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A VARIATIONAL APPROACH FOR A
PROBLEM INVOLVING A ψ-HILFER

FRACTIONAL OPERATOR
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Abstract Boundary value problems driven by fractional operators has drawn
the attention of several researchers in the last decades due to its applicabil-
ity in several areas of Science and Technology. The suitable definition of the
fractional derivative and its associated spaces is a natural problem that arise
on the study of this kind of problem. A manner to avoid of such problem
is to consider a general definition of fractional derivative. The purpose of
this manuscript is to contribute, in the mentioned sense, by presenting the
ψ−fractional spaces Hα,β;ψp ([0, T ],R). As an application we study a problem,
by using the Mountain Pass Theorem, which includes an wide class of equa-
tions.

Keywords ψ-fractional derivative space, variational structure, fractional dif-
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1. Introduction
In the last decades the Fractional Calculus has drawn the attention of several re-
searchers due to some advantages with respect to the usual one which occurs for
example in problems involving memory, see for instance [10, 15, 22, 24, 27]. An im-
portant fact is its applicability, see for example Sousa et. al. [30,31], where it is con-
sidered the fractional version of a mathematical model that describes, under certain
conditions, the blood concentration of nutrients and its relation with the erythrocyte
sedimentation. We also quote the references [5,7,11,14,16,17,23,26,35,38,39,43,46].

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary. Motivated
from the usual Calculus, we have the development of the Sobolev spaces W k,p(Ω)
with k ∈ N and p ≥ 1 and its applications. An important one is the Variational
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approach for the Dirichlet problem−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

where f : Ω × R → R is a Caratheodory function, whose main idea consists in
to associate the solutions of the problem above with critical points of C1 energy
functional of the form

J(u) =

∫
Ω

1

2
|∇u|2 −H(x, u)dx, u ∈ H1

0 (Ω),

where H(x, t) =
∫ t
0
f(x, ξ)dξ and W 1,2

0 (Ω) := H1
0 (Ω) denotes the functions of

W 1,2(Ω) that are null on the boundary in the sense of the trace operator. There is
a vast literature regarding such subject, thus we only mention some classical ones,
see for instance [3, 4].

Regarding the Variational approach in the fractional setting, the first paper is
due to Jiao and Zhou [17], where the authors considered, by using the Mountain
Pass Theorem, the boundary value problem tD

α
T (0D

α
t u (t)) = ∇F (t, u (t)) , t ∈ [0, T ] a.e,

u (0) = u (T ) = 0,

where tD
α
T (·) and 0D

α
t (·) are the right and left derivative of order 0 < α ≤ 1 in

the Riemann-Lioville sense respectively, F : [0, T ] × RN → R is a given function
satisfying some assumptions. After this, several works with the classical variational
arguments arose in the literature, see [1,13,32–34,36–38,41,44]. For example in [41]
Ledesma obtained the existence of a solution for the problem tD

α
T (0D

α
t u (t)) = f (t, u (t)) , t ∈ [0, T ],

u (0) = u (T ) = 0,
(1.1)

where α ∈ (1/2, 1) and f is a function satisfying certain conditions. Regarding
other related works see [6, 8, 12,18,20,21,40,42,45,47,48].

With the wide number of definitions of integrals and fractional derivatives, it
is interesting to consider a general notion of fractional derivative of a function f
with respect to another function. Such question was recently considered in Sousa
& Oliveira [29], where the authors introduced the ψ-Hilfer fractional derivative and
exhibited an wide class of examples. Thus from [29] it is natural to construct a
suitable space and study its properties to consider, by using a variational approach,
the problem 

HDα,β;ψ
T−

(
HDα,β;ψ

0+ u (t)
)
= f (t, u (t)) , t ∈ [0, T ] ,

I
β(1−β)
0+ u (0) = I

β(1−β)
T− u (T ) = 0,

(P )

where HDα,β;ψ
T− (·), HDα,β;ψ

0+ (·) are the right and left ψ-Hilfer fractional derivatives
respectively of order α ∈ (1/2, 1] and type 0 ≤ β ≤ 1 and f : [0, T ] × R → R is a
function satisfying the conditions :
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(f1) f ∈ C ([0, T ]× R);
(f2) (Ambrossetti-Rabinowitz condition) There is a constant µ > 2 such that 0 <

µH (t, u) ≤ u f (t, u) for every t ∈ [0, T ] and u ∈ R\ {0} , where H (t, s) =∫ s
0
f (t, ξ) dξ.

In what follows we describe in details the contributions of this work.

(i) It is presented a suitable space (denoted by Hα,β;ψp ([0, T ],R)) to study the
problem (P ).

(ii) Several important results are proved for the space Hα,β;ψp ([0, T ],R) such as
completeness, reflexivity and some embeddings. Such properties will be needed
to consider a variational approach for (P ).

(iii) A notion of weak solution for (P ) is introduced and it is obtained the existence
of a weak solution by using the classical Mountain Pass Theorem. To the best
of our knowledge it is the first time that a Dirichlet problem with an operator
which involves the ψ−Hilfer fractional derivative is studied in the literature.
Moreover, the results of [41] are obtained for a larger class of equations.

The rest of the paper is organized as follows: Section 2 is devoted to present the
fractional Riemann-Lioville integral with respect to another function, the ψ−Hilfer
fractional derivative and some results that will be often used. In Section 3 the
spaces Hα,β;ψp ([0, T ],R) and examples are presented and several properties of such
spaces are proved in Section 4. As an application of the mentioned results, it is
proved in Section 5 the existence of solution for (P ) by using the Mountain Pass
Theorem.

2. Preliminaries
Let [a, b] be a finite interval and C[a, b], ACn[a, b], Cn[a, b] be the spaces of con-
tinuous functions, n−times absolutely continuous functions, n−times continuously
differentiable functions on [a, b], respectively.

The space of the continuous functions f on [a, b] with the norm defined by

∥f∥C[a,b] = max
t∈[a,b]

|f(t)|.

On the order hand, we have n−times absolutely continuous given by

ACn[a, b] = {f : [a, b] → R; f (n−1) ∈ AC[a, b]}.

The weighted space Cγ;ψ[a, b] is defined by

Cγ;ψ[a, b] = {f : (a, b] → R; (ψ(·)− ψ(a))γf(·) ∈ C[a, b]}, 0 ≤ γ < 1

with the norm

∥f∥Cγ;ψ [a,b] = ∥(ψ(·)− ψ(a))γf∥C[a,b] = max
t∈[a,b]

|(ψ(t)− ψ(a))γf(t)|.

The space Cnγ;ψ[a, b] is defined by

Cnγ;ψ[a, b] = {f : (a, b] → R; f ∈ C(n−1)[a, b]; f (n) ∈ Cγ;ψ[a, b]}, 0 ≤ γ < 1
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with the norm

∥f∥Cnγ;ψ [a,b] =
n−1∑
k=0

∥f (k)∥C[a,b] + ∥f (n)∥Cγ;ψ[a,b].

Definition 2.1 ( [28, 29]). Let (a, b) (−∞ ≤ a < b ≤ ∞) be a finite or infinite
interval of the real line R and α > 0. Let ψ be an increasing and positive continuous
function on (a, b], having a continuous derivative ψ′ on (a, b). The left and right-
sided fractional integrals of a function u with respect to another function ψ on [a, b]
are defined by

Iα;ψa+ u (x) =
1

Γ (α)

∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
α−1

u (t) dt (2.1)

and
Iα;ψb− u (x) =

1

Γ (α)

∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
α−1

u (t) dt. (2.2)

Lemma 2.1 ( [28,29]). Let α > 0 and δ > 0. Then the following properties hold

Iα;ψa+ Iδ;ψa+ u (x) = Iα+δ;ψa+ u (x) (2.3)

and
Iα;ψb− Iδ;ψb− u (x) = Iα+δ;ψb− u (x) . (2.4)

Definition 2.2 ( [28, 29]). Consider that ψ′(x) ̸= 0 (−∞ ≤ a < x < b ≤ ∞) and
α > 0, n ∈ N. The Riemann-Liouville derivatives of a function u with respect to ψ
of order α correspondent to the Riemann-Liouville, are defined by

Dα;ψ
a+ u (x) =

(
1

ψ′ (x)

d

dx

)n
In−α;ψa+ u (x)

=
1

Γ (n− α)

(
1

ψ′ (x)

d

dx

)n ∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
n−α−1

u (t) dt

(2.5)

and

Dα;ψ
b− u (x) =

(
− 1

ψ′ (x)

d

dx

)n
In−α;ψb− u (x)

=
1

Γ (n− α)

(
− 1

ψ′ (x)

d

dx

)n ∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
n−α−1

u (t) dt,

(2.6)

where n = [α] + 1.

Definition 2.3 ( [28, 29]). Let α > 0, n ∈ N, I = [a, b] with −∞ ≤ a < b ≤ ∞,
u, ψ ∈ Cn([a, b],R) two functions such that ψ is increasing and ψ′(x) ̸= 0, for all
x ∈ I. The left ψ-Caputo fractional derivative of u of order α is given by

CDα;ψ
a+ u (x) = In−α;ψa+

(
1

ψ′ (x)

d

dx

)n
u (x) (2.7)
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and the right ψ-Caputo fractional derivative of u by

CDα;ψ
b− u (x) = In−α;ψb−

(
− 1

ψ′ (x)

d

dx

)n
u (x) (2.8)

where n = [α] + 1 for α /∈ N and n = α for α ∈ N.

Definition 2.4 ( [28, 29]). Let n− 1 < α < n with n ∈ N, I = [a, b] is the interval
such that −∞ ≤ a < b ≤ ∞ and u, ψ ∈ Cn([a, b],R) two functions such that ψ
is increasing and ψ′(x) ̸= 0, for all x ∈ I. The ψ-Hilfer fractional derivative left-
sided and right-sided HDα,β;ψ

a+ (·) and HDα,β;ψ
b− (·) of function of order α and type

0 ≤ β ≤ 1, are defined by

HDα,β;ψ
a+ u (x) = I

β(n−α);ψ
a+

(
1

ψ′ (x)

d

dx

)n
I
(1−β)(n−α);ψ
a+ u (x) (2.9)

and

HDα,β;ψ
b− u (x) = I

β(n−α);ψ
b−

(
− 1

ψ′ (x)

d

dx

)n
I
(1−β)(n−α);ψ
b− u (x) . (2.10)

The ψ-Hilfer fractional derivative as above defined, can be written in the follow-
ing form

HDα,β;ψ
a+ u (x) = Iγ−α;ψa+ Dγ;ψ

a+ u (x) (2.11)

and
HDα,β;ψ

b− u (x) = Iγ−α;ψb− Dγ;ψ
b− u (x) , (2.12)

with γ = α + β (n− α) and Iγ−α;ψa+ (·), Dγ;ψ
a+ (·), Iγ−α;ψb− (·), Dγ;ψ

b− (·) are defined in
(2.1), (2.2), (2.5), and (2.6).

Theorem 2.1 ( [28,29]). If u ∈ Cnγ,ψ[a, b], n− 1 < α < n and 0 ≤ β ≤ 1, then

Iα;ψa+
HDα,β;ψ

a+ u (x) = u (x)−
n∑
k=1

(ψ (x)− ψ (a))
γ−k

Γ (γ − k + 1)
u
[n−k]
ψ I

(1−β)(n−α);ψ
a+ u (a)

and

Iα;ψb−
HDα,β;ψ

b− u (x) = u (x)−
n∑
k=1

(−1)k (ψ (b)− ψ (x))γ−k

Γ (γ − k + 1)
u
[n−k]
ψ I

(1−β)(n−α);ψ
b− u (b) .

In what follows we consider the integration by parts rule for ψ-Riemann-Liouville
fractional integral and for the ψ-Hilfer fractional derivative.

By Almeida [2], we know that the relation∫ b

a

(
Iα;ψa+ u (t)

)
θ (t) dt =

∫ b

a

u (t)ψ′ (t) Iα;ψb−

(
θ (t)

ψ′ (t)

)
dt (2.13)

is valid. Now we present the integration by parts rule for the ψ-Hilfer fractional
derivative, which plays a key role in the variational formulation of problem (P ).
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Theorem 2.2. Let ψ(·) be an increasing and positive continuos function on [a, b],
having a continuous derivative ψ′(·) ̸= 0 on (a, b). If 0 < α ≤ 1 and 0 ≤ β ≤ 1,
then ∫ b

a

(
HDα,β;ψ

a+ u (t)
)
θ (t) dt =

∫ b

a

u (t)ψ′ (t) HDα,β;ψ
b−

(
θ (t)

ψ′ (t)

)
dt (2.14)

for any u ∈ AC1[a, b] and θ ∈ C1[a, b] satisfying boundary conditions u (a) = 0 =
u (b).

Proof. In fact, using the Eq.(2.4), Eq.(2.12) and Theorem 2.1, yields∫ b

a

u (t)ψ′ (t) HDα,β;ψ
b−

(
θ (t)

ψ′ (t)

)
dt

=

∫ b

a

u (t)ψ′ (t) I1−α;ψb− D1;ψ
b−

(
θ (t)

ψ′ (t)

)
dt

=

∫ b

a

ψ′ (t)

[
Iα;ψa+

HDα,β;ψ
a+ u (t) +

(ψ (t)− ψ (a))
γ−1

Γ (γ)
dj

]
I1−α;ψb− D1;ψ

b−

(
θ (t)

ψ′ (t)

)
dt(

where dj =
(

1

ψ′ (t)

d

dt

)
I
(1−β)(1−α);ψ
b− u (a)

)
=

∫ b

a

ψ′ (t) Iα;ψa+
HDα,β;ψ

a+ u (t) I1−α;ψb− D1;ψ
b−

(
θ (t)

ψ′ (t)

)
dt

+
dj

Γ (γ)

∫ b

a

ψ′ (t) (ψ (t)− ψ (a))
γ−1

I1−γ;ψb− D1;ψ
b−

(
θ (t)

ψ′ (t)

)
dt

=

∫ b

a

Iα;ψa+
HDα,β;ψ

a+ u (t) I−α;ψb−

(
θ (t)

ψ′ (t)

)
dt

=

∫ b

a

(
HDα,β;ψ

a+ u (t)
)
θ (t) dt.

Now we introduce more notations and some necessary definitions. Let X be a
real Banach space, Φ ∈ C1(X,R), which means that Φ is a continuously Fréchet-
differentiable functional defined on X. Recall that Φ ∈ C1(X,R) is said to satisfy
the (PS) condition if any sequence (uk)k∈N ∈ X, for which (Φ(uk))k∈N is bounded
and Φ′(uk) → 0 as k → +∞, possesses a convergent subsequence in X.

Theorem 2.3 ( [4], Mountain Pass Theorem). Let X be a real Banach space and
Φ ∈ C1 (X,R) satisfying Palais-Smale condition. Suppose that

(i) Φ(0) = 0,

(ii) there is ρ > 0 and σ > 0 such that Φ(z) ≥ σ for all z ∈ X with ∥z∥ = ρ,

(iii) there exists z1 in X with ∥z1∥ ≥ ρ such that Φ(z1) < σ. Then Φ possesses a
critical value c ≥ σ. Moreover, c can be characterized as

c = inf
γ∈Γ

max
z∈[0,1]

Φ(γ (z)) (2.15)

where Γ = {γ ∈ C ([0, T ] , X) ; γ (0) = 0, γ (1) = z1}.
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3. ψ-fractional derivative spaces Hα,β;ψ
p ([0, T ],R)

In this section we present the abstract spaces that will be used to study (P ) in the
variational framework.

Let 1 ≤ p <∞, T > 0. Consider the Banach space Lp ([0, T ] ,R) of functions on
[0, T ] with values in R endowed with the norm

∥u∥p =

(∫ T

0

|u (t)|p dt

)1/p

and L∞ ([0, T ] ,R) is the Banach space of essentially bounded functions from [0, T ]
into R equipped with the norm

∥u∥∞ = ess sup
t∈[0,T ]

|u (t)| .

Let ϕ ∈ C∞
0 [0, T ], multiplying (P ) by ϕ and integrating over [0, T ] we have∫ T

0

HDα,β;ψ
T−

(
HDα,β;ψ

0+ u (t)
)
ϕ(t)dt =

∫ T

0

f (t, u (t))ϕ(t)dt. (3.1)

By Theorem 2.2, we get∫ T

0

HDα,β;ψ
T−

(
HDα,β;ψ

0+ u (t)
)
ϕ(t)dt =

∫ T

0

ψ′(t)HDα,β;ψ
0+ u(t)HDα,β;ψ

0+

(
ϕ(t)

ψ′(t)

)
dt.

If
HDα,β;ψ

0+

(
ϕ(t)

ψ′(t)

)
=

1

ψ′(t)
HDα,β;ψ

0+ ϕ(t) ∀t ∈ [0, T ], (3.2)

then, (3.1) can be rewritten as∫ T

0

HDα,β;ψ
0+ u(t)HDα,β;ψ

0+ ϕ(t)dt =

∫ T

0

f(t, u(t))ϕ(t)dt. (3.3)

Motivated by this equality we introduce the following ψ−fractional spaces

Definition 3.1. Let 0 < α ≤ 1, 0 ≤ β ≤ 1 and 1 < p < ∞. The Left-sided
ψ−fractional derivative space Hα,β;ψp := Hα,β;ψp ([0, T ] ,R) is defined by the closure
of C∞

0 ([0, T ] ,R) which is given by

Hα,β;ψp =

u ∈ Lp ([0, T ] ,R) ; HDα,β;ψ
0+ u ∈ Lp ([0, T ] ,R) ,

I
β(β−1)
0+ u (0) = I

β(β−1)
T− u (T ) = 0


= C∞

0 ([0, T ] ,R) (3.4)

with the following norm

∥u∥Hα,β;ψp
=
(
∥u∥pLp +

∥∥∥HDα,β;ψ
0+ u

∥∥∥p
Lp

)1/p
(3.5)

where HDα,β;ψ
0+ (·) is the ψ-Hilfer fractional derivative with 0 < α ≤ 1 and 0 ≤ β ≤ 1.
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4. Variational strucuture
The goal of this section is to prove some abstract results for the space Hα,β;ψp .

Proposition 4.1. Let 0 < α ≤ 1, 0 ≤ β ≤ 1 and 1 < p < ∞. The fractional
derivative space Hα,β;ψp is a reflexive and separable Banach space.

Proof. In fact, since Lp ([0, T ] ,R) is reflexive and separable, the cartesian product
space Lp ([0, T ] ,R)× Lp ([0, T ] ,R) with respect to the norm

∥v∥Lp2 =

(
2∑
i=1

∥vi∥pLp

)1/p

(4.1)

where v = (v1, v2) ∈ (Lp ([0, T ] ,R))2 is also reflexive and separable.
Consider the space Ω =

{(
u,H Dα,β;ψ

0+ u
)
: u ∈ Hα,β;ψp

}
which is a closed subset

of (Lp ([0, T ] ,R))2 as Hα,β;ψp is closed. Therefore, Ω is also reflexive and separable
Banach space with respect to the norm (4.1) for v = (v1, v2) ∈ Ω.

We form the operator A : Hα,β;ψp → Ω given by A(u) =:
(
u,H Dα,β;ψ

0+ u
)
, u ∈

Hα,β;ψp . Thus it follows that ∥u∥Hα,β;ψp
= ∥Au∥Lp2 , which means that the operator

A : u →
(
u,H Dα,β;ψ

0+ u
)

is a isometric isomorphic mapping and the space Hα,β;ψp

is isometric to the space Ω. Thus Hα,β;ψp is a reflexive and separable Banach space
and this completes the proof.

The proof of Lemma 4.1 can be obtained by adapting the arguments of [16,
Lemma 3.1].

Lemma 4.1. Let 0 < α ≤ 1, 1 ≤ p <∞ and suppose that ψ′ is increasing in [0, T ].
Then, for any f ∈ Lp ([0, T ] ,R) , we have∥∥∥Iα;ψ0+ f

∥∥∥
Lp([0,t])

≤ (ψ (t)− ψ (0))
α

Γ (α+ 1)
∥f∥Lp([0,t]) (4.2)

for t ∈ [0, T ].

Proof. For p = 1, since ψ′ is increasing, we get

∥Iα;ψ0+ f∥L1([0,t]) =

∫ t

0

∣∣∣∣∣ 1

Γ(α)

∫ ξ

0

ψ′(s)[ψ(ξ)− ψ(s)]α−1u(s)ds

∣∣∣∣∣ dξ
≤ 1

Γ(α)

∫ t

0

∫ ξ

0

ψ′(ξ)[ψ(ξ)− ψ(s)]α−1|u(s)|dsdξ

=
1

Γ(α)

∫ t

0

|u(s)|
∫ t

s

ψ′(ξ)[ψ(ξ)− ψ(s)]α−1dξds

≤ (ψ(t)− ψ(0))α

Γ(α+ 1)
∥u∥L1([0,t]).

(4.3)

Suppose that 1 < p < ∞ and g ∈ Lq ([0, T ] ,R), where 1
p + 1

q = 1. Since ψ′ is
increasing and

ψ(ξ)− ψ(s) =

∫ ξ

s

ψ′(σ)dσ,
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then we have

[ψ′(ξ)(ξ − s)]α−1 ≤

(∫ ξ

s

ψ′(σ)dσ

)α−1

≤ [ψ′(s)(ξ − s)]α−1.

So, by doing the change of variable σ = ξ − s we get∣∣∣∣∣
∫ t

0

g (ξ)

∫ ξ

0

ψ′ (s) (ψ (ξ)− ψ (s))
α−1

f (s) dsdξ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

∫ ξ

0

g(ξ)[ψ′(s)]α(ξ − s)α−1g(ξ)f(s)dsdξ

∣∣∣∣∣
=

∣∣∣∣∫ t

0

∫ t

σ

[ψ′(ξ)]ασα−1f(ξ − σ)g(ξ)dξdσ

∣∣∣∣
=

∫ t

0

[ψ′(t)]ασα−1

∫ t

σ

|f(ξ − σ)||g(ξ)|dξdσ ≤ [ψ′(t)t]α

α
∥f∥Lp([0,t])∥g∥Lq([0,t])

for t ∈ [0, T ].
Now, consider the functional Hξ∗ψf for any fixed t ∈ [0, T ], given by

Hξ∗ψf (g) =

∫ t

0

[∫ ξ

0

ψ′ (s) (ψ (ξ)− ψ (s))
α−1

f (s) ds

]
g (ξ) dξ. (4.4)

According to (4.4), it is obvious that Hξ∗ψf ∈ (Lq ([0, T ] ,R))∗ where
(Lq ([0, T ] ,R))∗ denotes the dual space of Lq ([0, T ] ,R) . Therefore, by inequalities
(4.4) and (4.4) and Riesz representation theorem, there exists h ∈ Lp ([0, T ] ,R)
such that∫ t

0

h (ξ) g (ξ) dξ =

∫ t

0

[∫ ξ

0

ψ′ (s) (ψ (ξ)− ψ (s))
α−1

f (s) ds

]
g (ξ) dξ (4.5)

and

∥h∥Lp([0,t]) ≤
(ψ′(t)t)

α

α
∥f∥Lp([0,t]) (4.6)

for all g ∈ Lq ([0, T ] ,R).
Hence, we have by (4.5)

1

Γ (α)
h (ξ) =

1

Γ (α)

∫ ξ

0

ψ′ (s) (ψ (ξ)− ψ (s))
α−1

f (s) ds = Iα;ψ0+

for ξ ∈ [0, t] , which means that∥∥∥Iα;ψ0+ f
∥∥∥
Lp([0,t])

=
1

Γ (α)
∥h∥Lp([o,t]) ≤

(ψ′(t)t)
α

Γ (α+ 1)
∥f∥Lp([0,t]) . (4.7)

Combining (4.3) and (4.7), we obtain inequality (4.2).

Proposition 4.2. Consider 0 < α ≤ 1, 0 ≤ β ≤ 1, [ψ′ (t)]
q ≤ ψ′ (t) for all

t ∈ [0, T ] and all q ≥ 1 with 1 < p ≤ ∞. For all u ∈ Hα,β;ψp , if α > 1/p it holds that
Iα;ψ0+

(
HDα,β;ψ

0+ u (t)
)
= u (t). Moreover, the inclusion Hα,β;ψp ⊂ C ([0, T ] ,R) holds.
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Proof. Consider 1
p + 1

q = 1, 0 ≤ t1 < t2 ≤ T and u ∈ Lp ([0, T ] ,R). Using the
Hölder inequality and the fact that α > 1/p we have∣∣∣Iα;ψ0+ u (t1)− Iα;ψ0+ u (t2)

∣∣∣

=
1

Γ (α)

∣∣∣∣∣∣∣∣∣∣∣∣

∫ t1

0

ψ′ (s) (ψ (t1)− ψ (s))
α−1

u (s) ds

−
∫ t1

0

ψ′ (s) (ψ (t2)− ψ (s))
α−1

u (s) ds

+

∫ t2

t1

ψ′ (s) (ψ (t1)− ψ (s))
α−1

u (s) ds

∣∣∣∣∣∣∣∣∣∣∣∣
≤ 1

Γ (α)

(∫ t1

0

ψ′ (s)
q
[
(ψ (t1)− ψ (s))

α−1 − (ψ (t2)− ψ (s))
α−1

]q
ds

) 1
q

×
(∫ t1

0

|u (s)|p ds
) 1
p

+
1

Γ (α)

(∫ t2

t1

ψ′ (s)
q
(ψ (t2)− ψ (s))

(α−1)q
ds

) 1
q
(∫ t2

t1

|u (s)|p ds
) 1
p

≤ 1

Γ (α)

(∫ t1

0

ψ′ (s)
[
(ψ (t1)− ψ (s))

(α−1)q − (ψ (t2)− ψ (s))
(α−1)q

]
ds

) 1
q

∥u∥Lp

+
1

Γ (α)

(∫ t2

t1

ψ′ (s) (ψ (t2)− ψ (s))
(α−1)q

ds

) 1
q

∥u∥Lp

=
1

Γ (α)

(
(ψ (t1)− ψ (0))

(α−1)q+1

(α− 1) q + 1
− (ψ (t2)− ψ (0))

(α−1)q+1

(α− 1) q + 1

) 1
q

∥u∥Lp

+
1

Γ (α)

(
(ψ (t2)− ψ (t1))

(α−1)q+1

(α− 1) q + 1

) 1
q

∥u∥Lp

≤ 2 (ψ (t2)− ψ (t1))
α− 1

p

Γ (α) [(α− 1) q + 1]
1
q

∥u∥Lp . (4.8)

Applying (4.8), we obtain the continuity of Iα;ψ0+

(
HDα,β;ψ

0+ u (t)
)

in [0, T ]. From
Theorem 2.1 we have

Iα;ψ0+

(
HDα,β;ψ

0+ u (t)
)
= u (t) + C (ψ (t)− ψ (0))

γ−1 (4.9)

t ∈ [0, T ].
Since u (0) = 0 and Iα;ψ0+

(
HDα,β;ψ

0+ u (t)
)

is continuous in [0, T ]. Thus it follows

that C = 0, which implies Iα;ψ0+

(
HDα,β;ψ

0+ u (t)
)
= u (t) . The result is proved.

Remark 4.1. In the case that 1− α ≥ 1/p, for u ∈ Hα,β;ψp , we also have
Iα;ψ0+

(
HDα,β;ψ

0+ u (t)
)
= u (t) . In fact, set f (t) = I1−α;ψ0+ u (t) . According to Theorem

2.1 we only need to prove that f (0) =
[
I1−α;ψ0+ u (t)

]
t=0

= 0.

In the next result we prove that
[
I1−α;ψ0+ u (t)

]
t=0

= 0 in the case 1− α ≥ 1/p.
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Lemma 4.2. Let 0 < α < 1, 0 ≤ β ≤ 1, u ∈ Hα,β;ψp ([0, T ] ,R).
Then

[
I1−α;ψ0+ u (t)

]
t=0

= 0.

Proof. Let u ∈ Hα,β;ψp ([0, T ] ,R), then there is ϕn ∈ C∞
0 ([0, T ],R) such that

∥u− ϕn∥Hα,β;ψp
→ 0 as n→ +∞,

from where
∥u− ϕn∥Lp([0,t]) → 0 as n→ +∞.

Hence, by Lemma 4.1

∥I1−α;ψ0+ u∥Lp([0,t]) ≤ ∥I1−α;ψ0+ (u− ϕn)∥Lp([0,t]) + ∥I1−α;ψ0+ ϕn∥Lp([0,t])

≤ (ψ(t)− ψ(0))1−α

Γ(2− α)
∥u− ϕn∥Lp([0,t]) +

(ψ(t)− ψ(0))1−α

Γ(2− α)
∥ϕn∥Lp([0,t])

→ 0 as n→ +∞ and t→ 0+.

Therefore [
I1−α;ψ0+ u(t)

]
t=0

= 0.

Proposition 4.3. Let 0 < α ≤ 1, 0 ≤ β ≤ 1 and 1 < p < ∞. If 1 − α ≥ 1/p or
α > 1/p, we have

∥u∥Lp ≤ (ψ (T )− ψ (0))
α

Γ (α+ 1)

∥∥∥HDα,β;ψ
0+ u

∥∥∥
Lp
, (4.10)

for all u ∈ Hα,β;ψp . Moreover, if α > 1/p and 1

p
+

1

q
= 1, then

∥u∥∞ ≤ (ψ (T )− ψ (0))
α−1/p

Γ (α) ((α− 1) q + 1)
1/q

∥∥∥HDα,β;ψ
0+ u

∥∥∥
Lp
, (4.11)

where ∥u∥∞ = sup
t∈[0,T ]

|u (t)|.

Proof. In order to obtain (4.10) and (4.11) it will be proved that∥∥∥Iα;ψ0+
HDα,β;ψ

0+ u
∥∥∥
Lp

≤ (ψ (T )− ψ (0))
α

Γ (α+ 1)

∥∥∥HDα,β;ψ
0+ u

∥∥∥
Lp

(4.12)

for 1− α > 1 or α > 1/p and∥∥∥Iα;ψ0+
HDα,β;ψ

0+ u
∥∥∥
Lp

≤ (ψ (T )− ψ (0))
α−1/p

Γ (α) ((α− 1) q + 1)
1/q

∥∥∥HDα,β;ψ
0+ u

∥∥∥
Lp

(4.13)

for α > 1/p and 1

p
+

1

q
= 1.

Since HDα,β;ψ
0+ u ∈ Lp ([0, T ] ,R) it follows from Lemma 4.1 that∥∥∥Iα;ψ0+

HDα,β;ψ
0+ u

∥∥∥
Lp

≤ (ψ (T )− ψ (0))
α

Γ (α+ 1)

∥∥∥HDα,β;ψ
0+ u

∥∥∥
Lp
.
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Suppose that α > 1/p. Choose q > 0 such that 1

p
+

1

q
= 1. Using the Hölder

inequality, we have for all u ∈ Hα,β;ψp that

∣∣∣Iα;ψ0+
HDα,β;ψ

0+ u
∣∣∣ ≤ 1

Γ (α)

(∫ T

0

ψ′ (s) (ψ (T )− ψ (s))
(α−1)q

ds

)1/q ∥∥∥HDα,β;ψ
0+ u

∥∥∥
Lp

=
(ψ (T )− ψ (0))

α−1/p

Γ (α) [q (α− 1) + 1]
1/q

∥∥∥HDα,β;ψ
0+ u

∥∥∥
Lp
.

According to inequality (4.10) the norms in Hα,β;ψp

∥u∥Hα,β;ψp
=
∥∥∥HDα,β;ψ

0+ u
∥∥∥
Lp

(4.14)

and (4.14) are equivalent.
Note that by choosing p = 2 in Definition (3.4) we have that the space Hα,β;ψ2

becomes a Hilbert space when endowed with the norm (4.14) and the inner product

∥u∥Hα,β;ψ2
=

∫ T

0

HDα,β;ψ
0+ u(t)HDα,β;ψ

0+ v(t)dt

respectively.

Proposition 4.4. Let 0 < α ≤ 1, 0 ≤ β ≤ 1 and 1 < p < ∞. Assume that
α > 1/p and let {uk} be a sequence that converges weakly to u in Hα,β;ψp . Then, for
a subsequence it holds that uk → u in C ([0, T ] ,R), i.e., ∥u− uk∥∞ = 0 as k → ∞.

Proof. Recall that if α > 1/p then

∥u∥∞ ≤ (ψ (T )− ψ (0))
α−1/p

Γ (α) ((α− 1) q + 1)
1/q

∥∥∥HDα,β;ψ
0+ u

∥∥∥
Lp

(4.15)

and

∥u∥Hα,β;ψp
=
∥∥∥HDα,β;ψ

0+ u
∥∥∥
Lp

=

(∫ T

0

∣∣∣HDα,β;ψ
0+ u (t)

∣∣∣p dt)1/p

. (4.16)

Thus from (4.15) and (4.16) it follows that if uk → u in Hα,β;ψp , then uk → u in
C ([0, T ] ,R) . Since uk ⇀ u in Hα,β;ψp , it follows that uk ⇀ u in C ([0, T ] ,R). In fact,
for any h ∈ (C ([0, T ] ,R))∗ , if uk → u in Hα,β;ψp then uk → u in C ([0, T ] ,R) and
thus h (uk) → h (u) . Therefore, h ∈

(
Hα,β;ψp

)∗, which means that (C ([0, T ] ,R))∗ ⊂(
Hα,β;ψp

)∗
.

Hence, if uk ⇀ u in Hα,β;ψp , then for any h ∈ (C ([0, T ] ,R))∗, we have h ∈(
Hα,β;ψp

)∗ and thus h (uk) → h (u) i.e., uk → u in C ([0, T ] ,R). By the Banach-
Steinhaus theorem, {uk} is bounded in Hα,β;ψp and hence, in C ([0, T ] ,R).

We claim that {uk} is equi-uniformly continuous. Let q > 0 such that 1

p
+
1

q
= 1,

0 ≤ t1 < t2 ≤ T and u ∈ Hα,β;ψp . The Hölder inequality combined with (4.8) we
have ∣∣∣Iα;ψ0+ u (t1)− Iα;ψ0+ u (t2)

∣∣∣ ≤ 2 (ψ (t2)− ψ (t1))
α−1/p

Γ (α) ((α− 1) q + 1)
1/q

∥u∥Lp . (4.17)
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By applying (4.16) and (4.17) we have

|uk (t1)− uk (t2)| ≤
2 (ψ (t2)− ψ (t1))

α−1/p

Γ (α) ((α− 1) q + 1)
1/a

∥∥∥HDα,β;ψ
0+ uk

∥∥∥
Lp

≤ C (ψ (t2)− ψ (t1))
α−1/p

, (4.18)

where C > 0 is a constant. Thus by using the Arzela-Ascoli theorem, {uk} is rela-
tively compact in C ([0, T ] ,R) . By the uniqueness of the weak limit in C ([0, T ] ,R),
every uniformly convergent subsequence of {uk} converges uniformly on [0, T ] to u.

Remark 4.2. Let 1
p < α ≤ 1, if u ∈ Hα,β;ψp , then u ∈ Lq [0, T ] , for q ∈ [p,+∞], in

fact ∫ T

0

|u (t)|q dt ≤ ∥u∥q−p∞ ∥u∥pLp . (4.19)

In particular the embedding Hα,β;ψp ↪→ Lq ([0, 1]) is continuous for all q ∈
[p,+∞].

Below we point out some examples regarding the previous definition.

1. Taking the limit β → 1 in (3.4), we have the fractional derivative space given
by

Hα;ψp = Hα,1;ψp =

u ∈ Lp ([0, T ] ,R) ; CDα;ψ
0+ u ∈ Lp ([0, T ] ,R) ,

u (0) = u (T ) = 0


with the following norm

∥u∥Hα;ψ
p

=
(
∥u∥pLp +

∥∥∥CDα;ψ
0+ y

∥∥∥p
Lp

)1/p
,

where CDα;ψ
0+ (·) is the ψ-Caputo fractional derivative with 0 < α ≤ 1.

2. Taking the limit β → 1 in (3.4) and choosing ψ (t) = t, we have the fractional
derivative space given by

Hαp = Hα,1;tp =

u ∈ Lp ([0, T ] ,R) ; CDα
0+u ∈ Lp ([0, T ] ,R) ,

u (0) = u (T ) = 0


with the following norm

∥u∥Hαp =
(
∥u∥pLp +

∥∥CDα
0+u

∥∥p
Lp

)1/p
,

where CDα;ψ
0+ (·) is the Caputo fractional derivative with 0 < α ≤ 1.

3. Taking the limit β→0 in (3.4), we have the fractional derivative space given
by

Hα;ψp = Hα,0;ψp =

u ∈ Lp ([0, T ] ,R) ; RLDα;ψ
0+ u ∈ Lp ([0, T ] ,R) ,

u (0) = u (T ) = 0


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with the following norm

∥u∥Hα;ψ
p

=
(
∥u∥pLp +

∥∥∥RLDα;ψ
0+ u

∥∥∥p
Lp

)1/p
,

where RLDα;ψ
0+ (·) is the ψ-Riemann-Liouville fractional derivative with 0<α≤1.

4. Taking the limit β → 0 in (3.4) and ψ (t) = t we have the fractional derivative
space given by

Hαp = Hα,0;tp ([0, T ] ,R) =

u ∈ Lp ([0, T ] ,R) ;RLDα
0+u ∈ Lp ([0, T ] ,R) ,

u (0) = u (T ) = 0


with the following norm

∥y∥Hαp =
(
∥u∥pLp +

∥∥RLDα
0+u

∥∥p
Lp

)1/p
,

where RLDα;ψ
0+ (·) is the Riemann-Liouville fractional derivative with 0<α≤1.

5. Taking ψ (t) = t in (3.4), we have the fractional derivative space given by

Hα,βp = Hα,β;tp =

u ∈ Lp ([0, T ] ,R) ; HDα,β
0+ u ∈ Lp ([0, T ] ,R) ,

I
β(β−1)
0+ u (0) = I

β(β−1)
T− u (T ) = 0


with the following norm

∥u∥Hα;β
p

=
(
∥u∥pLp +

∥∥∥HDα,β
0+ y

∥∥∥p
Lp

)1/p
,

where HDα,β
0+ (·) is the Hilfer fractional derivative with 0<α≤1 and 0≤β≤1.

6. Taking the limit β → 1 in (3.4) and ψ (t) = tρ, we have the fractional derivative
space given by

Hαp = Hα,1;t
ρ

p =

u ∈ Lp ([0, T ] ,R) ; KCDα
0+u ∈ Lp ([0, T ] ,R) ,

u (0) = u (T ) = 0


with the following norm

∥u∥Hαp =
(
∥u∥pLp +

∥∥KCDα
0+u

∥∥p
Lp

)1/p
,

where KCDα
0+(·) is the Caputo-Katugampola fractional derivative with 0<α≤1.

7. Since the ψ-Hilfer fractional derivative admits a vast class of fractional deriva-
tive as particular cases, from the choice of ψ and the limit with β → 0 or
β → 1, it is possible to contract other fractional derivative spaces for their
respective fractional derivative.



1624 J. V. Sousa, L. S. Tavares & C. E. T. Ledesma

5. Fractional nonlinear Dirichlet problem
The goal of this section is to prove the existence of solution for the fractional
nonlinear Dirichlet problem (P ). The notion of solution that will be considered is
given below.

Definition 5.1. A function u ∈ Hα,β;ψ2 is a weak solution for (P ) if∫ T

0

HDα,β;ψ
0+ u (t) HDα,β;ψ

0+ v (t) dt =

∫ T

0

f (t, u (t)) v (t) dt

for all v ∈ Hα,β;ψ2 .

Consider the energy functional given by

A (u) =
1

2

∫ T

0

∣∣∣HDα,β;ψ
0+ u (t)

∣∣∣2 dt− ∫ T

0

H (t, u (t)) dt, u ∈ Hα,β;ψ2 , (5.1)

where H is the primitive of f , that is, H (t, s) =
∫ s
0
f (t, ξ) dξ. Following [25] we

have A ∈ C1
(
Hα,β;ψ2 ,R

)
with

A′ (u) v =

∫ T

0

HDα,β;ψ
0+ u (t)

H
Dα,β;ψ

0+ v (t) dt−
∫ T

0

f (t, u (t)) v (t) dt,

for u, v ∈ Hα,β;ψ2 . Thus, the solutions of (P ) are given by the critical points of A.
The result of this section is provided below.

Theorem 5.1. Let 1/2 < α ≤ 1, 0 ≤ β ≤ 1 and suppose that f satisfy (f1) and
(f2). Then problem (P ) has a nontrivial weak solution u ∈ Hα,β;ψ2 .

The next two results can be found in [41].

Lemma 5.1. If f satisfies the condition (f2), then for every t ∈ [0, T ] the following
inequalities hold

H (t, u) ≤ H
(
t,
u

|u|

)
|u|µ , if 0 < |u| ≤ 1 (5.2)

and
H (t, u) ≥ H

(
t,
u

|u|

)
|u|µ , if |u| ≥ 1 (5.3)

Lemma 5.2. Suppose that f satisfies the condition (f2). Let

m = inf {H (t, u) /t ∈ [0, T ] , |u| = 1} .

Then ∫ T

0

H (t, ξu (t)) dt ≥ m |ξ|µ
∫ T

0

|u (t)|µ dt− Tm,

for all ξ ∈ R\ {0} and u ∈ Hα,β;ψ2 .

Lemma 5.3. Suppose that f satisfies the conditions (f1) − (f2). The functional
given by (5.1) satisfy the Palais-Smale condition.
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Proof. To prove that A satisfy the Palais-Smale condition let {uk} be a sequence
in Hα,β;ψ2 such that

|A (uk)| ≤M, lim
k→∞

A′ (uk) = 0. (5.4)

First it will be proved that {uk} is bounded. Note that

A (uk) =
1

2
∥uk (t)∥2Hα,β;ψ2

−
∫ T

0

H (t, uk (t)) dt

and

A′ (uk)uk =
1

2
∥uk (t)∥2Hα,β;ψ2

−
∫ T

0

f (t, uk (t))uk (t) dt.

Then by (5.4) we get∣∣∣∣A (uk)−
1

µ
A′ (uk)uk

∣∣∣∣ ≤ |A (uk)|+
∣∣∣∣ 1µA′ (uk)

∣∣∣∣ |uk|
≤ M

(
1 + ∥uk (t)∥Hα,β;ψ2

)
. (5.5)

On the other hand we have from (f2) that

A (uk)−
1

µ
A′ (uk)uk

=

(
1

2
− 1

µ

)
∥uk∥2Hα,β;ψ2

−
∫ T

0

H (t, uk (t)) dt−
1

µ

∫ T

0

f (t, uk (t))uk (t) dt

≥
(
1

2
− 1

µ

)
∥uk∥2Hα,β;ψ2

(5.6)

Then by (5.5) and (5.6) we obtain that(
1

2
− 1

µ

)
∥uk∥2Hα,β;ψ2

≤ A (uk)−
1

µ
A′ (uk)uk ≤M

(
1 + ∥uk∥Hα,β;ψ2

)
.

Since µ > 2 it follows that {uk} is bounded in Hα,β;ψ2 .
From Proposition 4.1 we have that Hα,β;ψ2 is reflexive space. Thus going to a

subsequence if necessary, we may assume that uk ⇀ u in Hα,β;ψ2 . Therefore

⟨A′ (uk)−A′ (u) , uk − u⟩
= ⟨A′ (uk) , uk − u⟩ − ⟨A′ (u) , uk − u⟩
≤ ∥A′ (uk)∥ ∥uk − u∥Hα,β;ψ2

− ⟨A′ (u) , uk − u⟩ . (5.7)

Taking limit with k → ∞ on both sides of the inequality (5.7) we get

⟨A′ (uk)−A′ (u) , uk − u⟩ → 0.

From Propositions 4.3 and 4.4, we get that uk is bounded in C ([0, T ]) and we
can also assume that

lim
k→∞

∥uk − u∥∞ = 0.
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Therefore, ∫ T

0

[f (t, uk (t))− f (t, u (t))] (uk (t)− u (t)) dt→ 0

as k → ∞.
Note that

⟨A′ (uk)−A′ (u) , uk − u⟩

= ∥uk − u∥2Hα,β;ψ2
−
∫ T

0

[f (t, uk (t))− f (t, u (t))] (uk (t)− u (t)) dt.

So ∥uk − u∥2Hα,β;ψ2
→ 0 as k → ∞, that is, {uk} converges strongly to u in Hα,β;ψ2 .

Proof of Theorem 5.1. The arguments consists in use Theorem 2.3. Note that
HDα,β;ψ

0+ 0 = 0 and

A (0) =
1

2

∫ T

0

∣∣∣HDα,β;ψ
0+ 0

∣∣∣2 dt− ∫ T

0

H (t, 0) dt = 0.

By using (4.11) we obtain that

∥u∥∞ ≤ C̃ ∥u∥Hα,β;ψ2
, (5.8)

where C̃ :=
(ψ (T )− ψ (0))

α−1/2

Γ (α) (α− 1)
1/2

.

Consider C̃1 =
1

C̃
. If ∥u∥Hα,β;ψ2

≤ C̃1, then it follows from (5.2) and (5.8) that

∫ T

0

H (t, u (t)) dt ≤
∫ T

0

H
(
t,
u (t)

|u (t)|

)
|u (t)|µ dt

≤ ∥u∥µLµ
∫ T

0

H
(
t,
u (t)

|u (t)|

)
dt

≤

[
(ψ (T )− ψ (0))

α−1/2

Γ (α) (α− 1)
1/2

]µ
M
∥∥∥HDα,β;ψ

0+ u
∥∥∥µ
L2

= CµM ∥u∥µL2 . (5.9)

Then

A (u) =
1

2
∥u∥2Hα,β;ψ2

−
∫ T

0

H (t, u (t)) dt

≥ 1

2
∥u∥2Hα,β;ψ2

−MCµ ∥u∥µHα,β;ψ2

. (5.10)

If ∥u∥Hα,β;ψ2
≤ C1 we have

A (u) ≥ 1

2
∥u∥2Hα,β;ψ2

−MCµ
1

2
∥u∥µHα,β;ψ2
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=
C2

1

2
−MCµCµ1 . (5.11)

Consider ρ < min
{
C1,

(
1

2MCµ

)1/µ−2
}

and γ̃ =
ρ2

2
−MCµρµ. Therefore A (u) ≥

ρ for ∥u∥Hα,β;ψ2
= ρ. Thus the first part of Theorem 2.3 is verified.

Fix u ∈ Hα,β;ψ2 \ {0} . Consider ξ ∈ R\ {0} and define the sets

A = {t ∈ [0, T ] / |ξu (t)| ≤ 1} ,

B = {t ∈ [0, T ] / |ξu (t)| ≥ 1} .

From Lemma 5.1 we obtain that

A (ξu) ≤ ξ

2
∥u∥2Hα,β;ψ2

−
∫
A

H (t, ξu (t)) dt

≤ ξ

2
∥u∥2Hα,β;ψ2

−m

∫
A

|ξ|µ |u (t)|µ dt

≤ ξ

2
∥u∥2Hα,β;ψ2

−m

∫ T

0

|ξ|µ |u (t)|µ dt+mT.

For ξ large enough we have A (e) ≤ 0. Therefore A satisfies the second part of
Theorem 2.3 which proves the result.
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