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COMMUTING PERTURBATIONS OF
OPERATOR EQUATIONS∗

Xue Xu1 and Jiu Ding2,†

Abstract Let X be a Banach space and let T : X → X be a bounded linear
operator with closed range. We study a class of commuting perturbations of
the corresponding operator equation, using the concept of the spectral radius
of a bounded linear operator. Our results extend the classic perturbation
theorem for invertible operators and its generalization for arbitrary operators
under the commutability assumption.
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1. Introduction
Let X be a Banach space and let B(X) denote the Banach space of all bounded
linear operators T : X → X with the operator norm ∥T∥ = sup{∥Tx∥ : ∥x∥ = 1}.
In this paper we study a class of perturbations for the operator equation Tx = b,
where T ∈ B(X) with closed range and b is a given vector in X.

In the literature, for example [2, 3, 8, 9], of the perturbation theory for opera-
tor equations and related generalized inverses of bounded linear operators from a
Banach space to a Banach space, a common assumption for various perturbation re-
sults is that the perturbed operator T + δT satisfies the inequality ∥δT∥ < 1/∥T+∥,
or more generally either ∥δTT+∥ < 1 or ∥T+δT∥ < 1, so that the classic Banach
lemma can be used, where T+ is a generalized inverse associated with two given
projections to be defined in the next section. The fundamental lemma for the per-
turbation theory of linear operators says that, if E ∈ B(X) satisfies ∥E∥ < 1, then
the bounded linear operator I − E is one-to-one and onto, and the power series∑∞

k=0 E
k converges to the bounded linear operator (I − E)−1 absolutely. More-

over, ∥(I − E)−1∥ ≤ 1/(1− ∥E∥). Here I denotes the identity operator. When the
above inequality is applied to the perturbation analysis of bounded linear operators,
E is taken to be either δTT+ or T+δT in different situations.

However, the perturbation δT of T may not be small enough in norm so that the
perturbation condition ∥δT∥ < 1/∥T †∥ is not satisfied. The purpose of the present
paper is to weaken the common assumption on the size of δT but still guarantee
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the applicability of Banach’s lemma. The special perturbation that we consider is
the one that computes with the unperturbed invertible operator or a generalized
inverse of the unperturbed general operator. That is, the perturbation δT of the
original operator T satisfies the commutability condition δTT = TδT when T is
one-to-one and onto or δTT+ = T+δT in general. This kind of perturbations is
called commuting perturbations. With commuting perturbations, we are able to use
the concept of spectral radius to achieve our goal. We shall weaken the assumption
on the size of the perturbation in the classic perturbation theorem [7] in operator
theory and the generalizations [4, 6] of the classic perturbation result. The classic
result states that, if T is one-to-one and onto, and if ∥δT∥ < 1/∥T−1∥, then the
solution x∗ of the operator equation Tx = b and the solution y∗ of the perturbed
operator equation (T + δT )y = b+ δb satisfy the inequality

∥y∗ − x∗∥
∥x∗∥

≤ ∥T∥∥T−1∥
1− ∥T−1∥∥δT∥

(
∥δb∥
∥b∥

+
∥δT∥
∥T∥

)
, (1.1)

which has been generalized to non-invertible operators in [4, 6].
Our main results, which improve the above classic inequality, will be presented

in Section 3 after proving a preliminary result in the next section. We summarize
the results and give a concluding remark in Section 4.

2. Spectral Radius
For T ∈ B(X) let N(T ) and R(T ) be the null space, which is closed since T is con-
tinuous, and the range of T , respectively. We assume that R(T ) is closed, and both
N(T ) and R(T ) are complemented by closed subspaces N(T )c and R(T )c respec-
tively, so that X = N(T )⊕N(T )c = R(T )⊕R(T )c. Let P and Q be the projections
from X onto N(T ) along N(T )c and onto R(T ) along R(T )c, respectively.

The operator T is one-to-one and onto from N(T )c to R(T ). The generalized
inverse T+ ∈ B(X) of T with respect to P and Q is defined by letting T+y = x
for all y ∈ R(T ), where x is the unique element of N(T )c such that Tx = y, letting
T+y = 0 for all y ∈ R(T )c, and letting T+ be extended to the whole space X by
linearity. The generalized inverse T+ is uniquely determined by the equalities

TT+T = T, T+TT+ = T+, T+T = I − P, TT+ = Q. (2.1)

When X is a Hilbert space and one chooses the projections P and Q to be orthogonal,
i.e., N(T )c = N(T )⊥ and R(T )c = R(T )⊥, where M⊥ denotes the orthogonal
complement of a subspace M of X, the corresponding generalized inverse is called
the Moore-Penrose generalized inverse and is usually denoted by T †. In this special
case (2.1) becomes

TT †T = T, T †TT † = T †, (T †T )∗ = T †T, (TT †)∗ = TT †,

where S∗ is the adjoint of operator S. See [1] for more details on generalized inverses.
The perturbation theory of generalized inverses of bounded linear operators has

been fruitful in the past four decades, starting with the pioneering work [8] by
Nashed. All the perturbation theorems so far in the literature, however, have the
assumption that ∥δTT+∥ < 1 or ∥T+δT∥ < 1, which is implied by the stronger
inequality ∥δT∥ < 1/∥T+∥ [2, 3, 5, 8]. But such assumptions are sometimes too
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strong and so not necessarily satisfied in many applications. In fact, the concept of
the norm may not be the best tool for measuring the size of perturbations. It may
not provide the intrinsic feature of an operator, which is related to the invertibility
of the operator. As it turns out, the notion of the spectral radius of a linear operator
plays an important role in the Banach lemma, which can be seen from Lemma 2.1
below. Let σ(T ) be the spectrum of T , that is, the collection of all complex numbers
λ such that T − λI : X → X is not one-to-one or onto.

Definition 2.1. The number

r(T ) = sup{|λ| : λ ∈ σ(T )}

is called the spectral radius of T .

Spectral radius may provide a better controlling number than norm in the as-
sumption of perturbation analysis for operator equations. For example, let

A =

1 1

0 1

 , δA =

 ϵ δ

0 ϵ

 ; 0 < ϵ ≤ δ. (2.2)

Then the matrix 1-norm ∥δAA−1∥1 = δ. On the other hand, the spectral radius
r(δAA−1) = ϵ. Note that AδA = δAA. From Theorem 3.1 in the next section, we
can obtain a perturbation bound for any δ as long as ϵ is small enough.

It is well known [7] that r(T ) ≤ ∥T∥ for any operator norm ∥ ∥, and

r(T ) = lim
n→∞

∥Tn∥1/n = inf
n≥1

{∥Tn∥1/n}. (2.3)

Lemma 2.1. Let E be a bounded linear operator on a Banach space X such that
r(E) < 1. Then I − E is one-to-one and onto, so (I − E)−1 exists as a bounded
linear operator on X. Moreover,

(I − E)−1 =

∞∑
k=0

Ek,

where the convergence of the Neumann series is absolute.

Lemma 2.2. Let T and S be bounded linear operators on a Banach space X such
that TS = ST . Then

r(TS) = r(ST ) ≤ r(T )r(S).

Proof. Since T and S commute, (TS)n = TnSn for all n. So by (2.3),

r(TS) = lim
n→∞

∥(TS)n∥1/n = lim
n→∞

∥TnSn∥1/n

≤ lim
n→∞

∥Tn∥1/n · lim
n→∞

∥Sn∥1/n

= r(T )r(S).
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3. Commuting Perturbations of Operator Equations
Let T ∈ B(X) and b ∈ X. Suppose that δT ∈ B(X) and δb ∈ X. We shall give
perturbation results for the operator equation

Tx = b (3.1)

when it is perturbed to
(T + δT )y = b+ δb, (3.2)

under some additional assumptions on the perturbation.
We first consider the special case that T is one-to-one and onto. Let κ =

∥T∥∥T−1∥ be the condition number of T .

Theorem 3.1. Let T be one-to-one and onto. If TδT = δTT and r(δT ) <
1/r(T−1), then T + δT is one-to-one and onto. Furthermore, the solution y∗ of
(3.2) and the solution x∗ of (3.1) satisfy the inequality

∥y∗ − x∗∥
∥x∗∥

≤ κ∥(I + T−1δT )−1∥
(
∥δT∥
∥T∥

+
∥δb∥
∥b∥

)
.

Proof. Since TδT = δTT , we have δTT−1 = T−1δT . Then by Lemma 2.2 and the
second assumption of the theorem, r(δTT−1) ≤ r(δT )r(T−1) < 1, so the operator
I + δTT−1 is one-to-one and onto from Lemma 2.1. Thus T + δT = T (I + T−1δT )
is one-to-one and onto.

Subtracting Tx∗ = b from (T + δT )y∗ = b+ δb gives

(T + δT )(y∗ − x∗) = δb− δTx∗,

from which

y∗ − x∗ = (T + δT )−1(δb− δTx∗) = (I + T−1δT )−1T−1(δb− δTx∗).

It follows that

∥y∗ − x∗∥
∥x∗∥

≤ ∥(I + T−1δT )−1∥∥T−1∥∥δb− δTx∗∥
∥x∗∥

≤ ∥T∥∥T−1∥∥(I + T−1δT )−1∥∥δb∥+ ∥δTx∗∥
∥T∥∥x∗∥

≤ κ∥(I + T−1δT )−1∥
(
∥δb∥
∥b∥

+
∥δT∥
∥T∥

)
.

Remark 3.1. Since r(T−1) ≤ ∥T−1∥ and r(δT ) ≤ ∥δT∥, if ∥δT∥ < 1/∥T−1∥, then

r(δT ) ≤ ∥δT∥ <
1

∥T−1∥
≤ 1

r(T−1)
.

Hence, Theorem 3.1 generalizes the classic perturbation result (1.1) when the per-
turbation is commuting.
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Example 3.1. We take the matrix and its perturbation in (2.2) as an example. Let
b = (1, 0)T and δb = (ϵ, ϵ)T . Then x∗ = (1, 0)T and y∗ = (1−ϵ(1+δ)/(1+ϵ)2, ϵ/(1+
ϵ))T . The classic perturbation result works only when ∥δA∥1 < 1/∥A−1∥1, which
means ϵ ≤ δ < 1/4. But since AδA = δAA, we can apply Theorem 3.1 , which only
requires r(δA) = ϵ < 1/r(A−1) = 1 without any restriction to δ.

We can extend Theorem 3.1 to the general case that T ∈ B(X) with closed
range. The number κ = ∥T∥∥T+∥ is still called the condition number of T . The
next theorem deals with the particular case that both (3.1) and (3.2) are consistent.

Theorem 3.2. Let T ∈ B(X) with closed range and let T+ be a generalized inverse
of T . Suppose that T+δT = δTT+ and r(δT ) < 1/r(T+). If b ∈ R(T ) and
b+ δb ∈ R(T + δT ), then for any solution y of (3.2), there is a solution x of (3.1)
such that

∥y − x∥
∥x∥

≤ κ∥(I + T+δT )−1∥
(
∥δT∥
∥T∥

+
∥δb∥
∥b∥

)
.

Proof. The assumption implies that I + T+δT is one-to-one and onto from Lem-
mas 2.1 and 2.2. Let x = T+b+ (I − T+T )y. Then y − x = T+(Ty − b) ∈ N(T )c,
so T+T (y − x) = y − x. Subtracting Tx = b from (T + δT )y = b + δb, we have
(T+δT )(y−x) = δb−δTx. Consequently, (I+T+δT )(y−x) = T+(T+δT )(y−x) =
T+(δb− δTx), from which

y − x = (I + T+δT )−1T+(δb− δTx).

The remaining proof is basically the same as the last part of that for Theorem 3.1.

Remark 3.2. In fact, under the assumption of Theorem 3.2, (T +δT )+ exists with
N((T + δT )+) = N(T+) and R((T + δT )+) = R(T+). Moreover,

(T + δT )+ = T+(I + δTT+)−1 = (I + T+δT )−1T+.

Remark 3.3. If ∥δT∥ < 1/∥T+∥, then

r(δT ) ≤ ∥δT∥ <
1

∥T+∥
≤ 1

r(T+)
.

Thus Theorem 3.2 generalizes the main result of [6] if the perturbation satisfies the
commutability condition T+δT = δTT+.

Remark 3.4. The point x is actually the projection of y onto the solution set of
(3.1) with respect to the decomposition X = N(T )⊕N(T )c. Therefore, in the case
of Moore-Penrose generalized inverses, ∥y − x∥ is the minimal distance of y to the
solution set of (3.1), so the upper bound is the optimal one.

When the equation (3.1) is not consistent, any vector T+b + z with z ∈ N(T )
is called a projection solution of (3.1). With the help of the concept of residual
for projection solutions, one can drop the consistency assumption for the original
equation (3.1) and its perturbation (3.2), as the following theorem shows.

Theorem 3.3. Let T ∈ B(X) with closed range and let T+ be a generalized inverse
of T . Suppose that T+δT = δTT+ and r(δT ) < 1/r(T+). Then for any projection
solution y of (3.2), there is a projection solution x of (3.1) such that

∥y − x∥
∥x∥

≤ κ∥(I + T+δT )−1∥
(

∥r̂∥
∥TT+b∥

+
∥δb∥

∥TT+b∥
+

∥δT∥
∥T∥

)
,
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where r̂ = (T + δT )y − (b+ δb) is the residual of y.

Proof. First (I + T+δT )−1 ∈ B(X) exists. Let x = T+b+ (I − T+T )y. Then

y − x = T+(Ty − b) = T+(r̂ + δb− δTy)

= T+[r̂ + δb− δT (y − x)− δTx],

from which (I + T+δT )(y − x) = T+(r̂ + δb− δTx). Hence,

y − x = (I + T+δT )−1T+(r̂ + δb− δTx). (3.3)

It follows that
∥y − x∥
∥x∥

≤ ∥(I + T+δT )−1∥∥T∥∥T+∥
(

∥r̂∥
∥T∥∥x∥

+
∥δb∥

∥T∥∥x∥
+

∥δT∥
∥T∥

)
≤ κ∥(I + T+δT )−1∥

(
∥r̂∥
∥Tx∥

+
∥δb∥
∥Tx∥

+
∥δT∥
∥T∥

)
= κ∥(I + T+δT )−1∥

(
∥r̂∥

∥TT+b∥
+

∥δb∥
∥TT+b∥

+
∥δT∥
∥T∥

)
.

The last equality is from the fact that Tx = TT+b.
In the case that X is a Hilbert space, the above perturbation bound can be

further analyzed, using the decomposition technique for the proof of Theorem 3.1
in [4]. Projection solutions x in the Hilbert space are least squares solutions since
they solve the minimization problem

∥Tx− b∥ = min{∥Tz − b∥ : z ∈ X}.

Among all the least squares solutions, the one with the minimal norm is given by
x∗ = T †b.

Theorem 3.4. Let X be a Hilbert space, T ∈ B(X) with closed range, and T † the
Moore-Penrose generalized inverse of T . Suppose that T †δT = δTT † and r(δT ) <
1/r(T †). Then for any least squares solution y of (3.2), there is a least squares
solution x of (3.1) such that

∥y − x∥
∥x∥

≤ κ∥(I + T †δT )−1∥
[
∥(I − TT †)b∥

∥TT †b∥
∥δTT †∥

+
(
∥δTT †∥+ 1

)( ∥δb∥
∥TT †b∥

+
∥δT∥
∥T∥

)]
.

Proof. Let x = T †b+(I−T †T )y. Since (T+δT )†r̂ = 0 for r̂ = (T+δT )y−(b+δb),
from (3.3) in the proof of Theorem 3.3,

y − x = (I + T †δT )−1
{
[T † − (T + δT )†]r̂ + T †(δb− δTx)

}
. (3.4)

Using the decomposition (see formula (3.19) in Theorem 3.10 of [8])

[T † − (T + δT )†]r̂ = T †δT (T + δT )† − T †(δTT †)∗[I − (T + δT )(T + δT )†]

+ (I − T †T )[(T + δT )†δT ]∗(T + δT )†,

we have

[T † − (T + δT )†]r̂ = −T †(δTT †)∗r̂. (3.5)
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On the other hand, since y is a least squares solution of (3.2),

∥r̂∥ = ∥(T + δT )y − (b+ δb)∥ ≤ ∥(T + δT )x− (b+ δb)∥
≤ ∥Tx− b∥+ ∥δb− δTx∥ = ∥(I − TT †)b∥+ ∥δb− δTx∥. (3.6)

Therefore, denoting η = ∥(I + T †δT )−1∥, by (3.4), (3.5), and (3.6), we have

∥y − x∥
∥x∥

≤ η∥T †∥∥δTT
†∥∥r̂∥+ ∥δb− δTx∥

∥x∥

≤ η∥T †∥∥δTT
†∥(∥(I − TT †)b∥+ ∥δb− δTx∥) + ∥δb− δTx∥

∥x∥

≤ κη

[
∥δTT †∥∥(I − TT †)b∥

∥T∥∥x∥
+

(∥δTT †∥+ 1)(∥δb∥+ ∥δTx∥)
∥T∥∥x∥

]
≤ κη

[
∥(I − TT †)b∥

∥TT †b∥
∥δTT †∥+

(
∥δTT †∥+ 1

)( ∥δb∥
∥TT †b∥

+
∥δT∥
∥T∥

)]
.

4. Conclusions
In this paper, using the tool of the spectral radius instead of the norm, we have
weakened the usual condition for the classic perturbation result of invertible oper-
ator equations and the extended perturbation result of general consistent operator
equations, when the perturbation of the operator is commuting. We have also ex-
tended our results to the most general situation that the involved operator equations
are inconsistent. Similar ideas may be applied to studying the perturbation bound
when the perturbation satisfies the Nashed condition [8], or equivalently, when it
is a stable perturbation [3].
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