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1. Introduction
In this paper, we are interested in the following problem: −∆u+ V (x)u = K(x)|u|p−2u, in RN ,

u(x) > 0, in RN , u ∈ H1(RN ),
(1.1)

where N ≥ 2 is a integer, p ∈ (2, 2∗) with 2∗ = 2N
N−2 if N ≥ 3 and 2∗ = +∞ if

N = 2. V (x) and K(x) are continuous functions from RN to R to be specified later.
During the past years, starting from the pioneering papers [4], there has been a

considerable interest in problems like (1.1) due essentially to two reasons: on one
hand such problems arise naturally in various branches of Mathematical Physics,
and on the other hand they present specific mathematical difficulties that make them
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challenging to the researchers. Indeed, in spite of its variational nature, a lack of
compactness, due to the invariance of RN under the action of the noncompact group
of translations, prevents a straight application of the usual variational methods.

The earliest results were obtained in radially symmetric situations, taking ad-
vantage of the compact embedding in Lp(RN ), p ∈ (2, 2N/(N − 2)) of the subspace
of H1(RN ) consisting of radial functions. When the coefficients do not enjoy sym-
metry, many different devices have been exploited to obtain the desired solutions.
We refer readers to some survey papers [5] and references therein.

When V (x) → V∞ from below and K(x) → K∞ from above, as |x| → +∞,
the existence of a positive ground state solution to (1.1) can be shown by using a
minimization method together concentration-compactness type arguments [8, 13].
Conversely, if V (x) → V∞ from above and K(x) → K∞ from below, (1.1) may
not have a least energy solution. This is the case, for instance, when V (x) = V∞,
K(x) ≤ K∞, and K(x) ̸= K∞ on a positive measure set. Nevertheless, it is
well-known that also these situations can be successfully handled (see [2, 3] ). We
point out that in the above results, the coefficients V (x) and K(x) act on (1.1)
in a ”cooperative” way. Very recently, G. Cerami and D. Passaseo [6, 7] study
the existence of positive solutions of (1.1) to describe some phenomena that can
occur when the coefficients are ”competing”, that is the case when V (x) → V∞
from above and K(x) → K∞ from above. We remark that this type results have
been generalized to Kirchhoff problem by Hu and Lu [10], to Choquard equation
by Wang, Qu and Xiao [19]. For more related results, we refer the readers to [9,14]
and references therein.

Many authors have obtained the existence of ground state solutions and non-
trivial solutions for periodic nonlinear Schrödinger equations

−∆u+ V (x)u = f(x, u), x ∈ RN , (1.2)

under variant conditions on the nonlinearities, see [20] and references therein. How-
ever, to the best of our knowledge, there are only a few works concerning the
existence of solutions of nonlinear Schrödingger equations with asymptotically pe-
riodic potentials and the nonlinearity f(x, u) having subcritical or critical growth
and being asymptotically periodic at infinity [1, 12, 15]. Some results are also been
obtained concerning the existence of positive ground state solutions for asymp-
totically periodic quasilinear Schrödinger equation [21, 22]. We emphasize that in
all these previous works, among other assumptions, the authors always assume
that V (x) ≤ V0(x) with V0(x) ∈ C(RN ,R) being 1-periodic in xi, i = 1, 2, · · · , N ,
see [11,15,18,21,22] and references therein.

In the present paper, we assume that the potentials V (x) and K(x) are asymp-
totically periodic functions. The goal of this paper is studying the existence of
ground state solutions for (1.1) when the coefficients are ”competing” by using a
concentration-compactness argument [13]. The remainder of this paper is organized
as follows. In Section 2, we state the main results in our paper. In Section 3, we
formulate the variational setting and introduce some preliminaries. We complete
the proof of main result in Sections 4. Finally, we present a global compactness
result in the appendix.

2. Main Result
To state our main result, we make the following assumptions:



Nonlinear Schrödinger equations 1665

(H1) There exist V0(x),K0(x) which are continuous and ZN -periodic in x, and
satisfy

inf
RN

V0(x) > 0, inf
RN

K0(x) > 0

such that

lim
|x|→∞

(V (x)− V0(x)) = 0 and lim
|x|→∞

(K(x)−K0(x)) = 0.

(H2) V0(x) ≥ V (x) ≥ 0, and there exists ξ ∈ C(RN ,R) such that

K0(x)−K(x) ≤ (V0(x)− V (x))ξ(x), for all x ∈ RN ,

and for some open subset U of SN−1 = {σ ∈ RN | |σ| = 1}, there holds

lim
r→+∞

ξ(rσ) = 0 for σ ∈ U, lim
|x|→∞

ξ(x)e−α|x| = 0 for all α > 0.

(H3) K(x) ≥ K0(x), V − V0 ∈ LN/2(RN ), and there exist η ∈ C(RN ,R) and
R0 > 0 such that

0 ≤ V (x)− V0(x) ≤ (K(x)−K0(x))η(x), for all |x| ≥ R0, x ∈ RN ,

and for some τ ∈ (0, 1), there holds

lim
|x|→∞

η(x)|x|
(p−2)(N−1)

2 e
(p−2)τ
1−τ

√
V+|x| = 0, lim

|x|→∞
(K(x)−K0(x))e

2τ
1+τ

√
V−|x| = +∞,

where V+ = maxRN V0(x) and V− = minRN V0(x).
Our main result is the following theorem:

Theorem 2.1. Assume (H1) and either (H2) or (H3) hold. Then (1.1) admits a
positive ground state solution.

Remark 2.2. It is easy to show that if V (x) ≤ V0(x) and K(x) ≥ K0(x) for
all x ∈ RN , then (1.1) admits a ground state solution. It is worth observing that
most results in the literature concern these cases, in which the coefficients V (x) and
K(x) act on (1.1) in a ”cooperative” way. On the other hand, it is also easy to see
that if V (x) ≥ V0(x), K(x) ≤ K0(x) for all x ∈ RN and either V (x) ̸≡ V0(x) or
K(x) ̸≡ K0(x), then (1.1) have no ground state solution. In the present paper, we
describe some phenomena that can occur when the coefficients are ”competing”. We
emphasize that in (H2) it is allowed that V (x) ≤ V0(x) and K(x) ≤ K0(x) on the
whole space RN . Also, in (H3) it is allowed that V (x) ≥ V0(x) and K(x) ≥ K0(x)
on the whole space RN .
Remark 2.3. Clearly, (H2) is valid if V0(x) ≥ V (x) ≥ 0, and there exists ξ ∈
C(RN ,R) satisfying lim|x|→∞ ξ(x) = 0 such that

0 ≤ K0(x)−K(x) ≤ (V0(x)− V (x))ξ(x), for all |x| ≥ R0.

This shows that when V (x) → V∞ > 0 from below and K(x) → K∞ > 0 from
below, as |x| → +∞, the problem (1.1) may have a positive ground state solution
if the decay rate of K∞ −K(x) is faster than that of V∞ − V (x).
Remark 2.4. Theorem 2.1 is even new in the case where V (x) → V∞ > 0 and
K(x) → K∞ > 0 as |x| → ∞. In this case, (H3) reads as follows
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(H3′) K(x) ≥ K∞, V − V∞ ∈ LN/2(RN ), and there exist η ∈ C(RN ,R) and
R0 > 0 such that

0 ≤ V (x)− V∞ ≤ (K(x)−K∞)η(x), for all |x| ≥ R0, x ∈ RN ,

and for some τ ∈ (0, 1) there holds

lim
|x|→∞

η(x)|x|
(p−2)(N−1)

2 e
(p−2)τ
1−τ

√
V∞|x| = 0, lim

|x|→∞
(K(x)−K∞)e

2τ
1+τ

√
V∞|x| = +∞.

G. Cerami and A.Pomponio [7] prove that (1.1) has a ground state solution under
the following conditions:
(C1) lim|x|→∞ V (x) = V∞ > 0, lim|x|→∞ K(x) = K∞ > 0,
(C2) V (x) ≥ V∞ and K(x) ≥ K∞ for all x ∈ RN ,
(C3) For some τ ∈ (0, 1) there holds

lim
|x|→∞

(V (x)−V∞)|x|
p(N−1)

2 e
pτ

1−τ

√
V∞|x| = 0, lim

|x|→∞
(K(x)−K∞)e

2τ
1+τ

√
V∞|x| = +∞.

This result shows that when V (x) → V∞ > 0 from above and K(x) → K∞ > 0 from
above, as |x| → +∞, the problem (1.1) may have a positive ground state solution
if the decay rate of V (x)− V∞ is faster than that of K(x)−K∞.

The following corollary is a sharp improvement of the above result.

Corollary 2.5. The problem (1.1) admits a positive ground state solution if (C1),
(C2) and the following condition hold
(C3′) For some τ ∈ (0, 1) there holds

lim sup
|x|→∞

(V (x)− V∞)|x|(
p
2−1)(N−1)e

( pτ
1−τ − 4τ2

1−τ2 )
√
V∞|x|

< +∞,

lim
|x|→∞

(K(x)−K∞)e
2τ

1+τ

√
V∞|x| = +∞.

Proof. Clearly, it is suffices to check (H3′). Since K(x) − K∞ > 0 for large |x|,
there is η ∈ C(RN ,R) and R0 > 0 such that

V (x)− V∞ = (K(x)−K∞)η(x), for all |x| ≥ R0.

Notice that for |x| ≥ R0, there holds

(V (x)− V∞)|x|
p(N−1)

2 e
pτ

1−τ

√
V∞|x|

= (K(x)−K∞)e
2τ

1+τ

√
V∞|x|η(x)|x|

(p−2)(N−1)
2 e

(p−2)τ
1−τ

√
V∞|x| · |x|N−1e

4τ2

1−τ2

√
V∞|x|

.

Then (H3′) follows from (C3′). Moreover, since p > 2, it follows that

pτ

1− τ
− 4τ2

1− τ2
> 0 for all τ ∈ (0, 1),

and hence V − V∞ ∈ LN/2(RN ). Thus (H1), (H2) and (H3′) hold and the proof is
complete.
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3. Preliminaries
In this section we present some preliminaries for the proofs of our main theorem.
Throughout the paper, we assume that the potential V satisfies (H1) and V (x) ≥ 0
for all x ∈ RN . Then the norm and inner product in H1(RN ) may be defined by

∥u∥ =

(∫
RN

|∇u|2 + V (x)u2dx

)1/2

, u ∈ H1(RN )

and
⟨u, v⟩ =

∫
RN

∇u∇v + V (x)uvdx, u, v ∈ H1(RN ),

respectively. We denote by BR(y) the open ball in RN of radius R > 0 and centre
at y, BR denotes the ball of radius R centered at 0. For 1 ≤ p ≤ ∞, ∥ · ∥p denotes
the norm in Lp(RN ). Finally, we use C and c denote positive constants which may
vary from line to line.

When V (x) = V0(x) and K(x) = K0(x) for all x ∈ RN , (1.1) reduces to a
periodic nonlinear Schrödinger equation:

−∆u+ V0(x)u = K0(x)|u|p−2u, u ∈ H1(RN ). (3.1)

The associated functional is given by

I0(u) =
1

2

∫
RN

|∇u|2 + V0(x)u
2dx− 1

p

∫
RN

K0(x)|u|pdx,

and its Nehari manifold N0 :=
{
u ∈ H1(RN ) \ {0} | ⟨I ′0(u), u⟩ = 0

}
. It is well-

known that
$0 := inf

u∈N0

I0(u) > 0. (3.2)

For the problem (1.1), the associated energy functional is defined by

I(u) =
1

2

∫
RN

|∇u|2 + V (x)u2dx− 1

p

∫
RN

K(x)|u|pdx.

As usual, the critical points of I correspond to the nontrivial solutions of (1.1).
In order to prove our main result, we are going to minimize the functional I

restricted to its Nehari manifold

N :=
{
u ∈ H1(RN ) \ {0} | ⟨I ′(u), u⟩ = 0

}
.

Lemma 3.1. The following statements hold true:
(1) N is non-empty and it is a C1-manifold;
(2) for any u ∈ N , we have I(u) = maxt≥0 I(tu);
(3) we have $ := infu∈N I(u) > 0.

Proof. (1) For u ∈ H1(RN ) \ {0} and fixed k ∈ ZN , we define uk = u(·+k). Then
by (H1) it follows from the Lebesgue’s dominated convergence theorem that∫

RN

K(x)|uk|pdx =

∫
RN

K(x− k)|u|pdx →
∫
RN

K0(x)|u|pdx > 0, as |k| → ∞.
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Therefore, without loss of generality, we assume that
∫
RN K(x)|u|pdx > 0. Define

g(t) := I(tu), t ≥ 0, then

g′(t) = ⟨I ′(tu), u⟩ = t

∫
RN

|∇u|2 + V (x)u2dx− tp−1

∫
RN

K(x)|u|pdx = 0

has a unique solution tu > 0, and tuu ∈ N . Therefore, N ̸= ∅.
For any u ∈ N , we have∫

RN

|∇u|2 + V (x)u2dx =

∫
RN

K(x)|u|pdx ≤ C∥u∥pp. (3.3)

Since H1(RN ) ↪→ Lp(RN ) for p ∈ [2, 2∗], we have ∥u∥ ≥ c > 0 for all u ∈ N .
Define J(u) := ⟨I ′(u), u⟩. Then for any u ∈ N , by (2.2), we have

⟨J ′(u), u⟩ = 2
∫
RN |∇u|2 + V (x)u2dx− p

∫
RN K(x)|u|pdx

≤ (2− p)
∫
RN |∇u|2 + V (x)u2dx

≤ −c < 0.

Hence N is a C1-manifold.
(2) For any u ∈ N , let g(t) = I(tu), then

g′(t) = ⟨I ′(tu), u⟩ = t(1− tp−2)

∫
RN

|∇u|2 + V (x)u2dx.

Thus g′(t) > 0 for t ∈ (0, 1) and g′(t) < 0 for t > 1. Therefore, I(u) > I(tu) for all
t ∈ (0, 1) ∪ (1,+∞).

(3) For any u ∈ N , we have

I(u) = I(u)− 1

p
⟨I ′(u), u⟩ ≥ (

1

2
− 1

p
)∥u∥2 ≥ c > 0,

which implies that $ = infN I > 0. The proof is complete.
We say that (uk), uk ∈ N , is a (PS)d sequence if I(uk) → d and I ′|N (uk) → 0

in H−1(RN ).
Lemma 3.2. Let (uk) be a (PS)d sequence. Then (uk) is relatively compact for all
d ∈ (0, $0).
Proof. Let us consider a (PS)d sequence (uk) with d ∈ (0, $0). Noting that
I0(v

j) ≥ $0 for all j, we get m = 0 in Lemma A.2 and, then, uk → u in H1(RN ).
The following result is proved in [16]. See also [17].

Lemma 3.3. Let ρ > 0 and W ∈ C1((ρ,∞),R). If

lim
s→∞

W (s) > 0

and for some β > 0
lim
s→∞

W ′(s)s1+β = 0,

then there exists a nonnegative radial function w : RN \Bρ → R such that

−∆w +Ww = 0
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in RN \Bρ and some ρ0 ∈ (ρ,∞),

lim
|x|→∞

w(x)|x|
N−1

2 exp

∫ |x|

ρ0

√
W (s)ds = 1.

Lemma 3.4. Let v ∈ H1(RN ) be a positive ground state solution of (3.1), then
there exist constants R1 > 0, c0 > 0, C0 > 0 such that

c0|x|−
N−1

2 e−
√

V+|x| ≤ v(x) ≤ C0|x|−
N−1

2 e−
√

V−|x|, for all |x| ≥ R1.

Proof. Since v ∈ H1(RN ) is a positive ground state slution of (3.1) and p > 2, we
have

lim
|x|→∞

K0(x)v
p−2(x) = 0. (3.4)

Therefore, for any fixed ε ∈ (0, V−), there exists ρ > 0 such that

−∆v + (V− − ε)v ≤ −∆v + V0(x)v −K0(x)v
p−1 = 0, in RN \Bρ.

Let w ∈ C2(RN \Bρ,R) be such that
−∆w + (V− − ε)w = 0, if x ∈ RN \Bρ,

w(x) = max
x∈∂Bρ

v(x), if x ∈ ∂Bρ,

lim
|x|→∞

w(x) = 0.

By Lemma 3.3 with W = V− − ε, there exists Cϵ > 0 such that for all x ∈ RN \Bρ,

w(x) ≤ Cϵ|x|−
N−1

2 e−
√

V−−ϵ|x|.

Hence, by the comparison principle, for all x ∈ RN \Bρ, we have

v(x) ≤ w(x) ≤ Cϵ|x|−
N−1

2 e−
√

V−−ϵ|x|.

Therefore, there exists some µ ∈ (0,
√
V−/2) and R1 > ρ such that

K0(x)v(x)
p−2 ≤ µe−(p−2)

√
V−−ϵ|x|, for all x ∈ RN \BR1

(3.5)

and
−∆v + (V− − µe−(p−2)

√
V−−ϵ|x|)v ≤ 0, in RN \BR1

.

Let w̄ ∈ C2(RN \BR1
,R) be such that

−∆w̄ + (V− − ε)w̄ = 0, if x ∈ RN \BR1
,

w̄(x) = max
x∈∂BR1

v(x), if x ∈ ∂BR1
,

lim
|x|→∞

w̄(x) = 0.

Then by Lemma 3.3 with W = V− − µe−(p−2)
√

V−−ϵ|x|, it follows that

lim sup
|x|→∞

w̄(x)|x|
N−1

2 e
∫ |x|
R1

√
W (s)ds < +∞.
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Note that∫ |x|

R1

√
W (s)ds ≥

√
V−

∫ |x|

R1

W (s)/V−ds ≥
√
V−|x| −

√
V−R1 −

µ

(p− 2)
√
V− − ε

.

Therefore,

exp

(√
V−|x| −

∫ |x|

R1

√
W (s)ds

)
≤ exp

(√
V−R1 −

µ

(p− 2)
√
V− − ε

)
.

Then the comparison principle implies that

lim sup
|x|→∞

v(x)|x|
N−1

2 e
√

V−|x| ≤ lim
|x|→∞

w̄(x)|x|
N−1

2 e
√

V−|x| < +∞.

Thus, v(x) ≤ C0|x|−
N−1

2 e−
√

V−|x| for all |x| ≥ R1 and some C0 > 0.
Since

−∆v + V+v ≥ −∆v + V0(x)v −K0(x)v
p−1 = 0,

a similar argument implies that v(x) ≥ c0|x|−
N−1

2 e−
√

V+|x| for all |x| ≥ R1 and
some c0 > 0. The proof is complete.

4. Proof of Main Result
In this section, we give the proof of our main result. To this end, we need the
following results.

Lemma 4.1. Assume that (H1) and (H2) hold. Then we have

$ ≤ $0.

The equality $ = $0 holds only if V (x) = V0(x) and K(x) = K0(x) for a.e.
x ∈ RN .
Proof. Let v ∈ H1(RN ) be a positive ground state solution of (3.1), that is,
I0(v) = $0. Without loss of generality, we assume U = {σ ∈ SN−1 | |σ − e1| < δ}
and limr→+∞ ξ(rσ) = 0 uniformly for σ ∈ U . Define vk = v(· − ke1), then by the
translation invariance, it follows that vk ∈ H1(RN ) is also a positive ground state
of (4.1) and

lim
k→∞

vk(x) = 0, for all x ∈ RN . (4.1)

It is easy to see that g(t) := I(tvk) achieves its global maximum in some tk > 0
such that ⟨I ′(tkvk), tkvk⟩ = 0, and hence tkv

k ∈ N . Moreover, we have

tp−2
k =

∫
RN |∇v|2 + V (x+ ke1)v

2dx∫
RN K(x+ ke1)|v|pdx

→
∫
RN |∇v|2 + V0(x)v

2dx∫
RN K0(x)|v|pdx

> 0,

as k → ∞. By the translation invariance and Lemma 3.1, we have that

I0(tkv
k) = I0(tkv) ≤ I0(v) = $0. (4.2)
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Clearly, if V (x) ≡ V0(x) and K(x) ≡ K0(x) for all x ∈ RN , then $ = $0. In what
follows, we assume that V (x) ̸≡ V0(x) or K(x) ̸≡ K0(x). By Lemma 3.4, we can
find C̃ ≥ C0 such that

|v(x)| ≤ C̃e−
√

V−|x|, for all x ∈ RN .

Hence, we obtain

|ξ(x)| · |vk(x)|p−2 ≤ C̃p−2|ξ(x)|e−(p−2)
√

V−|x−ke1|, for all x ∈ RN .

By (H2) and a compact argument, it follows that limk→∞ |ξ(x)| · |vk(x)|p−2 = 0
uniformly in x ∈ RN . If V0(x) − V (x) ̸≡ 0, taking into account that 0 < c ≤ tk ≤
C < ∞, we get

$ ≤ I(tkv
k)

= I0(tkv
k)− 1

2

∫
RN (V0(x)− V (x))t2kv

k(x)2dx+ 1
p

∫
RN (K0(x)−K(x))tpk|vk|pdx

≤ $0 − t2k
∫
RN [V0(x)− V (x)]vk(x)2

[
1
2 − 1

p |ξ(x)|t
p−2
k C̃p−2e−(p−2)

√
V−|x−ke1|

]
dx

< $0

for large k. Thus, we obtain $ < $0. If V (x) ≡ V0(x) and K(x) ̸≡ K0(x), then
K0(x) ≤ K(x) and it is also easy to see that $ < $0. The proof is complete.
Lemma 4.2. Assume that (H1) and (H3) hold. Then we have

$ ≤ $0.

The equality $ = $0 holds only if V (x) = V0(x) and K(x) = K0(x) for a.e.
x ∈ RN .
Proof. Let v ∈ H1(RN ) be a positive ground state solution of (3.1), that is,
I0(v) = $0. Let vk = v(· − ke1) and tk > 0 be such that tkv

k ∈ N . Then we have

$ ≤ I(tkv
k) = I0(tkv

k) + J ≤ $0 + J,

where

J =
1

2

∫
RN

(V (x)− V0(x))t
2
k|vk|2dx− 1

p

∫
RN

(K(x)−K0(x))t
p
k|v

k|pdx

=

∫
RN

1

2
(V (x+ke1)−V0(x+ke1))t

2
k|v|2−

1

p
(K(x+ke1)−K0(x+ke1))t

p
k|v|

pdx.

(4.3)

It is suffices to show that J < 0 for some large k. To this end, we adopt an argument
used in [6]. Since V − V0 ∈ LN/2(RN ), by Lemma 3.4, it is easy to see that∫

RN\Bτk

1

2
(V (x+ ke1)− V0(x+ ke1))t

2
k|v(x)|2dx

−
∫
RN\Bτk

1

p
(K(x+ ke1)−K0(x+ ke1))t

p
k|v(x)|

pdx

≤
∫
RN\Bτk

1

2
(V (x+ ke1)− V0(x+ ke1))t

2
k|v(x)|2dx
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≤

(∫
RN\Bτk

|V (x+ ke1)− V0(x+ ke1)|
N
2

) 2
N
(∫

RN\Bτk

|v(x)|
2N

N−2

)N−2
N

≤Ce−2τk
√

V− . (4.4)

On the other hand, we have

−
∫
Bτk

1

2
(V (x+ ke1)− V0(x+ ke1))t

2
k|v(x)|2dx

−
∫
Bτk

1

p
(K(x+ ke1)−K0(x+ ke1))t

p
k|v(x)|

pdx

≥
∫
Bτk

(K(x+ ke1)−K0(x+ ke1))t
2
k|v(x)|2

[
−1

2
η(x+ ke1) +

1

p
tp−2
k |v(x)|p−2

]
dx.

(4.5)

By (H3), we have lim sup|x|→∞ η(x) = 0, and then it follows from the fact that
v(x) > 0 for all x ∈ RN that

η(x+ ke1) ≤ εvp−2(x),

for all x ∈ BR1
and large k. For any x ∈ Bτk \BR1

, by Lemma 3.4, we have

η(x+ ke1) ≤ ε|x+ ke1|−
(p−2)(N−1)

2 e−
(p−2)τ
1−τ

√
V+|x+ke1|

≤ ε(1− τ)−
(p−2)(N−1)

2 τ
(p−2)(N−1)

2 |τk|−
(p−2)(N−1)

2 e−(p−2)τk
√

V+

≤ ε(1− τ)−
(p−2)(N−1)

2 τ
(p−2)(N−1)

2 |x|−
(p−2)(N−1)

2 e−(p−2)
√

V+|x|

≤ εvp−2(x).

Therefore, for all x ∈ Bτk with large k, we have

−1

2
η(x+ ke1) +

1

p
tp−2
k |v(x)|p−2 ≥ cvp−2(x).

Hence, by (4.5), we have

−
∫
Bτk

1

2
(V (x+ ke1)− V0(x+ ke1))t

2
k|v(x)|2dx

−
∫
Bτk

1

p
(K(x+ ke1)−K0(x+ ke1))t

p
k|v(x)|

pdx

≥c

∫
Bτk

(K(x+ ke1)−K0(x+ ke1))t
2
k|v(x)|pdx

≥cMe−2τk
√

V−

∫
BR1

|v(x)|pdx

≥cMe−2τk
√

V− . (4.6)

Hence, by (4.3), (4.4), (4.6) and the arbitrariness of M , we conclude that J < 0.
The proof is complete.

Now, we are in a position to prove our main result.
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Proof of Theorem 1.1. By the Ekeland Variational Principle, we obtain a se-
quence {uk} ⊂ N such that I(uk) → $ and I ′|N (uk) → 0 as k → ∞. Then we
obtain

$ + o(1) = I(uk) =

(
1

2
− 1

p

)∫
RN

|∇u|2 + V (x)u2dx,

which implies that (uk) is bounded in H1(RN ). Moreover, there exists a λk ∈ R
such that

o(1) = I ′|N (uk) = I ′(uk)− λkJ
′(uk). (4.7)

Taking the scalar product with uk in the above equality, we obtain

o(1) = ⟨I ′|N (uk), uk⟩ = ⟨I ′(uk), uk⟩ − λk⟨J ′(uk), uk⟩.

Since ⟨I ′(uk), uk⟩ = 0 and ⟨J ′(uk), uk⟩ ≤ −c < 0. It follows that λk → 0 as
k → +∞. Moreover, by the boundedness of (uk), J ′(uk) is bounded and this
implies that λkJ

′(uk) → 0. Therefore, I ′(uk) → 0 as k → ∞. By the construction,
we have I(uk) → $ > 0. Therefore, (uk) is a Palais-Smale sequence of I at level $.

If V (x) ≡ V0(x) and K(x) ≡ K0(x) for all x ∈ RN , then (1.1) reduces to the
periodic equation (3.1), and it is well-known that there is a ground sate solution
for such an equation. So we assume that either V (x) ̸≡ V0(x) or K(x) ̸≡ K0(x).
Therefore, by Lemma 4.1 and Lemma 4.2, we have $ ∈ (0, $0).

By Lemma 3.2, (uk) is relatively compact. Therefore, up to a subsequence,
uk → u. Moreover, we have I ′(u) = 0 and I(u) = $ > 0. Thus, u ̸= 0 and u is a
ground state solution. Lastly, since |u| is also a ground state solution, the Maximum
Principle implies that u > 0 on RN or u < 0 on RN . The proof is complete.

Appendix
In this appendix, for the sake of the completeness and for the reader’s convenience,
we prove a global compactness lemma by using a standard argument.

In what follows, the following well known Brezis-Lieb type lemma is needed [20].
Lemma A.1. If (uk)k∈N ⊂ H1(RN ) is a bounded sequence and uk → u almost
everywhere on RN . Then

lim
k→∞

∫
RN

K(x)|uk|p −K(x)|uk − u|pdx =

∫
RN

K(x)|u|pdx.

Lemma A.2. Let (uk) be a (PS) sequence of I constrained on N , i.e. uk ∈ N
satisfies

(a) I(uk) is bounded; (b) I ′|N (uk) → 0 in H−1(RN ).

Then replacing (uk), if necessary, with a subsequence, there exist a solution u of
(1.1), a number m ∈ N∪ {0}, m functions v1, · · · , vm of H1(RN ) and m sequences
of points (xj

k) ⊂ RN , 1 ≤ j ≤ m, such that
(i) |xj

k| → +∞, |xj
k − xi

k| → +∞ if i ̸= j, k → +∞;
(ii) uk = u+

∑m
j=1 v

j(· − xj
k) + o(1) in H1(RN );

(iii) I(uk) = I(u) +
∑m

j=1 I0(v
j) + o(1);

(iv) vj are nontrivial weak solutions of (3.1).
Moreover, we agree that in the case m = 0 the above holds without vj.
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Proof. Since (uk) ⊂ N is a (PS) sequence, we have

+∞ > C ≥ I(uk) ≥
(
1

2
− 1

p

)
∥uk∥2,

and hence (uk) is bounded in H1(RN ). Therefore, there exists u ∈ H1(RN ) such
that, up to a subsequence, uk ⇀ u in H1(RN ). Argued as in the proof of Theo-
rem 1.1, we can show that I ′(uk) → 0 as k → ∞. Then the weakly sequentially
continuity of I ′ implies that I ′(u) = 0.

If uk → u in H1(RN ), we are done. So we can assume that (uk) does not
converge strongly to u in H1(RN ). Set

z1k = uk − u.

Then z1k ⇀ 0 in H1(RN ), but not strongly. Obviously, we have

∥uk∥2 = ∥u∥2 + ∥z1k∥2 + o(1). (A.1)

By Lemma A.1, we also have∫
RN

K(x)|uk|p =

∫
RN

K(x)|u|p +
∫
RN

K(x)|z1k|p + o(1), (A.2)

and for any h ∈ H1(RN ),∫
RN

K(x)|uk|p−2ukh =

∫
RN

K(x)|u|p−2uh+

∫
RN

K(x)|z1k|p−2z1kh+ o(1). (A.3)

Therefore, we obtain

I(uk) =
1

2
∥uk∥2 −

1

p

∫
RN

K(x)|uk|p = I(u) + I0(z
1
k) + o(1),

and for all h ∈ H1(RN ),

o(1) = ⟨I ′(uk), h⟩ = ⟨I ′0(z1k), h⟩+ o(1).

Let
δ := lim sup

k→∞
sup
y∈RN

∫
B(y,1)

|z1k|2dx.

Then δ > 0. Otherwise, for any p ∈ (2, 2∗), z1k → 0 in Lp(RN ). Therefore, we have

o(1) = ⟨I ′(uk)− I ′(u), z1k⟩ = ∥z1k∥2 −
∫
RN

K(x)
[
|uk|p−2uk − |u|p−2u

]
z1kdx. (A.4)

By the Hölder inequality, we know∫
RN

K(x)
[
|uk|p−2uk − |u|p−2u

]
z1kdx

≤C

(∫
RN

K(x)
∣∣|uk|p−2uk − |u|p−2u

∣∣ p
p−1

) p−1
p
(∫

RN

|z1k|p
) 1

p

≤C

(∫
RN

(|uk|p + |u|p)
) p−1

p
(∫

RN

|z1k|p
) 1

p

≤C∥z1k∥p → 0,
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which together with (A.4) yields z1k → 0 in H1(RN ). This contradicts to the fact
that (uk) does not converge strongly to u in H1(RN ).

Let x1
k ∈ ZN be such that for some suitable r0 ≥ 1, we have∫

B(0,r0)

|z1k(x+ x1
k)|2dx ≥ 1

2
δ.

Then z1k(·+ x1
k) is bounded in H1(RN ) and we may assume that

z1k(·+ x1
k) ⇀ u1 in H1(RN ).

Then u1 ̸= 0. But, since z1k ⇀ 0 in H1(RN ), (x1
k) must be unbounded and, up to a

subsequence, we can assume that |x1
k| → +∞.

Furthermore, I ′0(z1k) = o(1) in [H1(RN )]∗ implies I ′0(u
1) = 0.

Finally, let us set
z2k = z1k − u1(· − x1

k).

Then by the translation invariance of the functional I0, a similar argument shows
that

I(uk) = I(u) + I0(z
1
k) + o(1)

= I(u) + I0(u
1) + I0(z

2
k) + o(1)

and
I ′(z2k) = o(1).

Now, if z2k → 0 in H1(RN ), we are done. Otherwise z2k ⇀ 0 and not strongly
and we repeat the argument. By iterating this procedure we obtain sequences of
integers xj

k ∈ ZN such that

|xj
k| → +∞, |xj

k − xi
k| → +∞ if j ̸= i,

as k → +∞ and a sequence of functions

zjk = zj−1
k − uj−1(· − xj−1

k )

with j ≥ 2 such that
zjk(·+ xj

k) ⇀ uj in H1(RN ).

Moreover, we have

I(uk) = I(u) +

m∑
j=1

I0(u
j) + I(zmk ) + o(1),

and
I ′0(u

j) = 0.

Then, since I0(u
j) ≥ $0 > 0 for all j and I(uk) is bounded, the iteration must stop

at some finite index m and zmk → 0 in H1(RN ). Thus I(uk) = I(u)+
∑m

j=1 I0(u
j)+

o(1) and the proof is complete.
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