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ASYMPTOTIC FLOCKING VELOCITY AND
POSITION FORMULAS FOR THE DELAYED
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Abstract The Cucker-Smale (short for C-S) model was modified by intro-
duced multiple time delays, and the flocking characteristics of the processing
delay C-S model of systems was obtained. Based on the fixed point theorem,
we present the existence and uniqueness of the flocking solution for our delayed
C-S model when the influence function has the property of Lipschitz and the
initial value satisfies certain conditions. At last, we present the asymptotic
flocking velocity and the final relative position between agents of the unique
flocking solution for such system.
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1. Introduction
Self-organized systems arise very naturally in physical, biological, artificial intelli-
gence, and social sciences. For such systems, it is important to understand how the
flow of information from distinct and independent components can be adaptively
regulated to achieve a prescribed performance, and in particular to understand how
systems develop their emerging behaviours such as flocking, herding and schooling,
in which self-propelled individuals using only limited environmental information
and simple rules, organize into an ordered motion. Examples of flocking phenom-
ena include fish swimming in schools [20], birds flying in flocks for the purpose of
enhancing the foraging success [3], and the flight guidance in honeybee swarms [12].

Cucker and Smale [7] presented a mathematical model to investigate the emer-
gent behaviors of flocks. Such a model could be used to explain self-organized
behaviours in various complex systems aforementioned, for example those from
macroscopic world (bird flying and honeybee swarming) to microscopic phenomenon
(Kinetic models and mean field models [2]). Recent developments about the C-S
model extend the pioneering work, to include asymmetric influence functions [18],
Kinetic version of C-S models [14, 22], and multi-agent systems with hierarchical
leadership [8–10, 19, 21], pattern formation [15, 16], collision avoidance [1, 4, 6, 16].
Also, the time lag is introduced in recent work [5,11,17,19,23], but the flocking phe-
nomenon described in the most previous works is considered with the delay between
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different agents is equal, there are little work about the flocking performance of the
multiple time delays C-S model. In fact, due to the differences between agents, the
time delay between agents may not equal.

As we known, for the emerging behaviors, the main issue for engineers and
scientists is to evaluate the final position distance for each pair agents and the
stability of the whole multi-agent systems. To this aim, we try to find a new insight
for modelling the flocking or swarming behaviors. Comparing with other works, we
present a new method via fixed point theorem to analysis the asymptotic flocking
velocity and position formulas.

In this work, we focus on the existence, uniqueness and asymptotic flocking
velocity of conditional flocking solutions for the C-S model incorporating a multi-
ple time delayed influence function which is assumed to be Lipschitz continuous.
We show that there is a unique conditional flocking solution for the multiple time
delayed C-S models, and we deduce an asymptotic flocking for the self-organized
group for general influence functions, and then derive an asymptotic flocking veloc-
ity formula and a position formula.

2. Model formulation
We consider the motion of a self-organized group with N agents, with each agent i
being characterized by two quantities: the position xi(t) ∈ Rd, and velocity vi(t) ∈
Rd, where d ≥ 1 is an integer. Thus, {xi(t),vi(t)}i=1,2,··· ,N describes the agent
system at any give time t, and the C-S model [7] is given by

dxi

dt = vi, i = 1, 2, · · · , N,
dvi

dt = α
N

N∑
j=1,j ̸=i

aij(vj − vi).

Here α measures the interaction strength, and aij = ψ(|xj−xi|) in the original C-S
model quantifies the pairwise influence of agent j on the alignment of agent i, as a
function of the distance, the so-called influence function, ψ(·) is a strictly positive
decreasing function. A popular example is ψ(r) = (1 + r2)−β for r ≥ 0 and β ≥ 0
is a constant. In the recently modified C-S model [18], the non-symmetric pairwise
influence

aij =
ψ (∥xj(t)− xi(t)∥)
N∑
k=1

ψ (∥xk(t)− xi(t)∥)
. (2.1)

was also used.
Here, we extend the above model by considering the delay in the pairwise in-

fluence due to the finite speed in processing the influence. In general, the influence
of agent j on agent i is realized in various fashions including smell, sound and vi-
sion. For examples, The influence between honey bees is transferred mainly by a
certain chemical material [13], the influence between geese is mainly made through
vision [18]. The influence of an agent on another is naturally transferred with finite
speed. In biological and artificial neural networks, time delays arise naturally due
to the inter-neural distances and finite axonal conduction. We will focus in this
study on the case of processing the information about the location and velocity of
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neighbouring agents, resulting in the following modified self-organized C-S model
with delay 

dxi

dt = vi, i = 1, 2, · · · , N,
dvi

dt = α
N∑

j=1,j ̸=i
aij(x(t− τij))(vj(t− τij)− vi(t)).

(2.2)

where τij denotes the communication time between agents i and j. In general,
the time delay τij is non-symmetric so that τij ̸= τji. In what follows, we assume
also τii = 0 for all i. In the above model, x = (x1,x2, · · · ,xN ) ∈ RdN ,v =
(v1,v2, · · · ,vN ) ∈ RdN , and aij(x(t − τij)) quantifies the pairwise influence of
agent j on the alignment of agent i (specific forms of aij will be given in the next
subsection). This self-organized system (2.2) is subjected to the following initial
conditions

xi(θ) = fi(θ), vi(θ) = gi(θ), i = 1, 2, · · · , N, (2.3)

where f and g are given continuous vector-value functions, τ = maxi,j{τij}. Note
that an agent may receive influences from multiple agents in a group and, an agent
i may also receive influence from another agent j via the agent l. For examples, in
the bee swarm, the small minority of informed bees manage to provide guidance to
the rest, and the entire swarm is able to fly to the new nest intact [12]. It is similar
for the network system in power engineering and intelligent engineering. Therefore,
the pairwise influence aij may take the following form

aij(x(t)) =

N−1∑
k=0

δkij(x(t)), (2.4)

where δkij(x(t)) is defined inductively as follows:

δ0ij(x(t)) = ψij(x(t)),

δkij(x(t)) =
∑
l ̸=i,j

max{δk−1
il (x(t))− δk−1

lj (x(t)), 0}, k = 1, · · · , N − 1.

the matrix (ψij)N×N sketches the pairwise influence of each agent, formulated by
(2.1). The term δ0ij(x(t)) represents the direct impact from j to i, δ1ij(x(t)) rep-
resents the impact from i to j by dint of one middle agent. Similarly, δkij(x(t))
denotes the impact from i to j by dint of k middle agents. If the long range cohe-
sion is ignored and delay is neglected, then aij(x(t)) = δ0ij(x(t)) = (ψij)(x(t)), and
our model (2.2) deduces to the Motsch’s modified version of the C-S system [18].
Similarly, if we consider the case of the first order approximation of formula (2.4)
then the pairwise influence aij is given by

aij(x(t)) = δ0ij(x(t)) + δ1ij(x(t))

= ψij(x(t)) +
∑
l ̸=i,j

max{ψil(x(t))− ψlj(x(t)), 0}.

The influence function (2.4) permits us to highlight the influences of the wholeness
instead of individual agents, so we may be able to for more subtle performances
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of the self-organized system, such as flocking behaviours and asymptotic flocking
velocities. Let dX and dV denote the diameters in position and velocity phase
spaces, namely

dX = max
i,j

{|xi − xj |}, dV = max
i,j

{|vi − vj |}.

A solution {xi(t),vi(t)}Ni=1of system (2.2) - (2.3) is called a flocking solution if it
converges to a flock in the sense that

sup
t≥0

dX(t) < +∞, lim
t→+∞

dV (t) = 0.

We now simplify the model by using similar arguments used in [18]. By rescaling α
if necessary, without loss of generality, we may assume that the aij are normalized
such that ∑

j ̸=i

aij(x(t− τij)) < 1.

Letting aii(x(t)) = 1 −
∑
j ̸=i aij(x(t − τij)), then we can rewrite the system (2.2)

in the form 
dxi

dt = vi,

dvi

dt = α(vi(t)− vi(t)),
(2.5)

where

v̄i(t) =

N∑
j=1

aij(x(t− τij))vj(t− τij),

N∑
j=1

aij(x(t− τij)) = 1.

In the remaining part of this paper, we focus on the normalized self-organized system
(2.5).

We first identify candidate flocking solutions of the self-organized system (2.2)
and define the following set

E = {(x,v) : x = {xi}Ni=1,v = {vi}Ni=1,xi,vi ∈ C([−τ,+∞),Rd),
xi(s) = fi(s),vi(s) = gi(s), if s ∈ [−τ, 0],
sup
t≥0,i,j

|xi(t)− xj(t)| < +∞, sup
t≥0,i

|vi(t)| ≤ sup
i

|gi(0)|eτ}.

We make the following assumption:

Assumption 2.1. There exists a constant La such that, for all x,p ∈ RdN ,

|aij(x)− aij(p)| ≤ La|x− p|.

Assumption 2.2. When t ∈ [−τ, 0], for all i, j, we have sup
i,j

|fi(t) − fj(t)| < +∞

and sup
i

|gi(t)| ≤ sup
i

|gi(0)|eτ .

Setting
c = (α+ 1)N(La sup

i
|gi(0)|eτ + 1) + 1.

We introduce a metric D on the E by

D((x,v), (p,q)) = sup
t≥0

{e−ctmax{|x(t)− p(t)|, |v(t)− q(t)|}}.
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For (x,v), (p,q) ∈ RdN × RdN , assume {(xn,vn)} be a convergent sequence in
(E,D) with the limit (x0,v0), then we conclude that (x0,v0) ∈ E. In fact, for vn

are bounded by supi |gi(0)|eτ , we see that vn are convergent on [−τ,+∞) uniformly.
Thus v0 is continuous and also, bounded by supi |gi(0)|eτ . On the other hand, we
see that

sup
t≥0,i,j

|x0
i (t)− x0

j (t)|

= sup
t≥0,i,j

|x0
i (t)− xni (t) + xni (t)− xnj (t) + xnj (t)− x0

j (t)|

≤ sup
t≥0,i,j

|x0
i (t)− xni (t)|+ sup

t≥0,i,j
|xni (t)− xnj (t)|+ sup

t≥0,i,j
|xnj (t)− x0

j (t)|

<+∞.

Thus, (E,D) is a complete metric space.

3. Flocking solution of multi-delay C-S model
Theorem 3.1. If the Assumption 2.1 and Assumption 2.2 hold, then the self-
organized system (2.2) with the initial value (2.3) has a unique conditional flocking
solution {xi(t),vi(t)}Ni=1 in E .

Proof. By using the variation-of-constants formula, we see that the solution of sys-
tem (2.2) with the initial value (2.3) can be translated as a fixed point of operator T :
C([−τ,+∞),RdN )×C([−τ,+∞),RdN ) → C([−τ,+∞),RdN )×C([−τ,+∞),RdN )
given by x

v

 =

Φ(x,v)

Ψ(x,v)

 ,
where (x,v) ∈ E,Φ(x,v) = [ϕ1, ϕ2, · · · , ϕN ]T,Ψ(x,v) = [ψ1, ψ2, · · · , ψN ]T,

ϕi(x,v)(t) = (1− e−αt)
gi(0)

α
+ fi(0) +

∫ t

0

(1− e−α(t−s))

N∑
j=1

aijvj(s− τij)ds,

and

ψi(x,v)(t) = e−αtgi(0) + α

∫ t

0

e−α(t−s)
N∑
j=1

aijvj(s− τij)ds.

For t ≥ 0, we will finish the proof in two steps.
Step 1: T is a self-mapping on E : For the given (x,v) ∈ E, then we have

|ψi(x,v)(t)| ≤ e−αt sup
i

|gi(0)|+ α

∫ t

0

e−α(t−s)
N∑
j=1

aij |vj(s− τij)|ds

≤ e−αt sup
i

|gi(0)|+ sup
i

|gi(0)|eτα
∫ t

0

e−α(t−s)ds

= e−αt sup
i

|gi(0)|+ sup
i

|gi(0)|eτ (1− e−αt)
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< sup
i

|gi(0)|eτ .

Thus
sup
t≥0,i

|ψi(x,v)(t)| ≤ sup
i

|gi(0)|eτ .

Also, for any a ∈ [0, τ ], we have

|ψi(x,v)(t)− ψj(x,v)(t+ a)|
≤ e−αt|gi(0)− e−αagj(0)|

+α|
∫ t

0

e−α(t−s)
N∑
k=1

aikvk(s− τik)ds−
∫ t+a

0

e−α(t+a−s)ajkvk(s− τjk)ds|

≤ e−αt|gi(0)− e−αagj(0)|+ α

∫ t

0

e−α(t−s)
N∑
k=1

aik|vk(s− τik)− vi(s)|ds

+α

∫ t+a

0

e−α(t+a−s)
N∑
k=1

ajk|vk(s− τjk)− vi(s− a)|ds

+α|
∫ t

0

e−α(t−s)vi(s)ds−
∫ t+a

0

e−α(t+a−s)vi(s− a)ds|

≤ e−
α
2 t|gi(0)−e−αagj(0)|+α

∫ t

0

e−α(t−s)e−
α
2 s sup
i,k,s≥−τ,a∈[0,τ ]

{eα
2 s|vk(s+a)−vi(s)|}ds

+α

∫ t+a

0

e−α(t+a−s)e−
α
2 s sup

i,k,s≥−τ,a∈[0,τ ]

{eα
2 s|vk(s+ a)− vi(s)|}ds

+α|
∫ t

0

e−α(t−s)vi(s)ds−
∫ t+a

0

e−α(t+a−s)vi(s− a)ds|

≤ e−
α
2 t|gi(0)− e−αagj(0)|+ |αe−αt

∫ 0

−a
eαsgi(s)ds|

+[α

∫ t

0

e−α(t−s)e−
α
2 sds+α

∫ t+a

0

e−α(t+a−s)e−
α
2 sds] sup

i,k,s≥−τ,a∈[0,τ ]

{eα
2 s|vk(s+a)−vi(s)|}

≤ e−
α
2 t|gi(0)− e−αagj(0)|+ |αe−αt

∫ 0

−a
eαsgi(s)ds|

+4e−
α
2 t sup
i,k,s≥−τ,a∈[0,τ ]

{eα
2 s|vk(s+ a)− vi(s)|}.

Thus
sup

i,j,t≥0,a∈[0,τ ]

{eα
2 t|ψi(x,v)(t)− ψj(x,v)(t+ a)|} < +∞.

Moreover, we have

|ϕi(x,v)(t)− ϕj(x,v)(t)|

≤ |(1− e−αt)
gi(0)

α
− (1− e−αt)

gj(0)

α
|+ |fi(0)− fj(0)|

+|
∫ t

0

(1− e−α(t−s))

N∑
k=1

[aikvk(s− τik)− ajkvk(s− τjk)]ds|
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≤ |gi(0)−gj(0)|
α

+|fi(0)− fj(0)|+
∫ t

0

(1−e−α(t−s))

N∑
k=1

aik|vk(s−τik)−vi(s)|ds

+

∫ t

0

(1− e−α(t−s))

N∑
k=1

ajk|vk(s− τjk)− vi(s)|ds

≤ |gi(0)−gj(0)|
α

+|fi(0)−fj(0)|+2

∫ t

0

e−
α
2 sds sup

i,k,s≥−τ,a∈[0,τ ]

{eα
2 s|vk(s+a)−vi(s)|}.

Thus
sup
i,j,t≥0

{|ϕi(x,v)(t)− ϕj(x,v)(t)|} < +∞.

The above arguments show that T is a self-mapping on E.
Step 2: T is a contraction operator on E: In fact, for (p,q), (p̄, q̄) ∈ E, we

have

|ψi(p,q)(t)− ψi(p̄, q̄)(t)|

≤ α

∫ t

0

e−α(t−s)
N∑
j=1

|aij(p(s− τij))qj(s− τij)− aij(p̄(s− τij))q̄j(s− τij)|ds

≤ α

∫ t

0

e−α(t−s)
N∑
j=1

[|aij(p(s− τij))qj(s− τij)− aij(p̄(s− τij))qj(s− τij)|

+|aij(p̄(s− τij))qj(s− τij)− aij(p̄(s− τij))q̄j(s− τij)|]ds

≤ α

∫ t

0

e−α(t−s)
N∑
j=1

(La sup
i

|gi(0)|eτ |p(s− τij))− p̄(s− τij))|

+|qj(s− τij)− q̄j(s− τij)|)ds

≤ α

N∑
j=1

e−cτij (La sup
i

|gi(0)|eτ + 1)

∫ t

0

e−α(t−s)ecsdsD((p,q), (p̄, q̄))

<
α
∑N
j=1 e

−cτij (La supi |gi(0)|eτ + 1)

c+ α
ectD((p,q), (p̄, q̄)).

Also, we have

|ϕi(p,q)(t)− ϕi(p̄, q̄)(t)|

≤
∫ t

0

(1− e−α(t−s))

N∑
j=1

|aij(p(s− τij))qj(s−τij)−aij(p̄(s− τij))q̄j(s− τij)|ds

≤
∫ t

0

N∑
j=1

|aij(p(s− τij))qj(s− τij)− aij(p̄(s− τij))qj(s− τij)|

+|aij(p̄(s− τij))qj(s− τij)− aij(p̄(s− τij))q̄j(s− τij)|ds

≤
∫ t

0

N∑
j=1

(La sup
i

|gi(0)|eτ |p(s−τij))−p̄(s− τij))|+|qj(s−τij)−q̄j(s−τij)|)ds

≤
N∑
j=1

e−cτij (La sup
i

|gi(0)|eτ + 1)

∫ t

0

ecsdsD((p,q), (p̄, q̄))
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<

∑N
j=1 e

−cτij (La supi |gi(0)|eτ + 1)

c
ectD((p,q), (p̄, q̄)).

Thus

|Ψ(p,q)(t)−Ψ(p̄, q̄)(t)|≤ α supi{
∑N

j=1 e−cτij }(La supi |gi(0)|eτ+1)
c+α ectD((p,q), (p̄, q̄)),

and

|Φ(p,q)(t)−Φ(p̄, q̄)(t)|≤
supi{

∑N
j=1 e

−cτij}(La supi |gi(0)|eτ+1)
c

ectD((p,q), (p̄, q̄)).

Then we have

D

T
p

q

 , T

p

q

 ≤
(α+1) sup

i
{

N∑
j=1

e−cτij }(La sup
i

|gi(0)|eτ+1)

c D((p,q), (p,q)).

It follows from (α+1) supi{
∑N

j=1 e−cτij }(La supi |gi(0)|eτ+1)

c < 1, that T is a strict con-
tractive operator on E. Thus, there exists a unique point (x,v) ∈ E such that

T

x(t)

v(t)

 =

x(t)

v(t)

 .
Then the fixed point satisfies the following equation

xi(t) = (1− e−αt)
gi(0)

α
+ fi(0) +

∫ t

0

(1− e−α(t−s))

N∑
j=1

aij(x(s− τij))vj(s− τij)ds,

(3.1)
and

vi(t) = e−αtgi(0) + α

∫ t

0

e−α(t−s)
N∑
j=1

aij(x(s− τij))vj(s− τij)ds. (3.2)

Corollary 3.1. If aij(x) =
ψ(|xi−xj |)∑N

k=1 ψ(|xi−xk|)
, ψ is a positive Lipschitz continuous

function and Assumption 2.2 hold, then the self-organized system (2.2) with the
initial value (2.3) has a unique conditional flocking solution.

Proof. Since ||t| − |s|| ≤ |t− s| for all t, s ∈ R, we see that there exists a constant
M > 0 such that ||xi − xj | − |pi − pj || ≤M |x− p| hold for x,p ∈ RdN . Thus

|aij(x)− aij(p)| = | ψ(|xi − xj |)∑N
k=1 ψ(|xi − xk|)

− ψ(|pi − pj |)∑N
k=1 ψ(|pi − pk|)

|

≤ | ψ(|xi − xj |)∑N
k=1 ψ(|xi − xk|)

− ψ(|pi − pj |)∑N
k=1 ψ(|xi − xk|)

|

+| ψ(|pi − pj |)∑N
k=1 ψ(|xi − xk|)

− ψ(|pi − pj |)∑N
k=1 ψ(|pi − pk|)

|
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≤ NMLψ
ψ(0)

|x− p|,

where Lψ is the Lipschitz constant for ψ. This means that aij(x) is also a Lipschitz
function for all i, j. Then Corollary 3.1 follows from Theorem 3.1 immediately.

Corollary 3.2. If aij(x) =
ψ(|xi−xj |)∑N

k=1 ψ(|xi−xk|)
, ψ(r) = (1 + r2)−β for r ≥ 0, β > 0

and Assumption 2.2 hold, then the self-organized system (2.2) with the initial value
(2.3) has a unique conditional flocking solution.

Proof. Since |ψ′(r)| = 2βr(1+ r2)−β−1 is bounded for β > 0 on [0,+∞), then we
conclude that ψ(r) is a Lipschitz function. With the similar arguments in Corollary
3.1, we see that aij(x) is also a Lipschitz function for all i, j. Then Corollary 3.2
follows from Theorem 3.1 immediately.

4. Asymptotic flocking velocity formula
In this subsection, we investigate the asymptotic flocking velocities and the final
relative position between agents. We state our results as follows.

Lemma 4.1. If the Assumption 2.1 and Assumption 2.2 hold, {(xi(t),vi(t))}Ni=1

were the flocking solution of the system (2.2) -(2.3) in E, then the two limits

wi = lim
t→+∞

∫ t

0

N∑
j=1

aij(x(s− τij))(vj(s− τij)− vi(s− τi))ds (4.1)

and

cij = lim
t→+∞

∫ t

0

N∑
k=1

[aik(x(s− τik))vk(s− τik)− ajk(x(s− τjk))vk(s− τjk)]ds (4.2)

exists.

Proof. It follows from

|
∫ t

0

N∑
j=1

aij(x(s− τij))(vj(s− τij)− vi(s− τi))ds|

≤
∫ t

0

N∑
j=1

aij(x(s− τij))|vj(s− τij)− vi(s− τi)|ds

≤
∫ t

0

e−
α
2 sds sup

i,j,s≥−τ,a∈[0,τ ]

{eα
2 s|vj(s)− vi(s+ a)|} < +∞.

That the limit

lim
t→∞

∫ t

0

N∑
j=1

aij(x(s− τij))(vj(s− τij)− vi(s− τi))ds

exists. Note that
N∑
k=1

aik(x(s− τik)) =

N∑
k=1

ajk(x(s− τjk)) = 1,
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then

|
∫ t

0

N∑
k=1

[aik(x(s− τik))vk(s− τik)− ajk(x(s− τjk))vk(s− τjk)]ds|

= |
∫ t

0

N∑
k=1

[aik(x(s− τik))vk(s− τik)− aik(x(s− τik))vi(s− τ)

+ajk(x(s− τjk))vi(s− τ)− ajk(x(s− τjk))vk(s− τjk)]ds|

≤
∫ t

0

N∑
k=1

aik(x(s− τik))|vk(s− τik)− vi(s− τ)|ds

+

∫ t

0

N∑
k=1

ajk(x(s− τjk))|vi(s− τ)− vk(s− τjk)|ds

≤ 2N

∫ t

0

e−
α
2 sds sup

i,k,s≥−τ,a∈[0,τ ]

{eα
2 s|vk(s)− vi(s+ a)|} < +∞.

Thus the limit

lim
t→+∞

∫ t

0

N∑
k=1

[aik(x(s− τik))vk(s− τik)− ajk(x(s− τjk))vk(s− τjk)]ds

exists.

Theorem 4.1. If the Assumption 2.1 and Assumption 2.2 hold and {xi(t),vi(t)}Ni=1

were given by formula (3.1) and (3.2), respectively, then there is a v∞ such that

lim
t→+∞

vi(t) =
gi(0) + αwi

1 + ατi
+

α

1 + ατi
[fi(0)− fi(−τi)]

∆
= v∞.

lim
t→+∞

[xi(t)− xi(t− a)] = av∞, for given constant a ∈ R.

The final position relationship between agents can be expressed as follows:

lim
t→+∞

[xi(t)− xj(t)] =
gi(0)− gj(0)

α
+ [fi(0)− fj(0)] + cij ,

where wi and cij are given by (4.1) and (4.2) respectively.

Proof. If the Assumption 2.1 and Assumption 2.2 hold, following Theorem 3.1,
we have lim

t→+∞
|vj(t) − vi(t)| = 0 for all i, j. Thus there is a vector v∞ such that

lim
t→+∞

vi(t) = v∞ for all i. For given constant a > 0, noting the (3.1), we have

xi(t)− xi(t− a)

= e−αt(eαa − 1)
gi(0)

α
+

∫ t

0

(1− e−α(t−s))

N∑
j=1

aij(x(s− τij))vj(s− τij)ds

−
∫ t−a

0

(1− e−α(t−a−s))

N∑
j=1

aij(x(s− τij))vj(s− τij)ds
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= e−αt(eαa − 1)
gi(0)

α
+

∫ t

t−a

N∑
j=1

aij(x(s− τij))vj(s− τij)ds

−
∫ t

0

e−α(t−s)
N∑
j=1

aij(x(s− τij))vj(s− τij)ds

+

∫ t−a

0

e−α(t−a−s)
N∑
j=1

aij(x(s− τij))vj(s− τij)ds.

It follows from

lim
t→+∞

∫ t

t−a

N∑
j=1

aij(x(s− τij))(vj(s− τij)− v∞)ds = 0.

That

lim
t→+∞

∫ t

t−a

N∑
j=1

aij(x(s− τij))vj(s− τij)ds

= lim
t→+∞

∫ t

t−a

N∑
j=1

aij(x(s− τij))(vj(s− τij)− v∞)ds+ av∞

= av∞.

Also, by

lim
t→+∞

∫ t

0

e−α(t−s)
N∑
j=1

aij(x(s− τij))vj(s− τij)ds

= lim
t→+∞

∫ t−a

0

e−α(t−a−s)
N∑
j=1

aij(x(s− τij))vj(s− τij)ds

=
v∞

α
.

We conclude that
lim

t→+∞
(xi(t)− xi(t− a)) = av∞.

On the other hand, by direct computation, we have∫ t

0

(1− e−α(t−s))

N∑
j=1

aij(x(s− τij))vj(s− τij)ds

=

∫ t

0

N∑
j=1

aij(x(s− τij))(vj(s− τij)− vi(s− τi))ds+ xi(t− τi)− fi(−τi)

−
∫ t

0

e−α(t−s)
N∑
j=1

aij(x(s− τij))vj(s− τij)ds.

Thus, substituting it into (3.1) and letting t go to infinity, we have:

τiv∞ =
gi(0) + αwi

α
+ fi(0)− fi(−τi)−

v∞

α
.
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Then we have

lim
t→+∞

vi(t) = v∞ =
gi(0) + αwi

1 + ατi
+

α

1 + ατi
[fi(0)− fi(−τi)].

At last, by direct calculation, we see that

xi(t)− xj(t) = (1− e−αt)
gi(0)− gj(0)

α
+ [fi(0)− fj(0)]

+

∫ t

0

N∑
k=1

[aik(x(s−τik))vk(s−τik)−ajk(x(s−τjk))vk(s−τjk)]ds,

letting t→ +∞, we have

lim
t→+∞

[xi(t)− xj(t)] =
gi(0)− gj(0)

α
+ [fi(0)− fj(0)] + cij .

Remark 4.1. In Theorem 4.1, if aij = aji, τij = τ for all i, j, then
∑N
i=1 wi = 0.

Thus

v∞ =

∑N
i=1 gi(0)

N(1 + ατ)
+

α

N(1 + ατ)

N∑
i=1

[fi(0)− fi(−τ)].

Especially, v∞ = 1
N

∑N
i=1 gi(0) if time delay free.

5. Conclusion
In this paper, we investigated the flocking problem of a modified C-S model with
multiple time delays. By the fixed point theorem, we show that the existence and
uniqueness of the flocking solution for our delayed C-S model when the influence
function has the property of Lipschitz and the initial value satisfies certain condi-
tions. We present the asymptotic flocking velocity and the final relative position
between agents of the unique flocking solution.
Acknowledgements. The authors are grateful to the anonymous referees for their
useful comments and suggestions.
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