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RANK-ONE CHAOS IN A DELAYED SIR
EPIDEMIC MODEL WITH NONLINEAR
INCIDENCE AND TREATMENT RATES∗

Li Jin1, Yunxian Dai1,†, Yu Xiao1 and Yiping Lin1

Abstract The rank one chaos in a SIR model with two time-delays is studied
in this paper. By using center manifold theorem, normal form theory and
Hassard’s method, the existence, direction and stability of Hopf bifurcation
are discussed. Based on the rank-one chaos theory for delayed differential
equations, the conditions for the existence of rank-one strange attractor in
disturbed system are obtained. Finally, numerical simulations are given to
verify the theoretical analysis results.
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1. Introduction
With the development of chaos theory, more and more scholars pay attention to
chaos. Rank-one chaos is an important branch of chaos phenomena. Wang and
Yang [19] studied the strange attractors, which has an unstable single direction and
some controlled behaviors, and they obtained the existence condition of the strange
attractors. In [20], Wang and Yang proved that for a class of second order ODEs,
there were global strange attractors with fully stochastic properties. In 2003, Wang
and Yang [21] proved the emergence of chaotic behavior in the form of horseshoes
and strange attractors with SRB measures when certain simple dynamical systems
are kicked at periodic time intervals. In 2005, Wang and Oksasoglu [22] applied the
above theory and results to the Chua’s circuit, and they confirmed the existence of
strange attractors in Chua’s circuit. Since then, more and more scholars have paid
attention to the rank-one strange attractor. In 2009, Chen and Han [1] verified the
existence of rank-one chaos in a plane systems with heteroclinic cycles. In 2010,
Wang and Oksasoglu [15] studied a switch-controlled Chua’s circuit, and then they
found strange attractors in the system. Recently, some researchers introduced the
rank one chaos theory into the delay differential equation [14, 25–27]. In 2015, Dai
and Lin et al. [2] developed rank-one theory for delayed differential equations and
applied the Chen system with time-delay. They showed that there was rank-one
strange attractor in time-delayed Chen system. In [24], Yang and Fang et al. found
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the existence of rank-one strange attractor in a periodically kicked delayed three-
species food chain.

Since the SIR model was proposed by Kermack and McKendrick [9] in 1927,
many scholars have studied the dynamics of epidemic models. In the process of
studying infectious diseases, the transmission mode and the therapeutic effect of
diseases are the key issues. In [9], authors used bilinear incidence rate βSI and
linear treatment rate γI to describe the dynamics of an infectious disease. With
the deepening of the research on infectious diseases, authors found that simple
bilinear incidence and treatment rate were not enough to describe the increasingly
complex infectious disease system, many researchers have modified the incidence and
treatment rate of the diseases. In 1986, Liu et al. [13] proposed a general incidence
rate g(I)S = kIpS

1+αIq which considered psychological effects. In 2013, Holling type
III treatment rate T (I) = aI2

1+bI2 was proposed by Dubey et al. [3]. Recently, the
authors [4–6, 10, 16, 18] have studied epidemic model with nonlinear incidence and
treatment rates.

A SIR model with Monod-Haldane functional-type incidence rate and Holling
type III saturated treatment rate was suggested by Kumar and Nilam [11] as follows:

dS(t)

dt
= A− µS(t)− βS(t)I(t− τ)

1 + αI2(t− τ)
,

dI(t)

dt
=

βS(t)I(t− τ)

1 + αI2(t− τ)
− (µ+ d+ σ)I(t)− aI2(t)

1 + bI2(t)
,

dR(t)

dt
=

aI2(t)

1 + bI2(t)
+ σI(t)− µR(t),

(1.1)

where the term βS(t)I(t)
1+αI2(t) represents the Monod-Haldane functional-type incidence

rate. The total population N(t) at time t was divided into three parts: susceptible
individuals S(t), infected individuals I(t), recovered individuals R(t). The total
population moved to susceptible individuals at A constant rate, µ is natural mor-
tality rate, β is the disease transmission rate(The disease can only be transmitted
from the infected to the susceptible), α is the psychological inhibitory effect, d is
the disease mortality, σ is the recovery rate of infected individuals, a is the cure
rate of the disease, b is the effectiveness of the treatment, τ is incubation period of
disease.

Considering the treatment provided to infected individuals, many factors lead
to the time delay, such as the infected individuals cannot be treated at once, or
drugs do not take effect immediately due to the physical condition of the infected
individuals. Considering the influence of the above factors, in order to make the
mathematical model more realistic, we take into account the time delay during the
treatment and add a time delay τ2 to the treatment term, as following form:

dS(t)

dt
= A− µS(t)− βS(t)I(t− τ1)

1 + αI2(t− τ1)
,

dI(t)

dt
=

βS(t)I(t− τ1)

1 + αI2(t− τ1)
− (µ+ d+ σ)I(t)− aI2(t− τ2)

1 + bI2(t− τ2)
,

dR(t)

dt
=

aI2(t− τ2)

1 + bI2(t− τ2)
+ σI(t)− µR(t),

(1.2)

where τ1 is incubation period of disease, τ2 is the time delay during the treatment
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of the infected individuals. We give the initial conditions of system (1.2):

S(ϑ) = φ1(ϑ), I(ϑ) = φ2(ϑ), R(ϑ) = φ3(ϑ), φi(ϑ) ≥ 0, (i = 1, 2, 3),−τ ≤ ϑ ≤ 0,
(1.3)

where (φ1(ϑ), φ2(ϑ), φ3(ϑ)) ∈ C([−τ, 0], R3
+) is the Banach space of continuous

functions mapping [−τ, 0] −→ R3
+, and R3

+ = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}.
Then system (1.2) has a unique solution (S(t), I(t), R(t)) that satisfies (1.3) accord-
ing to the fundamental theory of functional differential equations [7].

In this paper, we think about the fact that in real life some very small periodic
external factors will have some effect on the epidemic. For example, some animals
carrying the virus will return to the same place in the same season every year. In
terms of the spread of infectious diseases, this phenomenon will cause the outbreak
of infectious diseases with a certain periodicity, which is consistent with the fact
that the high incidence of infectious diseases usually occurs in autumn and winter.
From the perspective of disease prevention and control, the actual immunization
strategy is to conduct pulsed immunization at a fixed cycle T . For example, we
will prevent the flu by taking an annual vaccination before the flu season every
year. This kind of periodic immunity measure can cause certain influence to the
prevention and control of infectious disease. So we consider the effect of the time
delay and an external periodic force as an input on the system, we devote our
attention to rank-one strange attractor in a periodically kicked system with two
time-delays. Then we consider the following system:

dS(t)

dt
= A− µS(t)− βS(t)I(t− τ1)

1 + αI2(t− τ1)
+ εS(t)PT (t),

dI(t)

dt
=

βS(t)I(t− τ1)

1 + αI2(t− τ1)
− (µ+ d+ σ)I(t)− aI2(t− τ2)

1 + bI2(t− τ2)
+ εI(t)PT (t),

dR(t)

dt
=

aI2(t− τ2)

1 + bI2(t− τ2)
+ σI(t)− µR(t) + εR(t)PT (t),

(1.4)
where ε > 0 is small enough, PT =

∑∞
n=−∞ δ(t− nT ), δ(·) is Dirac-delta function.

The structure of the paper is as follows: In Section 2, we deduced the condi-
tions for local asymptotic stability and Hopf bifurcation at positive equilibrium. In
Section 3, the direction and stability of Hopf bifurcation are given. In Section 4,
the conditions for generating rank one chaos in a disturbed system are discussed.
Numerical simulations are presented in Section 5. Finally, the conclusions are given
in Section 6.

2. Stability and existence of Hopf bifurcation
We firstly consider the existence of positive equilibrium of system (1.2). By calcu-
lation,

E(S∗, I∗, R∗) = (
(1 + αI∗

2
)[(1 + bI∗

2
)(µ+ d+ σ) + aI∗]

β(1 + bI∗2 )
, I∗,

I∗[σ(1 + bI∗
2
) + aI∗]

µ(1 + bI∗2 )
),

where I∗ satisfies the following equation:

K1I
∗4

+K2I
∗3

+K3I
∗2

+K4I
∗ +K5 = 0, (2.1)
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with

K1 = µαb(µ+ d+ σ),

K2 = µαa+ βb(µ+ d+ σ),

K3 = µ(α+ b)(µ+ d+ σ) + β(a−Ab),

K4 = µa+ β(µ+ d+ σ),

K5 = µ(µ+ d+ σ)− βA.

According to Descartes’ rule of sign [23], equation (2.1) has a positive real root
if the following holds true:

(H1): K5 < 0.
Then there is a positive equilibrium E(S∗, I∗, R∗) of system (1.2) if (H1) holds true.

Next, we can obtain the characteristic matrix of the linearized system of (1.2)
at the positive equilibrium E, denoted as: λI −B − e−λτ1C − e−λτ2D, where

B =


b11 0 0

b21 b22 0

0 b32 b33

, C =


0 c12 0

0 c22 0

0 0 0

, D =


0 0 0

0 d22 0

0 d32 0

, (2.2)

and

b11 = −µ− βI∗

1 + αI∗2 , b21 =
βI∗

1 + αI∗2 , b22 = −(µ+ d+ σ),

b32 = σ, b33 = −µ, c12 = −βS
∗(1− αI∗

2

)

(1 + αI∗2)2
,

c22 =
βS∗(1− αI∗

2

)

(1 + αI∗2)2
, d22 = − 2aI∗

(1 + bI∗2)2
, d32 =

2aI∗

(1 + bI∗2)2
.

The characteristic equation is given as:

λ3 + P1λ
2 +Q1λ+R1 + (P2λ

2 +Q2λ+R2)e
−λτ1 + (P3λ

2 +Q3λ+R3)e
−λτ2 = 0,

(2.3)
where

P1 = 3µ+ d+ σ +
βI∗

1 + αI∗2 , P2 = −βS
∗(1− αI∗

2

)

(1 + αI∗2)2
,

R1 = µ(µ+ d+ σ)(µ+
βI∗

1 + αI∗2 ),

Q1 = µ(3µ+ 2d+ 2σ) +
(2µ+ d+ σ)βI∗

1 + αI∗2 , Q2 = −2µβS∗(1− αI∗
2

)

(1 + αI∗2)2
,

R2 = −µ
2βS∗(1− αI∗

2

)

(1 + αI∗2)2
,

P3 =
2aI∗

(1 + bI∗2)2
, Q3 =

4µaI∗

(1 + bI∗2)2
+

2aβI∗
2

(1 + αI∗2)(1 + bI∗2)2
,

R3 =
2aI∗

(1 + bI∗2)2
(µ2 +

βI∗µ

1 + αI∗2 ).
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Next, we will discuss these four cases: (1) τ1 = τ2 = 0; (2) τ1 = 0, τ2 > 0; (3)
τ1 = τ2 = τ ; (4) τ1 > 0, τ2 ∈ (0, τ20).

Case (1): τ1 = τ2 = 0.
Equation (2.3) is reduced to

λ3 + (P1 + P2 + P3)λ
2 + (Q1 +Q2 +Q3)λ+ (R1 +R2 +R3) = 0. (2.4)

Based on the Routh-Hurwitz criteria, we give the following condition:
(H2): P1 + P2 + P3 > 0, R1 +R2 +R3 > 0,

(P1 + P2 + P3)(Q1 +Q2 +Q3)− (R1 +R2 +R3) > 0.
Assuming that conditions (H1) and (H2) are true, then all the roots of equation
(2.4) have a negative real part. Then we can get:

Theorem 2.1. For τ1 = τ2 = 0, if (H1), (H2) hold, then E(S∗, I∗, R∗) is locally
asymptotically stable.

Case (2): τ1 = 0, τ2 > 0.
Then equation (2.3) becomes

λ3 + (P1 + P2)λ
2 + (Q1 +Q2)λ+R1 +R2 + (P3λ

2 +Q3λ+R3)e
−λτ2 = 0. (2.5)

Assuming that iω2(ω2 > 0) is a root of equation (2.5). Substituting it to equation
(2.5), we can get (R3 − P3ω

2
2) cosω2τ2 +Q3ω2 sinω2τ2 = (P1 + P2)ω

2
2 − (R1 +R2),

−(R3 − P3ω
2
2) sinω2τ2 +Q3ω2 cosω2τ2 = ω3

2 − (Q1 +Q2)ω2.
(2.6)

From equation (2.6), we have

ω6
2 + P12ω

4
2 +Q12ω

2
2 +R12 = 0, (2.7)

where

P12 = (P1 + P2 + P3)(P1 + P2 − P3)− 2(Q1 +Q2),

Q12 = (Q1 +Q2 +Q3)(Q1 +Q2 −Q3) + 2[P3R3 − (P1 + P2)(R1 +R2)],

R12 = (R1 +R2 +R3)(R1 +R2 −R3).

Denote z2 = ω2
2 , equation (2.7) is reduced to

z32 + P12z
2
2 +Q12z2 +R12 = 0. (2.8)

Let
h2(z2) = z32 + P12z

2
2 +Q12z2 +R12, (2.9)

thus

dh2(z2)

dz2
= 3z22 + 2P12z2 +Q12.

Next, let

3z22 + 2P12z2 +Q12 = 0,
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when △2 = P 2
12−3Q12 > 0, it has two real roots: z∗21 = −P12+

√
△2

3 , z∗22 = −P12−
√
△2

3 .
On the one hand, when R12 = (R1+R2+R3)(R1+R2−R3) < 0, since h2(0) < 0,
lim

z2−→+∞
h2(z2) = +∞, equation (2.8) has at least one positive root. On the other

hand, when R12 = (R1 + R2 + R3)(R1 + R2 − R3) ≥ 0, if △2 = P 2
12 − 3Q12 ≤ 0,

then equation (2.8) has no positive root; if △2 = P 2
12 − 3Q12 > 0, z∗21 > 0 and

h2(z
∗
21) ≤ 0 hold, then equation (2.8) has at least one positive root.

For the general case, since equation (2.8) has at most three positive roots, re-
spectively as z21, z22 and z23, so correspondingly there are three positive roots
ω2k =

√
z2k, k = 1, 2, 3 in equation (2.7). According to equation (2.6), we have

cosω2kτ2k =
[Q3 − P3(P1 + P2)]ω

4
2k

P3ω4
2k + (Q2

3 − 2P3R3)ω2
2k +R2

3

+
[R3(P1 + P2) + P3(R1 +R2)−Q3(Q1 +Q2)]ω

2
2k

P3ω4
2k + (Q2

3 − 2P3R3)ω2
2k +R2

3

− R3(R1 +R2)

P3ω4
2k + (Q2

3 − 2P3R3)ω2
2k +R2

3

and

τ
(j)
2k =

1

ω2k

{
arccos

(
[Q3 − P3(P1 + P2)]ω

4
2k

P3ω4
2k + (Q2

3 − 2P3R3)ω2
2k +R2

3

+
[R3(P1 + P2) + P3(R1 +R2)−Q3(Q1 +Q2)]ω

2
2k

P3ω4
2k + (Q2

3 − 2P3R3)ω2
2k +R2

3

− R3(R1 +R2)

P3ω4
2k + (Q2

3 − 2P3R3)ω2
2k +R2

3

)
+ 2πj

}
where j = 0, 1, 2, · · · .

Denote
τ20 = τ

(0)
2k0

= min
k∈{1,2,3}

{τ (0)2k }, ω20 = ω2k0 .

Supposing that equation (2.5) has a root λ(τ2) = α2(τ2)+iω2(τ2) near τ2 = τ
(j)
2k ,

and the root satisfies the following conditions:

α2(τ
(j)
2k ) = 0, ω2(τ

(j)
2k ) = ω2k.

Then we have

[
dλ

dτ2
]−1 =

[3λ2 + 2(P1 + P2)λ+ (Q1 +Q2)]e
λτ2

λ(P3λ2 +Q3λ+R3)
+

2P3λ+Q3

λ(P3λ2 +Q3λ+R3)
− τ2
λ
.

(2.10)
From (2.10), we can get[

Re

(
d

dτ2
(λ(τ2))

)]−1

τ2=τ
(j)
2k

= Re

[
[3λ2 + 2(P1 + P2)λ+ (Q1 +Q2)]e

λτ2

λ(P3λ2 +Q3λ+R3)
+

2P3λ+Q3

λ(P3λ2 +Q3λ+R3)

]
τ2=τ

(j)
2k

=
1

Λ2
{−Q3ω

2
2k[(Q1 +Q2 − 3ω2

2k) cos(ω2kτ
(j)
2k )− 2(P1 + P2)ω2k sin(ω2kτ

(j)
2k )]
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+ (R3ω2k − P3ω
3
2k)[2(P1 + P2)ω2k cos(ω2kτ

(j)
2k ) + (Q1 +Q2 − 3ω2

2k) sin(ω2kτ
(j)
2k )]

−Q2
3ω

2
2k + 2P3ω2k(R3ω2k − P3ω

3
2k)}

=
1

Λ2
{3ω6

2k + 2[(P1 + P2)
2 − P 2

3 − 2(Q1 +Q2)]ω
4
2k

+ [(Q1 +Q2)
2 −Q2

3 + 2P3R3 − 2(P1 + P2)(R1 +R2)]ω
2
2k}

=
1

Λ2
[z2k(3z

2
2k + 2P12z2k +Q12)]

=
1

Λ2
z2kh

′
2(z2k),

where Λ2 = Q2
3ω

4
2k + (R3ω2k − P3ω

3
2k)

2 > 0, z2k > 0. Therefore

sign

{[
Re

(
d

dτ2
(λ(τ2))

)]
τ2=τ

(j)
2k

}
= sign

{[
Re

(
d

dτ2
(λ(τ2))

)]−1

τ2=τ
(j)
2k

}
= sign

{
1

Λ2
z2kh

′
2(z2k)

}
,

then the sign of Re
(

d
dτ2

(λ(τ
(j)
2k ))

)
is consistent with the sign of h′2(z2k).

According to [17, Corollary 2.4] and the above analysis, we can obtain:

Theorem 2.2. For τ1 = 0, τ2 > 0, then

(i) If (H1), (H2), R12 = (R1+R2+R3)(R1+R2−R3) ≥ 0 and △2 = P 2
12−3Q12 ≤

0 hold, E(S∗, I∗, R∗) is locally asymptotically stable for τ2 > 0.
(ii) If (H1), (H2) hold, and either R12 = (R1 + R2 + R3)(R1 + R2 − R3) < 0

or R12 = (R1 + R2 + R3)(R1 + R2 − R3) ≥ 0 and △2 = P 2
12 − 3Q12 > 0,

z∗21 = −P12+
√
△2

3 > 0 and h2(z
∗
21) ≤ 0, E(S∗, I∗, R∗) is locally asymptotically

stable for τ2 ∈ (0, τ20).
(iii) If (ii) and h

′

2(z2k) ̸= 0 hold, then Hopf bifurcations occurs in system (1.2) at
E(S∗, I∗, R∗) for τ2 = τ

(j)
2k .

Case (3): τ1 = τ2 = τ > 0.
The characteristic equation changes to the following form:

λ3 + P1λ
2 +Q1λ+R1 + [(P2 + P3)λ

2 + (Q2 +Q3)λ+R2 +R3]e
−λτ = 0. (2.11)

Assuming that equation (2.11) has a root of λ = iω3(ω3 > 0), we have−ω3
3 +Q1ω3 = [R2 +R3 − (P2 + P3)ω

2
3 ] sinω3τ − (Q2 +Q3)ω3 cosω3τ,

R1 − P1ω
2
3 = −[R2 +R3 − (P2 + P3)ω

2
3 ] cosω3τ − (Q2 +Q3)ω3 sinω3τ.

(2.12)

Next, we can get
ω6
3 + P13ω

4
3 +Q13ω

2
3 +R13 = 0, (2.13)

where

P13 = (P1 + P2 + P3)(P1 − P2 − P3)− 2Q1,
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Q13 = (Q1 +Q2 +Q3)(Q1 −Q2 −Q3) + 2(R2 +R3)(P2 + P3)− 2P1R1,

R13 = (R1 +R2 +R3)(R1 −R2 −R3).

Then, equation (2.13) becomes

z33 + P13z
2
3 +Q13z3 +R13 = 0, (2.14)

where z3 = ω2
3 .

Let (H3): Equation (2.14) has at least one positive real root.
If (H3) holds, similar to the case (2), the three roots of equation (2.14) are

expressed as z31, z32 and z33, so correspondingly there are three positive roots ω3k =√
z3k, k = 1, 2, 3 in equation (2.13). From equation (2.12), we can get

cosω3kτ =
[Q2 +Q3 − P1(P2 + P3)]ω

4
3k

(P2 + P3)2ω4
3k − [2(P2 + P3)(R2 +R3)− (Q2 +Q3)2]ω2

3k + (R2 +R3)2

+
[R1(P2+P3)+P1(R2+R3)−Q1(Q2+Q3)]ω

2
2k

(P2+P3)2ω4
3k−[2(P2+P3)(R2+R3)−(Q2+Q3)2]ω2

3k+(R2+R3)2

− R1(R2+R3)

(P2+P3)2ω4
3k−[2(P2+P3)(R2+R3)−(Q2+Q3)2]ω2

3k+(R2+R3)2

and

τ (j) =
1

ω3k

{
arccos

(
[Q2+Q3 − P1(P2+P3)]ω

4
3k

(P2+P3)2ω4
3k−[2(P2+P3)(R2+R3)−(Q2+Q3)2]ω2

3k+(R2+R3)2

+
[R1(P2 + P3) + P1(R2 +R3)−Q1(Q2 +Q3)]ω

2
2k

(P2 + P3)2ω4
3k − [2(P2 + P3)(R2 +R3)− (Q2 +Q3)2]ω2

3k + (R2 +R3)2

− R1(R2+R3)

(P2+P3)2ω4
3k−[2(P2+P3)(R2+R3)−(Q2+Q3)2]ω2

3k+(R2+R3)2

)
+2πj

}
where j = 0, 1, 2, · · · .

Define
τ30 = τ0 = min

k∈{1,2,3}
{τ (0)}, ω30 = ω3k0

.

Assuming that equation (2.11) has a root λ(τ) = α3(τ) + iω3(τ) near τ = τ (j), and
the root satisfies the following conditions:

α3(τ
(j)) = 0, ω3(τ

(j)) = ω3k.

Then we have

[
d

dτ
(λ(τ))]−1 =

3λ2 + 2P1λ+Q1 + [2(P2 + P3)λ+Q2 +Q3]e
−λτ

λe−λτ [(P2 + P3)λ2 + (Q2 +Q3)λ+R2 +R3]
− τ

λ
. (2.15)

Similar to the discussion in case (2), we can get[
Re

(
d

dτ
(λ(τ))

)]−1

τ=τ(j)

=
1

Λ3
z3kh

′
3(z3k)

where Λ3 = (Q2 + Q3)
2ω4

3k + [(R2 + R3)ω3k − (P2 + P3)ω
3
3k]

2 > 0, h3(z3) = z33 +
P13z

2
3 +Q13z3 +R13. Since Λ3 > 0, z3k > 0, then

sign

{[
Re

(
d

dτ
(λ(τ))

)]
τ=τ(j)

}
= sign

{[
Re

(
d

dτ
(λ(τ))

)]−1

τ=τ(j)

}
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= sign

{
1

Λ3
z3kh

′
3(z3k)

}
,

thus the sign of Re
(

d
dτ (λ(τ

(j)))
)

is consistent with the sign of h′3(z3k).
Obviously, we have the following theorem.

Theorem 2.3. For τ1 = τ2 = τ > 0, if (H1 −H3) and h′3(z3k) ̸= 0 hold, then

(i) E(S∗, I∗, R∗) is asymptotically stable for τ ∈ (0, τ0).
(ii) E(S∗, I∗, R∗) is unstable for τ > τ0.

(iii) System (1.2) undergoes Hopf bifurcations at E(S∗, I∗, R∗) for τ = τ (j).

Case (4): τ1 > 0, τ2 ∈ (0, τ20), τ1 ̸= τ2.
In system (1.2), τ1 is considered as a parameter. Assuming that equation (2.3)

has a root of λ = iω4(ω4 > 0), then we have

− ω3
4 +Q1ω4 + (P3ω

2
4 −R3) sin(ω4τ

∗
2 ) +Q3ω4 cos(ω4τ

∗
2 )

= −(P2ω
2
4 −R2) sin(ω4τ1)−Q2ω4 cos(ω4τ1),

− P1ω
2
4 +R1 − (P3ω

2
4 −R3) cos(ω4τ

∗
2 ) +Q3ω4 sin(ω4τ

∗
2 )

= (P2ω
2
4 −R2) cos(ω4τ1)−Q2ω4 sin(ω4τ1).

(2.16)

According to equation (2.16), we can get

ω6
4 + P14ω

4
4 +Q14ω

2
4 +R14 +M14 sin(ω4τ

∗
2 ) +N14 cos(ω4τ

∗
2 ) = 0 (2.17)

where

P14 = P 2
1 + P 2

3 − P 2
2 − 2Q1,

Q14 = Q2
1 +Q2

3 −Q2
2 + 2P2R2 − 2P1R1 − 2P3R3,

R14 = R2
1 +R2

3 −R2
2,

M14 = 2[Q3ω4(R1 − P1ω
2
4) + (Q1ω4 − ω3

4)(P3ω
2
4 −R3)],

N14 = 2[Q3ω4(Q1ω4 − ω3
4)− (R1 − P1ω

2
4)(P3ω

2
4 −R3)].

Similar to the discussion in case (3), let
(H4): Equation (2.17) has at least one positive real root.
Supposing that the positive real roots of equation (2.17) are ω4k(k = 1, 2, · · · , 6).

From (2.16), we have

τ∗1k
(j) =

1

ω4k

{
arccos

(
(Q2 − P1P2)ω

4
4k + (P1R2 + P2R1 −Q1Q2)ω

2
4k −R1R2

P 2
2 ω

4
4k + (Q2

2 − 2P2R2)ω2
4k +R2

2

+
[(P2Q3 − P3Q2)ω

3
4k + (Q2R3 −Q3R2)ω4k] sin(ω4kτ

∗
2 )

P 2
2 ω

4
4k + (Q2

2 − 2P2R2)ω2
4k +R2

2

− [P2P3ω
4
4k + (Q2Q3 − P2R3 − P3R2)ω

2
4k +R2R3] cos(ω4kτ

∗
2 )

P 2
2 ω

4
4k + (Q2

2 − 2P2R2)ω2
4k +R2

2

)
+ 2πj

}
where j = 0, 1, 2, · · · .
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Define
τ∗10 = τ∗1k0

(0) = min
k∈{1,2,··· ,6}

{τ∗1k
(0)}, ω40 = ω4k0

. (2.18)

Then we can obtain[
dλ

dτ1

]−1

=
Peλτ1 +Q+Reλ(τ1−τ2)

M
− τ1
λ

(2.19)

where

P =3λ2 + 2P1λ+Q1,

Q =2P2λ+Q2,

R =(2P3λ+Q3)− τ2(P3λ
2 +Q3λ+R3),

M =λ(P2λ
2 +Q2λ+R2).

From equation (2.19), we have[
Re

(
d

dτ1
(λ(τ∗1k

(j)))
)]−1

λ=iω4k

= M1N1+M2N2

M2
1+M2

2

where

M1 = −Q2ω
2
4k,

M2 = R2ω4k − P2ω
3
4k,

N1 = (−3ω2
4k +Q1) cos(ω4kτ

∗
1k

(j)
)− 2P1ω4k sin(ω4kτ

∗
1k

(j)
) +Q2 + (P3ω

2
4kτ

∗
2 +Q3

−R3τ
∗
2 ) cos(ω4k(τ

∗
1k

(j) − τ∗
2 ))− (2P3ω4k −Q3ω4kτ

∗
2 ) sin(ω4k(τ

∗
1k

(j) − τ∗
2 )),

N2 = 2P1ω4k cos(ω4kτ
∗
1k

(j)
) + (−3ω2

4k +Q1) sin(ω4kτ
∗
1k

(j)
) + 2P2ω4k + (P3ω

2
4kτ

∗
2

+Q3 −R3τ
∗
2 ) sin(ω4k(τ

∗
1k

(j) − τ∗
2 )) + (2P3ω4k −Q3ω4kτ

∗
2 ) cos(ω4k(τ

∗
1k

(j) − τ∗
2 )).

Let
(H5): M1N1 +M2N2 ̸= 0.
We can get the following conclusion.

Theorem 2.4. For τ1 > 0, τ2 ∈ (0, τ20), if (H1), (H2), (H4), (H5) hold, then

(i) E(S∗, I∗, R∗) is asymptotically stable for τ1 ∈ (0, τ∗10).
(ii) E(S∗, I∗, R∗) is unstable for τ1 > τ∗10.

(iii) System (1.2) undergoes Hopf bifurcations at E(S∗, I∗, R∗) for τ1 = τ∗1k
(j).

3. Direction and stability of the Hopf bifurcation
In the previous section, we obtained the conditions for the local stability and Hopf
bifurcation of the system (1.2) at the positive equilibrium. In this section, we discuss
the direction and stability of the Hopf bifurcation of the system (1.2) when τ1 > 0,
τ2 = τ∗2 ∈ (0, τ20) by [7, 8, 12].

Let x1(t) = S(t) − S∗, x2(t) = I(t) − I∗, x3(t) = R(t) − R∗, t = t/τ1, and
τ1 = τ∗10 + µ (µ is bifurcation parameters of system (1.2)). Then the system (1.2)
can be written as a FDE in C = C([−1, 0], R3),

ẋ(t) = Lµ(xt) + f(µ, xt), (3.1)
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where x(t) = (x1(t), x2(t), x3(t))
T ∈ R3. Lµ(ϕ) : C → R3 and f(µ, xt) are shown

below:

Lµ(ϕ) = (τ∗10 + µ)B


ϕ1(0)

ϕ2(0)

ϕ3(0)

+(τ∗10 + µ)C


ϕ1(−1)

ϕ2(−1)

ϕ3(−1)

+(τ∗10 + µ)D


ϕ1(− τ∗

2

τ1
)

ϕ2(− τ∗
2

τ1
)

ϕ3(− τ∗
2

τ1
)

 ,

(3.2)
and

f(µ, ϕ) = (τ∗10 + µ)


f1

f2

f3

 , (3.3)

with ϕ = (ϕ1, ϕ2, ϕ3)
T ∈ C([−1, 0], R3), and

f1 =k11ϕ
2
2(−1) + k12ϕ1(0)ϕ2(−1) + k13ϕ1(0)ϕ

2
2(−1) + k14ϕ

3
2(−1) + · · · ,

f2 =− k11ϕ
2
2(−1)−k12ϕ1(0)ϕ2(−1)+k21ϕ

2
2(−

τ∗2
τ1

)−k13ϕ1(0)ϕ22(−1)−k14ϕ32(−1)

+ k22ϕ
3
2(−

τ∗2
τ1

) + · · · ,

f3 =− k21ϕ
2
2(−

τ∗2
τ1

)− k22ϕ
3
2(−

τ∗2
τ1

) + · · · ,

and

k11 =
αβS∗I∗(3− 2αI∗

2

)

(1 + αI∗2)3
, k12 = −β(1− αI∗

2

)

(1 + αI∗2)2
, k13 =

αβI∗(3− 2αI∗
2

)

(1 + αI∗2)3
,

k14 =
αβS∗(2α2I∗

4 − 7αI∗
2

+ 1)

(1 + αI∗2)4
, k21 = −a(1− 3bI∗

2

)

(1 + bI∗2)3
, k22 =

4abI∗(1− bI∗
2

)

(1 + bI∗2)4
.

According to the Riesz representation theorem, there exists a η(θ, µ)(−1 ≤ θ ≤
0), η(θ, µ) is a bounded variation function, such that

Lµ(ϕ) =

∫ 0

−1

dη(θ, µ)ϕ(θ), ϕ ∈ C([−1, 0], R3). (3.4)

Then, we choose

η(θ, µ) = (τ∗10 + µ)[Bδ(θ) + Cδ(θ + 1) +Dδ(θ +
τ∗2
τ1

)], (3.5)

where δ is the Dirac delta function.
Next, we define

A(µ)ϕ =


dϕ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1

dη(s, µ)ϕ(s), θ = 0,
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and

R(µ)ϕ =

{
0, θ ∈ [−1, 0),

f(µ, ϕ), θ = 0,

where ϕ ∈ C1([−1, 0], R3).
For θ = 0, equation (3.1) is equivalent to the following form:

ẋt = A(µ)xt +R(µ)xt, (3.6)

where xt = x(t+ θ) = (x1(t+ θ), x2(t+ θ), x3(t+ θ)) for θ ∈ [−1, 0].
Define

A∗ψ(s) =


−dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1

dηT (t, 0)ψ(−t), s = 0.

and
⟨ψ(s), ϕ(θ)⟩ = ψ̄(0)ϕ(0)−

∫ 0

−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)ϕ(ξ)dξ, (3.7)

where η(θ) = η(θ, 0), A and A∗ are adjoint operators. Let A = A(0), then ±iω40τ
∗
10

are eigenvalues of A and A∗ respectively. Assuming that q(θ) = (1, γ, ζ)T eiω40τ
∗
10θ

is the eigenvector of A corresponding to iω40τ
∗
10. Then, according to the definition

of A and (3.5), we have

τ∗10


iω40 − b11 −c12e−iω40τ

∗
10 0

−b21 iω40 − b22 − c22e
−iω40τ

∗
10 − d22e

−iω40τ
∗
2 0

0 −b32 − d32e
−iω40τ

∗
2 iω40 − b33

q(0) =


0

0

0

 ,

which yields

q(0) = (1, γ, ζ)T =
(
1,

iω40 − b11
c12e−iω40τ∗

10
,
(b32 + d32e

−iω40τ
∗
2 )(iω40 − b11)

(iω40 − b33)c12e−iω40τ∗
10

)T

.

Similar to the discussion in q(θ), assuming that q∗(s) = D′(1, γ∗, ζ∗)eiω40τ
∗
10s is the

eigenvector of A∗ corresponding to −iω40τ
∗
10, which yields

q∗(0) = D′(1, γ∗, ζ∗) = D′(1,
−iω40 − b11

b21
, 0).

From (3.7), we can obtain

⟨q∗(s), q(θ)⟩ = D̄′(1, γ̄∗, ζ̄∗)(1, γ, ζ)T

−
∫ 0

−1

∫ θ

ξ=0

D̄′(1, γ̄∗, ζ̄∗)e−i(ξ−θ)ω40τ
∗
10dη(θ)(1, γ, ζ)T eiξω40τ

∗
10dξ

= D̄′{1 + γγ̄∗ + ζζ̄∗ −
∫ 0

−1

(1, γ̄∗, ¯ζ∗)θeiθω40τ
∗
10dη(θ)(1, γ, ζ)T }

= D̄′{1 + γγ̄∗ + ζζ̄∗ + e−iω40τ
∗
10(1, γ̄∗, ¯ζ∗) · C(1, γ, ζ)T

+
τ∗2
τ∗10

e−iω40τ
∗
2 (1, γ̄∗, ¯ζ∗) ·D(1, γ, ζ)T }
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= D̄′{1 + γγ̄∗ + ζζ̄∗ + e−iω40τ
∗
10γ(c12 + γ̄∗c22)

+
τ∗2
τ∗10

e−iω40τ
∗
2 γ(γ̄∗d22 + ζ̄∗d32)}.

Thus, we have

D̄′ = {1+γγ̄∗+ζζ̄∗+e−iω40τ
∗
10γ(c12+γ̄∗c22)+

τ∗2
τ∗10

e−iω40τ
∗
2 γ(γ̄∗d22+ζ̄∗d32)}−1. (3.8)

In order to describe the center manifold C0 at µ = 0, assuming that xt is the
solution of equation (3.1) at µ = 0 and defining

z(t) = ⟨q∗, xt⟩, W (t, θ) = xt(θ)− 2Re{z(t)q(θ)}. (3.9)

On the center manifold C0, we have

W (t, θ) =W (z(t), z̄(t), θ) =W20(0)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+W30(θ)

z3

6
+ · · · ,

where z and z̄ are local coordinates for center manifold C0 in the direction of q and
q̄.

Then we have

ż(t) = ⟨q∗(θ), ẋt(θ)⟩

= ⟨q∗(θ), Axt(θ) +Rxt(θ)⟩

= ⟨A∗q∗(θ), xt(θ)⟩+ ⟨q∗(θ), Rxt(θ)⟩

= iw40⟨q∗(θ), xt(θ)⟩+ ⟨q∗(θ), Rxt(θ)⟩.

(3.10)

When θ = 0,

ż = iω40τ
∗
10z + ⟨q∗(θ), f(0,W (z(t), z̄(t), θ) + 2Re{z(t)q(θ)}⟩

= iω40τ
∗
10z + q̄∗(0)f(0,W (z(t), z̄(t), 0) + 2Re{z(t)q(0)}

= iω40τ
∗
10z + q̄∗(0)f0(z, z̄) ≜ iω40τ

∗
10z + g(z, z̄),

(3.11)

where

g(z, z̄) = q̄∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z̄z2

2
+ · · · . (3.12)

Since xt(θ) = (x1t(θ), x2t(θ), x3t(θ))
T = W (t, θ) + zq(θ) + z̄q̄(θ) and q(θ) =

(1, γ, ζ)T eiω40τ
∗
10θ, we have

x1t(0) = z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+O(|(z, z̄)|3),

x2t(0) = zγ + z̄γ̄ +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+O(|(z, z̄)|3),

x3t(0) = zζ + z̄ζ̄ +W
(3)
20 (0)

z2

2
+W

(3)
11 (0)zz̄ +W

(3)
02 (0)

z̄2

2
+O(|(z, z̄)|3),
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x1t(−1) = ze−iω40τ
∗
10 + z̄eiω40τ

∗
10 +W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄

+W
(1)
02 (−1)

z̄2

2
+O(|(z, z̄)|3),

x2t(−1) = zγe−iω40τ
∗
10 + z̄γ̄eiω40τ

∗
10 +W

(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz̄

+W
(2)
02 (−1)

z̄2

2
+O(|(z, z̄)|3),

x3t(−1) = zζe−iω40τ
∗
10 + z̄ζ̄eiω40τ

∗
10 +W

(3)
20 (−1)

z2

2
+W

(3)
11 (−1)zz̄

+W
(3)
02 (−1)

z̄2

2
+O(|(z, z̄)|3),

x1t(−
τ∗2
τ∗10

) = ze−iω40τ
∗
2 + z̄eiω40τ

∗
2 +W

(1)
20 (− τ∗2

τ∗10
)
z2

2
+W

(1)
11 (− τ∗2

τ∗10
)zz̄

+W
(1)
02 (− τ∗2

τ∗10
)
z̄2

2
+O(|(z, z̄)|3),

x2t(−
τ∗2
τ∗10

) = zγe−iω40τ
∗
2 + z̄γ̄eiω40τ

∗
2 +W

(2)
20 (− τ∗2

τ∗10
)
z2

2
+W

(2)
11 (− τ∗2

τ∗10
)zz̄

+W
(2)
02 (− τ∗2

τ∗10
)
z̄2

2
+O(|(z, z̄)|3),

x3t(−
τ∗2
τ∗10

) = zζe−iω40τ
∗
2 + z̄ζ̄eiω40τ

∗
2 +W

(3)
20 (− τ∗2

τ∗10
)
z2

2
+W

(3)
11 (− τ∗2

τ∗10
)zz̄

+W
(3)
02 (− τ∗2

τ∗10
)
z̄2

2
+O(|(z, z̄)|3).

Then

g(z, z̄) = q̄∗(0)f0(z, z̄) = D̄′τ10(1, γ̄∗, ζ̄∗)(f
(0)
1 f

(0)
2 f

(0)
3 )T

= D̄′τ10
{
[k11x

2
2t(−1) + k12x1t(0)x2t(−1) + k13x1t(0)x

2
2t(−1)

+ k14x
3
2t(−1) + · · · ] + γ̄∗[−k11x22t(−1)− k12x1t(0)x2t(−1)

+ k21x
2
2t(−

τ∗2
τ∗10

)− k13x1t(0)x
2
2t(−1)− k14x

3
2t(−1)

+ k22x
3
2t(−

τ∗2
τ∗10

) + · · · ] + ζ̄∗[−k21x22t(−
τ∗2
τ∗10

)− k22x
3
2t(−

τ∗2
τ∗10

) + · · · ]
}
.

According to (3.12), we can get

g20 =2D̄′τ∗10[(k11γ
2e−2iω40τ

∗
10 + k12γe

−iω40τ
∗
10) + γ̄∗(k21γ

2e−2iω40τ
∗
2

− k11γ
2e−2iω40τ

∗
10 − k12γe

−iω40τ
∗
10) + ζ̄∗(−k21γ2e−2iω40τ

∗
2 )],

g11 =D̄′τ∗10{[2k11γγ̄ + k12(γ̄e
iω40τ

∗
10 + γe−iω40τ

∗
10)] + γ̄∗[2k21γγ̄ − 2k11γγ̄

− k12(γ̄e
iω40τ

∗
10 + γe−iω40τ

∗
10)] + ζ̄∗(−2k21γγ̄)},

g02 =2D̄′τ∗10[(k11γ̄
2e2iω40τ

∗
10 + k12γ̄e

iω40τ
∗
10) + γ̄∗(k21γ̄

2e2iω40τ
∗
2 − k11γ̄

2e2iω40τ
∗
10

− k12γ̄e
iω40τ

∗
10) + ζ̄∗(−k21γ̄2e2iω40τ

∗
2 )],

g21 =2D̄′τ∗10{[k11(2γe−iω40τ
∗
10W

(2)
11 (−1) + γ̄eiω40τ

∗
10W

(2)
20 (−1))
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+ k12(W
(2)
11 (−1) +

1

2
W

(2)
20 (−1) +

1

2
γ̄eiω40τ

∗
10W

(1)
20 (0) + γe−iω40τ

∗
10W

(1)
11 (0))

+ k13(2γγ̄ + γ2e−2iω40τ
∗
10) + k14(3γ

2γ̄e−iω40τ
∗
10)]

+ γ̄∗[k21(2γe
−iω40τ

∗
2W

(2)
11 (− τ∗2

τ∗10
) + γ̄eiω40τ

∗
2W

(2)
20 (− τ∗2

τ∗10
))

+ k22(3γ
2γ̄e−iω40τ

∗
2 )− k11(2γe

−iω40τ
∗
10W

(2)
11 (−1) + γ̄eiω40τ

∗
10W

(2)
20 (−1))

− k12(W
(2)
11 (−1) +

1

2
W

(2)
20 (−1) +

1

2
γ̄eiω40τ

∗
10W

(1)
20 (0) + γe−iω40τ

∗
10W

(1)
11 (0))

− k13(2γγ̄ + γ2e−2iω40τ
∗
10)− k14(3γ

2γ̄e−iω40τ
∗
10)] + ζ̄∗[−k22(3γ2γ̄e−iω40τ

∗
2 )

− k21(2γe
−iω40τ

∗
2W

(2)
11 (− τ∗2

τ∗10
) + γ̄eiω40τ

∗
2W

(2)
20 (− τ∗2

τ∗10
))]},

where

W20(θ) =
ig20
ω40τ∗10

q(0)eiω40τ
∗
10θ +

iḡ02
3ω40τ∗10

q̄(0)e−iω40τ
∗
10θ + E1e

2iω40τ
∗
10θ,

W11(θ) =− ig11
ω40τ∗10

q(0)eiω40τ
∗
10θ +

iḡ11
ω40τ∗10

q̄(0)e−iω40τ
∗
10θ + E2,

and

E1 =2


2iω40 − b11 −c12e−2iω40τ

∗
10 0

−b21 2iω40 − b22 − c22e
−2iω40τ

∗
10 − d22e

−2iω40τ
∗
2 0

0 −b32 − d32e
−2iω40τ

∗
2 2iω40 − b33


−1

×


F1

F2

F3

 ,

E2 =


−b11 −c12 0

−b21 −b22 − c22 − d22 0

0 −b32 − d32 −b33


−1

·


G1

G2

G3

 ,

and

F1 = k11γ
2e−2iω40τ

∗
10 + k12γe

−iω40τ
∗
10 ,

F2 = k21γ
2e−2iω40τ

∗
2 − k11γ

2e−2iω40τ
∗
10 − k12γe

−iω40τ
∗
10 ,

F3 = −k21γ2e−2iω40τ
∗
2 ,

G1 = 2k11γγ̄ + k12(γ̄e
iω40τ

∗
10 + γe−iω40τ

∗
10),

G2 = 2k21γγ̄ − 2k11γγ̄ − k12(γ̄e
iω40τ

∗
10 + γe−iω40τ

∗
10),

G3 = −2k21γγ̄.

Next, we can calculate the following values:

C1(0) =
i

2ω40τ∗10
(g11g20 − 2|g11|2 −

|g02|2

3
) +

g21
2
, µ2 = − Re(C1(0))

Re(λ′(τ∗10))
,
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T2 = −ImC1(0) + µ2Imλ
′
(τ∗10)

ω40τ∗10
, β2 = 2Re(C1(0)).

Where µ2 < 0 (µ2 > 0), the Hopf bifurcation is subcritical (supercritical); β2 > 0
(β2< 0), the bifurcating periodic solutions are unstable (stable); T2 > 0 (T2 < 0),
the period of the bifurcating periodic solutions is increasing (decreasing).

4. Rank-one strange attractor
In the previous section, we discussed the direction and stability of Hopf bifurcation.
In this section, we always assumed that the bifurcating periodic solutions of system
(1.2) is supercritical. System (1.4) can be rewritten as:

ẋ(t) = Lµ(xt) + f(µ, xt) + εΦ(xt)PT (t), (4.1)

where

Φ(ϕ) = (τ∗10 + µ)


ϕ1(0) + S∗

ϕ2(0) + I∗

ϕ3(0) +R∗

 , (4.2)

and ε > 0 is small enough, PT =
∑∞

n=−∞ δ(t− nT ), δ(·) is Dirac-delta function.
In section 3, we defined A(µ) and R(µ). In this section, we redefine

R(µ)ϕ =

{
0, θ ∈ [−r, 0),
f(µ, ϕ) + εΦ(t)PT (t), θ = 0.

For θ = 0, system (4.1) is equivalent to

ẋt = A(µ)xt +R(µ)xt. (4.3)

According to the Harssard’s method, we have
ż = iω40z +

g20
2 z

2 + g11zz̄ +
g02
2 z̄

2 + g21z
2z̄ + · · ·

+ εPT q̄∗(0)Φ(W (z, z̄, 0) + 2Rezq(0)),

Ẇ = AW +H(z, z̄, 0).

(4.4)

Let W ∈ B, B is a Banach space. In equation (4.4), let z = x+ yi, define

Ψx(x, y) = Re{q̄∗(0)Φ(W (x, y, 0) + 2Re(x+ yi)q(0))},

Ψy(x, y) = Im{q̄∗(0)Φ(W (x, y, 0) + 2Re(x+ yi)q(0))}.
(4.5)

Next, in equation (4.5), let x = cos θ, y = sin θ, W = 0, then

{ŝ0 = (cos θ, sin θ,0) ∈ S × B, θ ∈ [0, 2π)}

is the unit circle in (x, y)-plane in (x, y,W)-space, and define

φ(θ) = cos θΨx(s0) + sin θΨy(s0). (4.6)

The following results are given in Dai et al. [2, Theorem 1].
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Lemma 4.1 ( [2, Theorem 1]). Assume that the bifurcating periodic solutions of
system (1.2) is supercritical, φ(θ) is a Morse function and 0 < µ ≪ 1, 0 < ε ≪ 1.
Regard the period T of the forcing as a parameter and denote FT = Fµ,ε,T . Then
there exists a constant K2, determined exclusively by φ(θ), such that if

∣∣∣ε Imc1(0)
Rec1(0)

∣∣∣ >
K2, then there exists a positive measure ∆ ⊂ (µ−1,∞) for T , so that for T ∈ ∆,
FT has a strange attractor Λ. This is to say that there exists an open neighborhood
U of Λ such that FT has a positive Lyapunov exponent for Lebesgue almost every
point in U . Furthermore, FT admits an ergodic SRB measure, with respect to which
almost every point of U is generic.

Next we verify that φ(θ) is a Morse function according to Lemma 4.1. We let
z = x+ yi, W = 0.

According to equation (4.5) and (4.6), we have

q̄∗(0)Φ(W (z, z̄, 0) + 2Re{zq(0)}
= q̄∗(0)Φ(2Rezq(0))

= q̄∗(0)Φ(zq(0) + z̄q̄(0))

= D̄′τ∗10(1, γ̄
∗, ζ̄∗)


z + z̄ + S∗

zγ + z̄γ̄ + I∗

zζ + z̄ζ̄ +R∗


= τ∗10(d1 + d2i){[2x+ S∗ + r∗1(2xr1 − 2yr2 + I∗) + s∗1(2xs1 − 2ys2 +R∗)]

− [r∗2(2xr1 − 2yr2 + I∗) + s∗2(2xs1 − 2ys2 +R∗)]i},

where D̄′ = d1 + d2i, γ = r1 + r2i, ζ = s1 + s2i, γ
∗ = r∗1 + r∗2i, ζ

∗ = s∗1 + s∗2i.
Then, we can obtain

Ψx(x, y) = Re{q̄∗(0)Φ(2Rezq(0))}
= τ∗10d1[2x+ S∗ + r∗1(2xr1 − 2yr2 + I∗) + s∗1(2xs1 − 2ys2 +R∗)]

+ τ∗10d2[r
∗
2(2xr1 − 2yr2 + I∗) + s∗2(2xs1 − 2ys2 +R∗)],

(4.7)

Ψy(x, y) = Im{q̄∗(0)Φ(2Rezq(0))}
= −τ∗10d1[r∗2(2xr1 − 2yr2 + I∗) + s∗2(2xs1 − 2ys2 +R∗)]

+ τ∗10d2[2x+ S∗ + r∗1(2xr1 − 2yr2 + I∗) + s∗1(2xs1 − 2ys2 +R∗)].

(4.8)

Let x = cos θ, y = sin θ, then we have

φ(θ) = cos θΨx(s0) + sin θΨy(s0)

= cos θ{τ∗10d1[2 cos θ + S∗ + r∗1(2 cos θr1 − 2 sin θr2 + I∗) + s∗1(2 cos θs1

− 2 sin θs2 +R∗)] + τ∗10d2[r
∗
2(2 cos θr1 − 2 sin θr2 + I∗) + s∗2(2 cos θs1

− 2 sin θs2 +R∗)]}+ sin θ{−τ∗10d1[r∗2(2 cos θr1 − 2 sin θr2 + I∗)

+ s∗2(2 cos θs1 − 2 sin θs2 +R∗)] + τ∗10d2[2 cos θ + S∗ + r∗1(2 cos θr1

− 2 sin θr2 + I∗) + s∗1(2 cos θs1 − 2 sin θs2 +R∗)]}.

(4.9)

Then we can prove that φ(θ) is a Morse function in system (4.1). From Lemma
4.1, if Re(c1(0)) < 0, ∃ a constant K2, such that a rank-one strange attractor is
observable in system (4.1) when

∣∣∣ε Imc1(0)
Rec1(0)

∣∣∣ > K2.
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5. Numerical simulation
In this section, we choose a set of parameter values as [11] A = 5, µ = 0.05,
a = 0.295, b = 0.0387, α = 1.2, β = 0.54, d = 0.001, σ = 0.002.

As an example, we consider the following system:

dS(t)

dt
= 5− 0.05S(t)− 0.54S(t)I(t− τ1)

1 + 1.2I2(t− τ1)
+ εS(t)PT (t),

dI(t)

dt
=
0.54S(t)I(t− τ1)

1 + 1.2I2(t− τ1)
− (0.05 + 0.001 + 0.002)I(t)− 0.295I2(t− τ2)

1 + 0.0387I2(t− τ2)

+ εI(t)PT (t),

dR(t)

dt
=

0.295I2(t− τ2)

1 + 0.0387I2(t− τ2)
+ 0.002I(t)− 0.05R(t) + εR(t)PT (t).

(5.1)
When ε = 0, system (5.1) is undisturbed system (1.2). We have the following

four cases.
(i) τ1 = τ2 = 0
We have K5 = µ(µ+d+σ)−βA = −2.6974 < 0, (H1) is satisfied. Then system

(5.1) has a positive equilibrium E = (33.0056, 4.2373, 62.6723). Moreover, we can
obtain P1+P2+P3 = 1.8452 > 0, R1+R2+R3 = 0.0088 > 0, (P1+P2+P3)(Q1+
Q2 + Q3) − (R1 + R2 + R3) = 0.4814 > 0. (H2) also holds true, then E is locally
asymptotically stable from Theorem 2.1 (see Figure 1).
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Figure 1. E is locally asymptotically stable with ε = 0, τ1 = τ2 = 0.

(ii) τ1 = 0, τ2 > 0
By calculation we can get R12=(R1+R2+R3)(R1+R2−R3)=−3.8607e−05<0.

Furthermore, we have ω20 = 0.3456, τ20 = 6.8303. According to Theorem 2.2, E
is asymptotically stable when τ2 ∈ (0, 6.8303) (see Figure 2). E loses its stability
when τ2 passes through the critical value τ20 = 6.8303. And a Hopf bifurcation
occurs at E when τ2 = 7.14 > τ20 (see Figure 3).

(iii) τ1 = τ2 = τ > 0
By calculations, ω30 = 1.5861,τ0 = 1.0295. From Theorem 2.3, E is asymptot-

ically stable when τ ∈ (0, 1.0295) (see Figure 4). A periodic solutions occurs at E
when τ = 1.04 > τ0 (see Figure 5).
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Figure 2. E is asymptotically stable with ε =
0, τ1 = 0, τ2 = 5.

Figure 3. A Hopf bifurcation occurs from E
with ε = 0, τ1 = 0, τ2 = 7.14.
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Figure 4. E is asymptotically stable with ε =
0, τ = 0.9.

Figure 5. A Hopf bifurcation occurs from E
with ε = 0, τ = 1.04.

Figure 6. E is asymptotically stable with ε =
0, τ1 = 0.2, τ2 = 5.

Figure 7. Stable periodic solutions bifurcate
from E with ε = 0, τ1 = 0.56, τ2 = 5.

(iv) τ1 > 0, τ2 ∈ (0, 6.8303)
We chose τ1 as a parameter and let τ2 = 5. Then, we can get ω40 = 0.5193, τ∗10 =

0.5516. From Theorem 2.4, E is asymptotically stable when τ1 ∈ (0, τ∗10) (see Figure
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6). Moreover, we can calculate the following values: c1(0) = −0.0020 − 0.0049i,
µ2 = 0.0465, T2 = 0.0066, β2 = −0.0040. System (5.1) undergoes a Hopf bifurcation
at E when τ1 = 0.56 > τ∗10, and the Hopf bifurcation is supercritical and the
bifurcating periodic solutions are stable (see Figure 7).

When ε > 0, system (5.1) is disturbed system (1.4). According to (iv), we
can obtain | Im(c1(0))

Re(c1(0))
| = 2.4071, µ = τ1 − τ∗10 = 0.0084, φ(θ) = −0.1888 sin θ −

0.7556 cos θ− 0.0761 cos 2θ+0.0809 sin θ cos θ+0.0428. It’s easy to verify that φ(θ)
is a Morse function. There ∃ ∆ ⊂ (0.0084−1,∞) of T (∆ is a positive measure set),
such that the time-T map FT has a strange attractor for T ∈ ∆. For system (5.1),
we choose τ1 = 0.56, τ2 = 5, ε ∈ (0, 1) and T ∈ (1000, 6000), we show a rank-one
strange attractor with ε = 0.1, T = 2000 in Figure 8. A rank-one strange attractor
occurs with ε = 0.1, T = 4000 (see Figure 9). In Figure 10 and 11, largest Lyapunov
exponent λ versus ε with T = 2000, and T = 4000 are given. In Figure 12, we give
the largest Lyapunov exponent λ versus T with ε = 0.1, where T varying from 1000
to 6000.

Figure 8. E is unstable, and a rank-one
strange attractor occurs with τ1 = 0.56, τ2 = 5,
ε = 0.1, T = 2000.

Figure 9. E is unstable, and a rank-one
strange attractor occurs with τ1 = 0.56, τ2 = 5,
ε = 0.1, T = 4000.
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Figure 10. Largest Lyapunov exponent λ ver-
sus ε with τ1 = 0.56, τ2 = 5, T = 2000, ε
varying from 0 to 1.
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Figure 11. Largest Lyapunov exponent λ ver-
sus ε with τ1 = 0.56, τ2 = 5, T = 4000, ε
varying from 0 to 1.
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Figure 12. Largest Lyapunov exponent λ versus T with τ1 = 0.56, τ2 = 5, ε = 0.1, T varying from
1000 to 6000.

6. Conclusion
In this paper, the rank-one chaos theory for delayed differential equations is applied
to a SIR epidemic model with two time-delays. By using Hopf bifurcation theory,
we discuss the local stability of the positive equilibrium and the existence of Hopf
bifurcation for the following four cases: (1) τ1 = τ2 = 0, (2) τ1 = 0, τ2 > 0, (3)
τ1 = τ2 = τ and (4) τ1 > 0, τ2 ∈ (0, τ20). When τ1 > 0, τ2 ∈ (0, τ20), regarding τ1 as
a parameter, we study the direction and stability of the Hopf bifurcation. We add
periodic kicks to the susceptible, the infected and the recovered individuals. It is
shown that when the system undergoing supercritical Hopf bifurcation is subjected
periodic kicks, rank one strange attractor is observable. It means that if susceptible
individuals, infected individuals, recovered individuals suffered a periodic external
force, then chaotic behaviors will occur. Finally, the numerical simulation results
are consistent with the theoretical results.
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