Ũ
n

h − un∥ ≤ ∥ẽn∥+ ∥ẽnh∥+ ∥Ũ
n
−KhŨ

n
∥, (3.14)

∥Bn
h − bn∥ ≤ ∥ηn∥+ ∥ηnh∥+ ∥Bn −ΠhBn∥, (3.15)

∥Pn
h − pn∥ ≤ ∥θn∥+ ∥θnh∥+ ∥Pn −QhP

n∥, (3.16)

for any norm ∥ · ∥, where

en = un − Un, enh = Un
h − RhUn, ẽn = un − Ũ

n
, ẽnh = Ũ

n

h −KhŨ
n
,

ηn = bn − Bn, ηnh = Bn
h −ΠhBn, θn = pn − Pn, θnh = Pn

h −QhP
n.

In this paper, we will prove the optimal first-order convergence order for the
approximation of the velocity field and the magnetic field in H1 norm under the
following regularity assumptions about the local strong solutions derived in Theorem
2.1:

bt ∈ L2(0, T ⋆;W0), btt ∈ L2(0, T ⋆;W0), (3.17)
u ∈ L∞(0, T ⋆;W2,4(Ω)), ut ∈ L2(0, T ⋆;D(A)), utt ∈ L2(0, T ⋆;H), (3.18)

where T ⋆ is from Theorem 2.1.
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Theorem 3.1. Assume that the solution to (2.3)–(2.7) satisfies the regularities in
Theorem 2.1 and (3.17)–(3.18). Then under the condition ∆t = O(h), for the
sufficiently small h and ∆t, there exists some C > 0 such that the following optimal
H1 error estimate holds:

max
1≤n≤N

(∥un − Un
h∥V + ∥bn − Bn

h∥W ) ≤ C (∆t+ h) . (3.19)

We will prove Theorem 3.1 in next section. Before beginning to the proof,
we recall a discrete version of Gronwall’s inequality established in [13] which is
frequently used in the proof of Theorem 3.1.

Lemma 3.1. Let ak, bk, ck and γk, for integers k ≥ 0, be the nonnegative numbers
such that

an +∆t

n∑
k=0

bk ≤ ∆t

n∑
k=0

γkak +∆t

n∑
k=0

ck +B for n ≥ 0. (3.20)

Suppose that ∆tγk < 1, for all k, and set σk = (1−∆tγk)
−1. Then

an +∆t

n∑
k=0

bk ≤ exp(∆t

n∑
k=0

γkσk)(∆t

n∑
k=0

ck +B) for n ≥ 0. (3.21)

Remark 3.1. If the first sum on the right in (3.20) extends only up to n− 1, then
the estimate (3.21) holds for all ∆t > 0 with σk = 1.

4. Error analysis
In this section, we will prove the optimal H1 convergence order O(∆t+ h) for the
approximation of the velocity field and the magnetic field. The temporal and spatial
error analysis are presented in Subsection 4.1 and Subsection 4.2, respectively. Then
the optimal error estimate (3.19) follows from the temporal and spatial error analysis
and the error splitting (3.13) and (3.15). Please see Subsection 4.3.

4.1. Temporal error analysis
We first prove the first-order temporal convergence order O(∆t) for (Un,Bn) in
H1-norm. For 1 ≤ n ≤ N , we take t = tn in (2.3) and (2.5) to yield

Dtun − 1

Re
∆un + (un−1 · ∇)un +∇pn + Sbn × curl bn

+ SB̃
n
× curl bn = fn + Rn

u, div un = 0, (4.1)

and
1

Rm
curl (curl bn)− curl (un−1 × bn)− curl (un−1 × B̃

n
) = Rn

b , div bn = 0,

(4.2)

where the truncation errors Rn
u and Rn

b are given by

Rn
u = Dtun − un

t + (un−1 · ∇)un − (un · ∇)un,



Optimal error analysis for a hybrid . . . 1543

Rn
b = curl ((un − un−1)× bn) + curl ((un − un−1)× B̃

n
).

It follows from (3.17)–(3.18) that

∆t

N∑
n=1

∥Rn
u∥2L2 + ∥Rn

b ∥2L2 ≤ C(∆t)2 (4.3)

by using Taylor formula with integral type.
For 1 ≤ n ≤ N , subtracting (4.2) and (4.1) from (3.1) and (3.2), respectively,

we get the following error equations:

1

Rm
curl curl ηn − curl (un−1 × ηn)− curl (en−1 × Bn)

− curl (en−1 × B̃
n
) = Rn

b , div ηn = 0, (4.4)

and

ẽn − en−1

∆t
− 1

Re
∆ẽn +∇pn + (en−1 · ∇)Ũ

n
+ (un−1 · ∇)ẽn + Sηn × curl bn

+ SBn × curl ηn + SB̃
n
× curl ηn = Rn

u. (4.5)

In addition, from (3.3), we have

en − ẽn

∆t
− 1

Re
∆(en − ẽn)−∇Pn = 0, div en = 0. (4.6)

Taking the sum of (4.5) and (4.6) leads to

en − en−1

∆t
− 1

Re
∆en +∇θn + (en−1 · ∇)Ũ

n
+ (un−1 · ∇)ẽn + Sηn × curl bn

+ SBn × curl ηn + SB̃
n
× curl ηn = Rn

u, div en = 0. (4.7)

First, we need to estimate Bn under some additional condition.

Lemma 4.1. For 1 ≤ n ≤ N , if ∥Un−1∥V ≤ M̃ , then the solution Bn to (3.1)
belongs to Bn ∈ H2(Ω), where M̃ > 0 satisfies M < M̃ <

1

κRm
.

Proof. If ∥Un−1∥V ≤ M̃ , then testing (3.1) by Bn leads to

∥Bn∥W ≤
CM̃Rm∥q∥L∞(0,T⋆;H3/2(∂Ω))

1− κM̃Rm
.

By using the following formula

curl (u × v) = (div v)u − (u · ∇)v + (v · ∇)u − (div u)v, (4.8)

an alternative of (3.1) is

1

Rm
curl (curl Bn) = g, (4.9)

where

g = (Bn · ∇)Un−1 − (Un−1 · ∇)Bn + (B̃
n
· ∇)Un−1 − (Un−1 · ∇)B̃

n
.
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Then g belongs to L3/2(Ω) since

∥g∥L3/2 ≤ (∥Bn∥L6 + ∥B̃
n
∥L6)∥Un−1∥V + (∥∇Bn∥L2 + ∥∇B̃

n
∥L2)∥Un−1∥L6

≤ C(∥Bn∥W + ∥B̃
n
∥W )∥Un−1∥V ≤ C.

By Lemma 2.2 and the Sobolev imbedding theorem, we have Bn ∈ W2,3/2(Ω) ↪→
W1,3(Ω). By Lemma 2.2, again,

∥Bn∥H2 ≤ ∥(Bn · ∇)Un−1∥L2 + ∥(Un−1 · ∇)Bn∥L2

+ ∥(B̃
n
· ∇)Un−1∥L2 + ∥(Un−1 · ∇)B̃

n
∥L2

≤ C(∥Bn∥L∞ + ∥B̃
n
∥L∞)∥Un−1∥V + (∥Bn∥W 1,3 + ∥B̃

n
∥W 1,3)∥Un−1∥L6

≤ C∥Bn∥1/2W ∥Bn∥1/2H2 ∥Un−1∥V + C∥B̃
n
∥H2∥Un−1∥V

≤ 1

2Rm
∥Bn∥H2 + C,

which complete the proof of Lemma 4.1.
Since we will use the method of mathematical induction to prove the temporal

convergence order, then we need to estimate e1 and η1 in H1-norm. Taking n = 1
in (4.4), testing it by 2η1 and using e0 = 0, we get

1

Rm
∥curl η1∥2L2 ≤ κM∥curl η1∥2L2 + ∥R1

b∥L2∥η1∥L2 ,

which implies that

∥curl η1∥L2 ≤ C∥R1
b∥L2 ≤ C∆t. (4.10)

Testing (4.5) by ∆tẽ1 and using e0 = 0, we get

∥ẽ1∥2L2 +
∆t

Re
∥ẽ1∥2V ≤ C∆t(∥∇p1∥L2 + ∥curl η1∥L2 + ∥R1

u∥L2)∥ẽ1∥L2

≤ 1

2
∥ẽ1∥2L2 + C(∆t)2,

which means that

∥ẽ1∥2L2 +
∆t

Re
∥ẽ1∥2V ≤ C(∆t)2. (4.11)

Testing (4.7) by ∆te1, and using e0 = 0 and div e1 = 0, we get

∥e1∥2L2 +
∆t

Re
∥e1∥2V ≤ C∆t(∥ẽ1∥V + ∥curl η1∥L2 + ∥R1

u∥L2)∥e1∥L2

≤ 1

2
∥e1∥2L2 + C(∆t)3,

which means that

∥e1∥2L2 +
∆t

Re
∥e1∥2V ≤ C(∆t)3. (4.12)

In addition, testing (4.7) by ∆tAe1 leads to

∥e1∥2V +
∆t

Re
∥Ae1∥2L2 ≤ C∆t(∥ẽ1∥V + ∥curl η1∥L2 + ∥R1

u∥L2)∥Ae1∥L2
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≤ ∆t

2Re
∥Ae1∥2L2 + C(∆t)3,

which means that

∥e1∥2V +
∆t

Re
∥Ae1∥2L2 ≤ C(∆t)3. (4.13)

By (4.12), it is easy to check that ∥DtU1∥L2 ≤ C. Then from the regularity of
Stokes problem and (3.4), we have

∥AU1∥L2 + ∥∇P 1∥L2 ≤ C.

Summing up the above estimates, we get

∆t∥ẽ1∥2L2 + (∆t)2∥ẽ1∥2V + ∥e1∥2V +∆t∥Ae1∥2L2 +∆t∥η1∥2W ≤ C1(∆t)3 (4.14)

for some C1 > 0.
The main result in this subsection is the following theorem about the first-order

temporal convergence order.

Theorem 4.1. Assume that the solution to (2.3)–(2.7) satisfy regularities in The-
orem 2.1 and (3.17)–(3.18). Then for the sufficiently small ∆t, there exists some
C0 > 0 such that

max
1≤k≤N

(
∥uk − Uk∥V + ∥bk − Bk∥W

)
≤ C0∆t, (4.15)

max
1≤k≤N

∥Uk∥V ≤ M̃, (4.16)

∆t

N∑
n=1

∥Dt(AUn)∥2L2 ≤ C0, (4.17)

where M̃ is from Lemma 4.1.

Proof. We firstly prove that (4.15) holds by the method of mathematical induc-
tion. Then (4.16) follows from (4.15) if we take sufficiently small ∆t such that
C0∆t ≤ M̃ −M , then

∥Uk∥V ≤ ∥uk − Uk∥V + ∥uk∥V ≤ M + C0∆t ≤ M̃.

From (4.14), we can see that (4.15) is valid for k = 1 if we take sufficiently small
∆t such that C1∆t ≤ C0. Now, we assume that (4.15) is valid for k = n − 1 with
2 ≤ n ≤ N . Under this assumption, we have ∥Un−1∥V ≤ M̃ and Bn ∈ H2(Ω) by
Lemma 4.1. To close the mathematical induction, we need to prove that (4.15) is
valid for k = n.

Testing (4.4) by ηn, we have

1

Rm
∥curl ηn∥L2 − (un−1 × ηn, curl ηn)− (en−1 × Bn, curl ηn)

− (en−1 × B̃
n
, curl ηn) = (Rn

b , η
n).

By the Hölder inequality, we get

1

Rm
∥curl ηn∥2L2 ≤(∥Bn∥L∞ + ∥B̃

n
∥L∞)∥en−1∥L2∥curl ηn∥L2
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+ κ∥un−1∥V ∥curl ηn∥2L2 + C∥Rn
b ∥L2∥curl ηn∥L2

≤C
(
∆t+ ∥en−1∥L2

)
∥curl ηn∥L2 + κM∥curl ηn∥2L2 ,

where we use ∥u∥V ≤ M with 0 < M <
1

κRm
. Then

∥ηn∥W = ∥curl ηn∥L2 ≤ C
(
∥en−1∥L2 +∆t

)
(4.18)

if we notice div ηn = 0. Testing (4.5) by 2∆tẽn, we get

∥ẽn∥2L2 + ∥ẽn − en−1∥2L2 − ∥en−1∥2L2 +
2∆t

Re
∥ẽn∥2V

≤ C∆t
(
∥en−1∥L2 + ∥ηn∥W + ∥Rn

u∥L2

)
∥ẽn∥V + 2∆t∥∇pn∥L2∥ẽn − en−1∥L2

≤ ∆t

Re
∥ẽn∥2V +

1

2
∥ẽn − en−1∥2L2 + C∆t

(
∥en−1∥2L2 + ∥ηn∥2W + ∥Rn

u∥2L2 +∆t
)
,

where we use

b(en−1, Ũ
n
, ẽn) = b(en−1,un, ẽn) ≤ C∥Aun∥L2∥en−1∥L2∥ẽn∥V ,

(∇pn, ẽn) = (∇pn, ẽn − en−1) ≤ ∥∇pn∥L2∥ẽn − en−1∥L2 .

Then from (4.18), we get

∥ẽn∥2L2 +
1

2
∥ẽn − en−1∥2L2 − ∥en−1∥2L2 +

∆t

Re
∥ẽn∥2V

≤ C∆t
(
∥en−1∥2L2 + ∥Rn

u∥2L2 +∆t
)
.

Testing (4.6) by 2∆ten leads to

∥en∥2L2 + ∥en − ẽn∥2L2 − ∥ẽn∥2L2 +
∆t

Re
(∥en∥2V + ∥en − ẽn∥2V − ∥ẽn∥2V ) = 0.

Taking the sum of the above two estimates leads to

∥en∥2L2 +
1

2
∥ẽn − en−1∥2L2 + ∥en − ẽn∥2L2 +

∆t

Re

(
∥en∥2V + ∥en − ẽn∥2V

)
≤ ∥en−1∥2L2 + C∆t

(
∥en−1∥2L2 + ∥Rn

u∥2L2 +∆t
)
.

From the discrete Gronwall’s inequality, we get

∥en∥2L2+

n∑
k=1

(
∥ẽk−ek−1∥2L2+∥ek−ẽk∥2L2 +

∆t

Re
∥ek∥2V +

∆t

Re
∥ek − ẽk∥2V

)
≤ C∆t

(4.19)

for each 1 ≤ n ≤ N . The estimate (4.19) implies that Un and Ũ
n

in uniformly
bounded in V, i.e., there exists some C > 0 such that for any 1 ≤ n ≤ N ,

∥Un∥V + ∥Ũ
n
∥V ≤ C. (4.20)

Testing (4.7) by 2∆ten, we get

∥en∥2L2 + ∥en − en−1∥2L2 − ∥en−1∥2L2 +
2∆t

Re
∥en∥2V
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≤ C∆t
(
∥ηn∥W + ∥Rn

u∥L2 + ∥en−1∥1/2L2 ∥en−1∥1/2V + ∥ẽn − en∥L2

)
∥en∥V

≤ ∆t

2Re
∥en∥2V +

∆t

2Re
∥en−1∥2V +C∆t

(
∥ηn∥2W +∥Rn

u∥2L2+∥en−1∥2L2+∥ẽn−en∥2L2

)
,

where we use

b(un−1, ẽn, en) = −b(un−1, en, ẽn − en) ≤ C∥Aun−1∥L2∥ẽn − en∥L2∥en∥V ,

b(en−1, Ũ
n
, en) ≤ C∥Ũ

n
∥V ∥en−1∥1/2L2 ∥en−1∥1/2V ∥en∥V .

From the discrete Gronwall’s inequality, we get

∥en∥2L2 +

n∑
k=1

(
∥ek − ek−1∥2L2 +

∆t

Re
∥ek∥2V

)
≤ C(∆t)2 (4.21)

for each 1 ≤ n ≤ N . Combining (4.21) with (4.18), the following temporal error
estimate for magnetic field can be derived

max
1≤n≤N

∥ηn∥W ≤ C2∆t (4.22)

for some C2 > 0 independent of ∆t and C0.
Next, we estimate Un, Pn and Ũ

n
. It follows from (4.21) that

∥DtUn∥L2 ≤
∥∥∥∥en − en−1

∆t

∥∥∥∥
L2

+

∥∥∥∥un − un−1

∆t

∥∥∥∥
L2

≤ C. (4.23)

Rewritten (3.4) as

− 1

Re
∆Un +∇Pn = Fn − (Un−1 · ∇)Ũ

n
, (4.24)

where

Fn = −DtUn − SBn × curl Bn − SB̃
n
× curl Bn + fn.

Since Bn, B̃
n
∈ H2(Ω), then we have ∥Fn∥L2 ≤ C. In addition, from (4.20),

∥(Un−1 · ∇)Ũ
n
∥L2 ≤ ∥Un−1∥L∞∥Ũ

n
∥V

≤ C∥Un−1∥1/2V ∥AUn−1∥1/2L2 ∥Ũ
n
∥V ≤ C∥AUn−1∥1/2L2 .

By Lemma 2.1, we have

∥AUn∥2L2 + ∥Pn∥2H1 ≤ C∥Fn∥2L2 + C∥(Un−1 · ∇)Ũ
n
∥2L2

≤ C + C∥AUn−1∥L2 ≤ 1

2
∥AUn−1∥2L2 + C.

Thus, we obtain

∆t

N∑
n=1

(
∥AUn∥2L2 + ∥Pn∥2H1

)
≤ C. (4.25)
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By a similar method, we can prove that

∆t

N∑
n=1

∥∥∥∥∥Ũ
n
− Un−1

∆t

∥∥∥∥∥
L2

≤ C and ∆t

N∑
n=1

∥Ũ
n
∥2H2 ≤ C. (4.26)

An alternative form of (4.7) is
en − en−1

∆t
− 1

Re
∆en +∇θn + (en−1 · ∇)un + (Un−1 · ∇)ẽn + Sηn × curl bn

+ SBn × curl ηn + SB̃
n
× curl ηn = Rn

u, div en = 0. (4.27)

Testing (4.27) by 2∆tAen, we obtain
2∆t

Re
∥Aen∥2L2 + ∥en∥2V − ∥en−1∥2V + ∥en − en−1∥2V

≤C∆t
(
∥en−1∥V + ∥AUn−1∥L2∥ẽn∥V + ∥ηn∥W + ∥Rn

u∥L2

)
∥Aen∥L2

≤∆t

Re
∥Aen∥2L2 + C∆t

(
∥en−1∥2V + ∥AUn−1∥2L2∥ẽn∥2V + ∥ηn∥2W + ∥Rn

u∥2L2

)
,

which implies that

max
1≤n≤N

∥en∥2V +∆t

N∑
n=1

∥Aen∥2L2 ≤ (C3∆t)2 (4.28)

for some C3 > 0 independent of ∆t and C0. Thus, from (3.18), we get

∆t

N∑
n=1

∥Dt(AUn)∥2L2 ≤ ∆t

N∑
n=1

∥Dt(Aen)∥2L2 +∆t

N∑
n=1

∥Dt(Aun)∥2L2 ≤ C4

for some C4 > 0 independent of ∆t and C0. Thus, we complete the proof of Theorem
4.1 if we take C0 ≥ max{C2, C3, C4}.

From the estimate (4.28), we have

∥Aen∥L2 ≤ C3

√
∆t ≤ C,

which means that
∥AUn∥L2 ≤ ∥Aen∥L2 + ∥Aun∥L2 ≤ C

for each 1 ≤ n ≤ N . Moreover, it is easy to show

∥(Un−1 · ∇)Ũ
n
∥L2 ≤ C∥AUn−1∥L2∥Ũ

n
∥V ≤ C.

Thus, by the regularity result of the Stokes problem, from (4.24), we get

∥AUn∥2L2 + ∥Pn∥2H1 ≤ C, ∀ 1 ≤ n ≤ N. (4.29)

4.2. Spatial error analysis
In this subsection, we will prove the spatial error estimates of (enh, ηnh) for 1 ≤ n ≤ N .
Testing (3.1) by wh ∈ Wh and subtracting the resulting equation from (3.10) yields

1

Rm
(curl ηnh , curl wh) +

1

Rm
(div ηnh ,div wh)

= ((Un−1
h − Un−1)× (Bn

h − Bn), curl wh) + ((Un−1
h − Un−1)× Bn, curl wh)

+ (Un−1 × (Bn
h − Bn), curl wh) + ((Un−1

h − Un−1)× B̃
n
, curl wh).

(4.30)
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Testing (3.2) by vh ∈ Vh and subtracting the resulting equation from (3.11), we
get

1

∆t
(ẽnh − en−1

h ,vh) +
1

Re
(∇ẽnh,∇vh)

=

(
(Ũ

n
−KhŨ

n
)−(Un−1−RhUn−1)

∆t
,vh

)
+b(Un−1, Ũ

n
,vh)−b(Un−1

h , Ũ
n

h,vh)

+S(Bn × curl Bn,vh)− S(Bn
h × curl Bn

h,vh)+S(B̃
n
× curl (Bn − Bn

h),vh).

(4.31)

Testing (3.3) by (vh, qh) ∈ Vh × Mh and subtracting the resulting equation from
(3.12), we get

(
enh − ẽnh

∆t
,vh) +

1

Re
(∇enh,vh)−

1

Re
(∇ẽnh,vh)− d(vh, θ

n
h)

=

(
(Un − RhUn)− (Ũ

n
−KhŨ

n
)

∆t
,vh

)
∀ vh ∈ Vh, (4.32)

and

d(enh, qh) = 0, ∀ qh ∈ Mh. (4.33)

Taking the sum of (4.31) and (4.32), we have

(Dte
n
h,vh) +

1

Re
(∇enh,∇vh)− d(vh, θ

n
h)

= (Dt(Un − RhUn),vh) + b(Un−1, Ũ
n
,vh)− b(Un−1

h , Ũ
n

h,vh)

+ S(Bn × curl Bn,vh)− S(Bn
h × curl Bn

h,vh)

+ S(B̃
n
× curl (Bn − Bn

h),vh), ∀ vh ∈ Vh,

(4.34)

and

d(enh, qh) = 0, ∀ qh ∈ Mh. (4.35)

The main result in this subsection is the following optimal estimates of enh and
ηnh in H1-norm.

Theorem 4.2. Assume that the solution to (2.3)–(2.7) satisfies regularities in The-
orem 2.1 and (3.17)–(3.18). Then for the sufficiently small ∆t and h, there exists
C5 > 0 and C6 > 0 such that

max
0≤k≤N

∥ekh∥V ≤ C5h, (4.36)

max
1≤k≤N

∥ηkh∥W ≤ C6h. (4.37)

Proof. We will use the method of mathematical induction to prove (4.36). From
(3.9), the error estimates (4.36) is valid for k = 0. For 1 ≤ n ≤ N , we assume that
(4.36) is valid for k = n− 1. Then

∥en−1
h ∥V ≤ C5h. (4.38)
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To complete the mathematical induction, we need to prove that (4.36) is valid for
k = n. Setting wh = ηnh in (4.30) yields

1

Rm
∥ηnh∥2W =((Un−1

h −Un−1)×(Bn
h−Bn), curl ηnh)+((Un−1

h −Un−1)×Bn, curl ηnh)

+ ((Un−1
h − Un−1)× B̃

n
, curl ηnh) + (Un−1 × (Bn

h − Bn), curl ηnh)

= I1 + I2 + I3 + I4.

(4.39)

The right-hand side of (4.39) can be estimated as follow. For I1, we have

I1 =(en−1
h × ηnh , curl ηnh) + ((RhUn−1 − Un−1)× ηnh , curl ηnh)

+(en−1h ×(ΠhBn−Bn), curl ηnh)+((RhUn−1−Un−1)×(ΠhBn−Bn), curl ηnh)

≤Cκh−1∥en−1
h ∥L2∥ηnh∥2W + κ∥RhUn−1 − Un−1∥V ∥ηnh∥2W +Cκ∥en−1h ∥V ∥ΠhBn

−Bn∥W ∥ηnh∥W +C∥RhUn−1−Un−1∥V ∥ΠhBn−Bn∥W ∥ηnh∥W
≤C(C5h+ h)∥ηnh∥2W + C(h+ ∥en−1

h ∥L2)∥ηnh∥W .

For I2 and I3 we have

I2 = (en−1
h × Bn, curl ηnh) + ((RhUn−1 − Un−1)× Bn, curl ηnh)

≤ C(∥en−1
h ∥L2 + h)∥ηnh∥W ,

and
I3 ≤ C(∥en−1

h ∥L2 + h)∥ηnh∥W .

Finally, for I4, we have

I4 = (Un−1 × ηnh , curl ηnh) + (Un−1 × (ΠhBn − Bn), curl ηnh)

≤ κM̃∥ηnh∥2W + Ch∥ηnh∥W .

Substituting above estimates into (4.39) yields

1

Rm
∥ηnh∥2W ≤ (CC5h+ Ch+ κM̃)∥ηnh∥2W + C(h+ ∥en−1

h ∥L2)∥ηnh∥W .

For sufficiently small h such that Rm(CC0h+ Ch+ κM̃) < 1, we get

∥ηnh∥W ≤ C(∥en−1
h ∥L2 + h). (4.40)

Setting vh = 2∆tẽnh in (4.31), we have

∥ẽnh∥2L2 − ∥en−1
h ∥2L2 + ∥ẽnh − en−1

h ∥2L2 +
2∆t

Re
∥ẽnh∥2V

=2∆t

(
(Ũ

n
−KhŨ

n
)− (Un−1 − RhUn−1)

∆t
, ẽnh

)
+ 2∆t

(
b(Un−1, Ũ

n
, ẽnh)− b(Un−1

h , Ũ
n

h, ẽ
n
h)
)

+ 2S∆t ((Bn × curl Bn, ẽnh)− (Bn
h × curl Bn

h, ẽ
n
h))

+ 2S∆t(B̃
n
× curl (Bn − Bn

h), ẽ
n
h) = I5 + I6 + I7 + I8.

(4.41)
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The right-hand side of (4.41) can be estimated as follows. For I5, we have

I5 =2∆t

(
(Ũ

n
−KhŨ

n
)− (Un−1 − RhUn−1)

∆t
, ẽnh − enh

)

+ 2∆t

(
(Ũ

n
−KhŨ

n
)− (Un−1 − RhUn−1)

∆t
, enh

)

≤2∆t

(
(Ũ

n
−KhŨ

n
)− (Un−1 − RhUn−1)

∆t
, enh

)
+ 2

(
∥Ũ

n
−KhŨ

n
∥L2 + ∥Un−1 − RhUn−1∥L2

)
∥ẽnh − enh∥L2 .

For I6, we have

I6=2∆tb(Un−1 − RhUn−1, Ũ
n
, ẽnh) + 2∆tb(en−1

h , Ũ
n
, ẽnh)

+ 2∆tb(en−1
h , Ũ

n
−KhŨ

n
, ẽnh) + 2∆tb(Un−1 − RhUn−1, Ũ

n
−KhŨ

n
, ẽnh)

+ 2∆tb(Un−1, Ũ
n
−KhŨ

n
, ẽnh)

≤C∆t
(
∥Un−1−RhUn−1∥L2∥Ũ

n
∥H2+∥en−1

h ∥L2∥Ũ
n
∥H2+∥Ũ

n
−KhŨ

n
∥V
)
∥ẽnh∥V

+C∆t
(
h−1∥en−1

h ∥L2∥Ũ
n
−KhŨ

n
∥V +∥Un−1−RhUn−1∥V ∥Ũ

n
−KhŨ

n
∥V
)
∥ẽnh∥V

≤ ∆t

4Re
∥ẽnh∥2V + C∆t

(
∥en−1

h ∥2L2 + h2
)
∥Ũ

n
∥2H2 .

For I7 and I8, we can prove that

I7=2S∆t(Bn×curl (Bn − Bn
h), ẽ

n
h)+2S∆t((Bn−ΠhBn)×curl (Bn−Bn

h), ẽ
n
h)

+ 2S∆t(ηnh × curl (Bn − Bn
h), ẽ

n
h) + 2S∆t((Bn −ΠhBn)× curl Bn, ẽnh)

+ 2S∆t(ηnh × curl Bn, ẽnh)

≤ ∆t

4Re
∥ẽnh∥2V + C∆t(∥ηnh∥2W + h2),

and

I8 ≤ C∆t∥Bn − Bn
h∥W ∥ẽnh∥V ≤ ∆t

4Re
∥ẽnh∥2V + C∆t

(
∥ηnh∥2W + h2

)
.

Substituting I5 · · · I8 into (4.41) we have

∥ẽnh∥2L2 − ∥en−1
h ∥2L2 + ∥ẽnh − en−1

h ∥2L2 +
5∆t

4Re
∥ẽnh∥2V

≤2∆t

(
(Ũ

n
−KhŨ

n
)− (Un−1 − RhUn−1)

∆t
, enh

)
+ 2

(
∥Ũ

n
−KhŨ

n
∥L2 + ∥Un−1 − RhUn−1∥L2

)
∥ẽnh − enh∥L2

+ C∆t
(
∥en−1

h ∥2L2 + h2
)
∥Ũ

n
∥2H2 + C∆t

(
∥ηnh∥2W + h2

)
.

(4.42)

Taking (vh, qh) = 2∆t(enh, θ
n
h) in (4.32)–(4.33), we have

∥enh∥2L2 − ∥ẽnh∥2L2 + ∥enh − ẽnh∥2L2 +
∆t

Re

(
∥enh∥2V − ∥ẽnh∥2V + ∥enh − ẽnh∥2V

)
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=2∆t

(
(Un − RhUn)− (Ũ

n
−KhŨ

n
)

∆t
, enh

)
. (4.43)

Taking the sum of (4.42) and (4.43), we have

∥enh∥2L2 − ∥en−1
h ∥2L2 + ∥enh − ẽnh∥2L2 + ∥ẽnh − en−1

h ∥2L2

+
∆t

Re

(
∥enh∥2V +

1

4
∥ẽnh∥2V + ∥enh − ẽnh∥2V

)
≤2∆t (Dt(Un − RhUn), enh) + C∆t

(
∥en−1

h ∥2L2 + h2
)
∥Ũ

n
∥2H2 + C∆t

(
∥ηnh∥2W + h2

)
+ 2

(
∥Ũ

n
−KhŨ

n
∥L2 + ∥Un−1 − RhUn−1∥L2

)
∥ẽnh − enh∥L2

≤1

2
∥ẽnh − enh∥2L2 + C∆t

(
∥en−1

h ∥2L2 + ∥enh∥2L2

)
+ Ch4

(
∥Ũ

n
∥2H2 + ∥AUn−1∥2L2

)
+ C∆th2

(
∥Ũ

n
∥2H2 + ∥AUn−1∥2L2 + ∥DtAUn∥2L2

)
,

where we use (4.40). Under the condition ∆t = O(h), it follows from the discrete
Gronwall’s inequality that

∥enh∥2L2 +

n∑
k=1

(
∥ekh − ẽkh∥2L2 + ∥ẽkh − ek−1

h ∥2L2

)
+

∆t

Re

n∑
k=1

(
∥ekh∥2V +

1

4
∥ẽkh∥2V + ∥ekh − ẽkh∥2V

)
≤ Ch2,

(4.44)

which implies that
n∑

k=1

∥ekh − ek−1
h ∥2L2 ≤ 2

n∑
k=1

(
∥ekh − ẽkh∥2L2 + ∥ẽkh − ek−1

h ∥2L2

)
≤ Ch2, (4.45)

∥ηnh∥W ≤ C6h (4.46)

for some C6 > 0. From (4.44) and (4.46), we have

∥ηnh∥W 1,3 ≤ Ch−1/2∥ηnh∥W ≤ Ch1/2, ∥Bn − Bn
h∥W 1,3 ≤ C, (4.47)

and

∥ẽnh∥W 1,3 ≤ Ch−1/2∥ẽnh∥V ≤ C, ∥Ũ
n
− Ũ

n

h∥W 1,3 ≤ C (4.48)

under the condition ∆t = O(h).
Taking(vh, qh) = 2∆t(Dte

n
h, θ

n
h) in (4.34) and (4.35) yields

2∆t∥Dte
n
h∥2L2 +

1

Re

(
∥enh∥2V − ∥en−1

h ∥2V + ∥enh − en−1
h ∥2V

)
≤2∆t(Dt(Un − RhUn), Dte

n
h) + 2∆tb(Un−1, Ũ

n
, Dte

n
h)

− 2∆tb(Un−1
h , Ũ

n

h, Dte
n
h) + 2∆tS(Bn × curl Bn, Dte

n
h)

− 2∆tS(Bn
h × curl Bn

h, Dte
n
h) + 2∆tS(B̃

n
× curl (Bn − Bn

h), Dte
n
h).

Then

2∆t(Dt(Un − RhUn), Dte
n
h) ≤ C∆th2∥Dte

n
h∥L2∥Dt(AUn)∥L2
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≤ ∆t

4
∥Dte

n
h∥2L2 + C∆th4∥Dt(AUn)∥2L2 ,

and

2∆tb(Un−1, Ũ
n
, Dte

n
h)− 2∆tb(Un−1

h , Ũ
n

h, Dte
n
h)

=2∆tb(Un−1 − Un−1
h , Ũ

n
, Dte

n
h) + 2∆tb(en−1

h , Ũ
n
− Ũ

n

h, Dte
n
h)

+ 2∆tb(RhUn−1, Ũ
n
− Ũ

n

h, Dte
n
h)

≤C∆t
(
∥Un−1 − RhUn−1∥V + ∥en−1

h ∥V
)
∥Ũ

n
∥H2∥Dte

n
h∥L2

+ C∆t∥en−1
h ∥V ∥Ũ

n
− Ũ

n

h∥W 1,3∥Dte
n
h∥L2

+ C∆t∥RhUn−1∥L∞

(
∥Ũ

n
−KhŨ

n
∥V + ∥ẽnh∥V

)
∥Dte

n
h∥L2

≤∆t

4
∥Dte

n
h∥2L2 + C∆t

(
∥en−1

h ∥2V + ∥ẽnh∥2V
)
+ C∆th2

(
∥AUn−1∥2L2 + ∥Ũ

n
∥2H2

)
and

2∆tS(Bn × curl Bn, Dte
n
h)− 2∆tS(Bn

h × curl Bn
h, Dte

n
h)

=2S∆t(Bn × curl (Bn − Bn
h), Dte

n
h) + 2S∆t((Bn −ΠhBn)

× curl (Bn − Bn
h), Dte

n
h) + 2S∆t(ηnh × curl (Bn − Bn

h), Dte
n
h)

+ 2S∆t((Bn −ΠhBn)× curl Bn, Dte
n
h) + 2S∆t(ηnh × curl Bn, Dte

n
h)

≤C∆t (∥Bn − Bn
h∥W + ∥Bn −ΠhBn∥W + ∥ηnh∥W ) ∥Dte

n
h∥L2

≤∆t

4
∥Dte

n
h∥2L2 + C∆th2,

and
2∆tS(B̃

n
× curl (Bn − Bn

h), Dte
n
h) ≤

∆t

4
∥Dte

n
h∥2L2 + C∆th2.

Thus, we get

∆t∥Dte
n
h∥2L2 +

1

Re

(
∥enh∥2V − ∥en−1

h ∥2V + ∥enh − en−1
h ∥2V

)
≤C∆t

(
∥en−1

h ∥2V +∥ẽnh∥2V
)
+C∆th2

(
∥AUn−1∥2L2+ ∥Ũ

n
∥2H2+∥Dt(AUn)∥2L2+1

)
.

By the discrete Gronwall’s inequality, we obtain the following optimal error estimate
in H1-norm:

max
1≤n≤N

(
∥enh∥2V +∆t

n∑
k=1

∥Dte
n
h∥2L2

)
≤ (C5h)

2

for some C5 > 0. Thus, we complete the proof of Theorem 4.2.

4.3. Proof of Theorem 3.1
The optimal H1 error estimate (3.19) follows from the error splitting (3.13), (3.15)
and the temporal error estimate (4.15), and the spatial error estimate (4.36)-(4.37),
where we use (3.5)-(3.6) and the regularity result (4.29).
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5. Numerical results
In this section, we will give the numerical results to check the optimal H1 error esti-
mate derived in Theorem 3.1. For the sake of simplicity, all numerical experiments
are tested for a two-dimensional hybrid MHD system in the unit square domain
Ω = (0, 1)× (0, 1):

ut −
1

Re
∆u + (u · ∇)u +∇p+ Sb × curl b = f, (5.1)

div u = 0, (5.2)
1

Rm
curl (curl b)− curl (u × b) = g, (5.3)

div b = 0. (5.4)

Here u = (u1, u2) and b = (b1, b2). In the two-dimensional case, the operator curl
applied to a vector v = (v1, v2) is defined by curl v = ∂v2

∂x − ∂v1

∂y , while the operator
curl applied to a scalar function r is defined by curl r = ( ∂r∂y ,−

∂r
∂x ). In addition,

the cross product of two vectors u and b is given by u×b = u1b2−u2b1. For a vector
function b and a scalar function r, the cross product is given by b×r = (rb2,−rb1).

In the above system, we take the appropriate f and g such that the analytical
solutions (b,u, p) are of the following forms:

b =
(
x2(x− 1)2y(y − 1)(2y − 1), −y2(y − 1)2x(x− 1)(2x− 1)

)
e−t,

u =
(
y2, x2

)
e−t, p = (2x− 1)(2y − 1)e−t.

The initial and boundary conditions are determined by the analytical solutions. In
the numerical experiments, the coupling number S = 1 and the final time T ⋆ = 1.0.

To verify the optimal H1 error estimate derived in Theorem 3.1 under the con-
dition ∆t = O(h), we take gradually decreasing meshes h = 1/2i, i = 2, · · · , 6
with the time step size ∆t = h. In this case, the optimal first-order error estimate
holds from (3.19). The numerical results are displayed in Table 1 and Table 2 with
different Reynolds numbers and magnetic Reynolds numbers Re = Rm = 1 and
Re = Rm = 10, respectively. From these tables, we can see that the predicted
optimal convergence order O(h) is obtained for H1 errors of the magnetic field and
the velocity, which is in good agreement with our theoretical analysis.

Table 1. H1 numerical errors and convergence orders of (b,u) with Re = Rm = 1

h ∥bN − BN
h ∥W order ∥uN − UN

h ∥V order
1/4 6.54585e-003 7.64152e-002
1/8 3.55364e-003 0.88 3.82926e-002 1.00
1/16 1.81775e-003 0.97 1.91165e-002 1.00
1/32 9.14238e-004 0.99 9.53074e-003 1.00
1/64 4.57799e-004 1.00 4.75054e-003 1.00
1/128 2.28985e-004 1.00 2.36890e-003 1.00
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Table 2. H1 numerical errors and convergence orders of (b, u) with Re = Rm = 10

h ∥bN − BN
h ∥W order ∥uN − UN

h ∥V order
1/4 6.55415e-003 1.41420e-001
1/8 3.55536e-003 0.88 6.78153e-002 1.06
1/16 1.81850e-003 0.97 3.14903e-002 1.10
1/32 9.14799e-004 0.99 1.46266e-002 1.10
1/64 4.58160e-004 1.00 6.83243e-003 1.10
1/128 2.29192e-004 1.00 3.21286e-003 1.09
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