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A DELAYED PREDATOR-PREY MODEL
WITH PREY POPULATION GUIDED

ANTI-PREDATOR BEHAVIOUR AND STAGE
STRUCTURE∗

Lingshu Wang1,†, Mei Zhang1 and Meizhi Jia1

Abstract We consider a predator-prey model with stage structure for the
prey and anti-predator behaviour such that the adult prey can attack vulner-
able predators. In which a time delay due to the gestation of the predator is
incorporated into this model. By analyzing corresponding characteristic equa-
tions, the local stability of each of feasible equilibria and the existence of Hopf
bifurcations at the positive equilibrium are established, respectively. By using
Lyapunov functionals and LaSalle’s invariance principle, sufficient conditions
are obtained for the global stability of the trivial equilibrium, the predator-
extinction equilibrium and the positive equilibrium, respectively. Numerical
simulations are performed to illustrate the theoretical results.
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time delay, Hopf bifurcation, stability.

MSC(2010) 34K18, 34K20, 34K60, 92D25.

1. Introduction
Predator-prey model is an essential tool in mathematical ecology and specifically
for our understanding of interacting populations in the natural environment. Al-
though biologists routinely label the animals as predator or prey, there is sometimes
no obvious winner as prey can sometimes inflict harm on their predators, which indi-
cates that cyclic dominance is also important for predator-prey interactions [13,18].
Anti-predator behavior is an evolutionary adaptation developed over time, which
assists prey organisms in their constant struggle against their predators. Indeed,
role reversals between predator and prey (i.e. anti-predator behaviour) often occur.
Experiments show that anti-predator behaviour of prey populations is realized in
terms of (a) morphological changes or through changes in behaviour [8, 11, 14], or
(b) the prey attack their predators [2, 6, 19]. To model anti-predator behaviour
(b), Biao Tang and Yanni Xiao [19] proposed a predator-prey model to describe
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anti-predator behaviour as follows:

ẋ(t) = rx
(
1− x

k

)
− βxy

a+ x2
,

ẏ(t) =
µβxy

a+ x2
− dy − ηxy, (1.1)

where x(t) and y(t) are the densities of the prey and the predator at time t, respec-
tively. All the parameters are positive constants in which r is the intrinsic growth
rate of the prey, k is the carrying capacity of the environment, β is the capture
rate of the predator, µ is the conversion rate of the prey into predator, d is the
natural death rate of the predator population, and η is the rate of anti-predator be-
haviour of prey to the predator population. In [19], numerical studies showed that
anti-predator behaviour not only makes the coexistence of the prey and predator
populations less likely, but also damps the predator-prey oscillations.

Time delays of one type or another have been incorporated into biological models
by many researchers(see, for example, [1, 7, 9, 21–23]). In general, delay differential
equations exhibit much more complicated dynamics than ordinary differential equa-
tions since a time delay could cause the population to fluctuate. Therefore, more
realistic models of population interactions should take into account the effect of
time delays. Time delay due to the gestation is a common example, because gen-
erally the consumption of prey by the predator throughout its past history governs
the present birth rate of the predator.

Motivated by Refs. [1, 10, 15, 22, 23] in the resent study, our objective of this
paper is to investigate and analyze a predator-prey model which consists of a prey
population which is divided into two subpopulations, one is juvenile prey and other
is adult prey. Based on above discussions, in this paper, we study the following
differential equations

ẋ1(t) = rx2(t)− (r1 + d1)x1(t),

ẋ2(t) = r1x1(t)− d2x2(t)− ax2
2(t)− a1x2(t)y(t), (1.2)

ẏ(t) = a2x2(t− τ)y(t− τ)− by2(t)− d3y(t)− ηx2(t)y(t),

where x1(t) and x2(t) represent the densities of the juvenile and the adult prey
population at time t, respectively; y(t) is the density of the predator at time t.
The parameters a, a1, a2, b, d1, d2, d3, r, r1 and η are positive constants, in which the
birth rate r of the prey is proportional to the existing adult population; a and b are
the intra-specific competition rates of the adult prey and the predator, respectively;
d1, d2 and d3 are the natural death rates of the juvenile prey, adult prey and the
predator, respectively; r1 is the transformation rate from the juvenile individuals
to adult individuals for the prey; a1 is the capturing rate of the predator, a2/a1 is
the conversion rate of nutrients into the reproduction of the predator, η is the rate
of anti-predator behaviour of prey to the predator population. τ ≥ 0 is a constant
delay due to the gestation of the predator.

In real world natural ecological system, it is seen that the juvenile members of
a species may not be able to direct predation. Basically, they are dependent on the
adult members. In system (1.2), we have considered that only the adult members
of prey are captured by the predators. Note that here anti-predator behaviour does
not directly benefit the prey population but reduces the growth of the predator pop-
ulation since the prey population does not feed chiefly on the predator population.
It is reasonable to assume that a2 > η.



A delayed predator-prey model. . . 1813

The initial conditions for system (1.2) take the form

x1(θ) = φ1(θ) ≥ 0, x2(θ) = φ2(θ) ≥ 0, y(θ) = ϕ1(θ) ≥ 0, φ1(0) > 0,

φ2(0) > 0, ϕ1(0) > 0, (φ1(θ), φ2(θ), ϕ1(θ)) ∈ C([−τ, 0], R3
+0), θ ∈ [−τ, 0), (1.3)

where R3
+0 = {(z1, z2, z3) : zi ≥ 0, i = 1, 2, 3}.

The rest of the paper is organized as follows. In Section 2, we discuss the
boundedness of solutions of the system (1.2). In Section 3, by using the theory on
characteristic equation of delay differential equations developed by [7], we discuss
the local stability of the positive equilibrium of system (1.2). We establish the
existence of Hopf bifurcations at the positive equilibrium. By means of Lyaponov
functionals and LaSalle’s invariance principle, we obtain sufficient conditions for
the global stability of the positive equilibrium. In Section 4, we obtain sufficient
conditions for the local and the global stability of each of boundary equilibria of
system (1.2). In Section 5, some numerical simulations are presented to illustrate
the theoretical results. The paper ends with a discussion in Section 6.

2. Positivity and boundedness of solutions
It is well known by the fundamental theory of functional differential equations [4]
that system (1.2) has a unique solution (x1(t), x2(t), y(t)) satisfying initial condi-
tions (1.3). In this section, we show the positivity and the boundedness of solutions
of system (1.2)–(1.3).

Lemma 2.1. Solutions of system (1.2) corresponding to initial conditions (1.3) are
defined on [0,+∞) and remain positive for all t ≥ 0.

Proof. Let (x1(t), x2(t), y(t)) be a solution of system (1.2) with initial conditions
(1.3). First, we show that x2(t) > 0 for all t > 0. Notice x2(0) > 0, hence if there
exists a t0 such that x2(t0) = 0, then t0 > 0. Assume that t0 is the first such time
that x2(t) = 0, that is t0 = inf{t > 0 : x2(t0) = 0}. By the second equation of
system (1.2), we obtain ẋ2(t0) = r1x1(t0) ≤ 0. Hence x1(t0) ≤ 0. By the first
equation of system (1.2), we have

x1(t) = [x1(0) + r

∫ t

0

x2(s)e
(r1+d1)sds]e−(r1+d1)t. (2.1)

By the definition of t0, x2(t) ≥ 0 for t ∈ [0, t0]. Thus, we have x1(t0) > 0. This
contradiction shows that x2(t) > 0 for all t > 0. By (2.1), we have x1(t) > 0 for all
t > 0.

Now, we show that y(t) > 0 for all t > 0. Let us consider y(t) for t ∈ [0, τ ].
Since ϕ1(θ) ≥ 0 for θ ∈ [−τ, 0], we derive from the third equation of system (1.2)
that

ẏ(t) ≥ −(d3 + ηx2(t))y(t).

A standard comparison argument shows that

y(t) ≥ y(0) exp

{
−
∫ t

0

(d3 + ηx2(s))ds

}
> 0,

i.e. y(t) > 0 for t ∈ [0, τ ]. In a similar way, we treat the intervals [τ, 2τ ], . . . , [nτ, (n+
1)τ ], n ∈ N . Thus, we have y(t) > 0 for all t > 0.
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Lemma 2.2. There are positive constants M1, M2 and M3 such that for any positive
solution (x1(t), x2(t), y(t)) of system (1.2) with initial conditions (1.3),

lim sup
t→+∞

x1(t) ≤ M1, lim sup
t→+∞

x2(t) ≤ M2, lim sup
t→+∞

y(t) ≤ M3.

Proof. Let (x1(t), x2(t), y(t)) be any positive solution of system (1.2) with initial
conditions (1.3). By the first and second equations of system (1.2), we can obtain

ẋ1(t) = rx2(t)− (r1 + d1)x1(t),

ẋ2(t) ≤ r1x1(t)− d2x2(t)− ax2
2(t),

which yields

lim sup
t→+∞

x1(t)≤
r|rr1−d2(r1+d1)|

a(r1 + d1)2
:= M1, lim sup

t→+∞
x2(t)≤

|rr1 − d2(r1 + d1)|
a(r1 + d1)

:=M2.

By the third equation of system (1.2), for t sufficiently large, we have

ẏ(t) ≤ a2M2y(t− τ)− by2(t)− d3y(t).

Consider the following auxiliary equation

u̇(t) = a2M2u(t− τ)− bu2(t)− d3u(t).

By Lamma 3.1 in [17], we derive that

lim
t→∞

u(t) =
|a2M2 − d3|

b
.

By comparison, it follows that

lim sup
t→∞

y(t) ≤ |a2M2 − d3|
b

:= M3.

Lemma 2.3. For any positive solution (x1(t), x2(t), y(t)) of system (1.2) with initial
conditions (1.3), we have

lim inf
t→+∞

x2(t) ≥
rr1 − (r1 + d1)(d2 + a1M3)

a(r1 + d1)
:= x2,

where M3 is defined in Lemma 2.2.

Proof. Let (x1(t), x2(t), y(t)) be any positive solution of system (1.2) with initial
conditions (1.3). By Lemma 2.2, it follows that lim sup

t→+∞
y(t) ≤ M3. Hence, for ε > 0

being sufficiently small, there is a T0 > 0 such that if t > T0, y(t) < M3 + ε.
Accordingly, for ε > 0 being sufficiently small, we derive from the first and the
second equations of system (1.2) that, for t > T0,

ẋ1(t) = rx2(t)− (r1 + d1)x1(t),

ẋ2(t) ≥ r1x1(t)− d2x2(t)− ax2
2(t)− a1(M3 + ε)x2(t), (2.2)

which leads to

lim inf
t→+∞

x2(t) ≥
rr1 − (r1 + d1)(d2 + a1M3)

a(r1 + d1)
:= x2. (2.3)
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3. Stability analysis of the positive equilibrium and
Hopf bifurcations

In this section, we discuss the stability of the positive equilibrium of system (1.2).
Firstly, we consider the existence of the non-negative equilibrium of system (1.2).

System (1.2) always has a trivial equilibrium E0(0, 0, 0). If rr1 > d2(r1 + d1),
then system (1.2) has a predator-extinction equilibrium E1(x

0
1, x

0
2, 0), where

x0
1 =

r[rr1 − d2(r1 + d1)]

a(r1 + d1)2
, x0

2 =
rr1 − d2(r1 + d1)

a(r1 + d1)
.

If the following condition holds:

(H1) (a2 − η)x0
2 > d3,

then system (1.2) has a positive equilibrium E∗(x
∗
1, x

∗
2, y

∗), where

x∗
1 =

r(abx0
2 + a1d3)

(r1 + d1)[ab+ a1(a2 − η)]
, x∗

2 =
abx0

2 + a1d3
ab+ a1(a2 − η)

, y∗ =
a(a2 − η)x0

2 − ad3
a1(a2 − η) + ab

.

The Jacobian matrix at the positive equilibrium E∗ is given by

JE∗ =


−(r1 + d1) r 0

r1 −( rr1
r1+d1

+ ax∗
2) −a1x

∗
2

0 −ηy∗ + a2y
∗e−λτ −(a2x

∗
2 + by∗) + a2x

∗
2e

−λτ

 .

Then the characteristic equation of system ( 1.2 ) at the equilibrium E∗ is of the
form

λ3 + p2λ
2 + p1λ+ p0 + (q2λ

2 + q1λ+ q0)e
−λτ = 0, (3.1)

where

p2 = r1 + d1 +
rr1

r1 + d1
+ (a+ a2)x

∗
2 + by∗,

p1 = (r1 + d1)[(a+ a2)x
∗
2 + by∗] + (a2x

∗
2 + by∗)(

rr1
r1 + d1

+ ax∗
2)− a1ηx

∗
2y

∗,

p0 = (r1 + d1)[ax
∗
2(a2x

∗
2 + by∗)− a1ηx

∗
2y

∗],

q2 = −a2x
∗
2,

q1 = −a2x
∗
2(r1 + d1 +

rr1
r1 + d1

+ ax∗
2 − a1y

∗),

q0 = −a2x
∗
2(r1 + d1)(ax

∗
2 − a1y

∗).

When τ = 0, equation (3.1) becomes

λ3 + (p2 + q2)λ
2 + (p1 + q1)λ+ p0 + q0 = 0. (3.2)

Direct calculation yields

△1 =p2 + q2 = r1 + d1 +
rr1

r1 + d1
+ ax∗

2 + by∗ > 0,
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△2 =(p2 + q2)(p1 + q1)− (p0 + q0) = x∗
2y

∗[a1(a2 − η) + ab](
rr1

r1 + d1
+ ax∗

2 + by∗)

+ [ax∗
2(r1 + d1) + by∗(r1 + d1 +

rr1
r1 + d1

)](p2 + q2) > 0,

△3 =(p0 + q0)△3 = x∗
2y

∗(r1 + d1)[a1(a2 − η) + ab]△3 > 0.

Then, by the Routh-Hurwitz criterion, the equilibrium E∗ is locally asymptotically
stable when τ = 0.

When τ > 0, then the roots of (3.1) can only enter the right-half plane in
the complex plane by crossing the imaginary axis as the delay τ increases. Let
λ = iω(ω > 0) be a root of Eq.(3.1). Substituting λ = iω into Eq.(3.1) and
separating the real and imaginary parts, one obtains

(q2ω
2 − q0) sinωτ + q1ω cosωτ = ω3 − p1ω,

(q2ω
2 − q0) cosωτ − q1ω sinωτ = −p2ω

2 + p0. (3.3)

Squaring and adding the two equations of (3.3), we derive that

ω6 + h2ω
4 + h1ω

2 + h0 = 0, (3.4)

where

h2 = p22 − 2p1 − q22

= (r1+d1+
rr1

r1+d1
)2+ax∗

2(ax
∗
2+2

rr1
r1+d1

)+by∗(by∗+2a2x
∗
2)+2a1x

∗
2ηy

∗ > 0,

h1 = p21 − 2p0p2 − q21 + 2q0q2,

h0 = p20 − q20

= (p0 − q0)x
∗
2y

∗(r1 + d1)[a1(a2 − η) + ab].

Let z = ω2, then equation (3.4) can be rewritten as

z3 + h2z
2 + h1z + h0 = 0. (3.5)

If h1 > 0 and p0 > q0, then Eq.(3.5) has always no positive roots. Hence, under these
conditions, Eq.(3.4) has no purely imaginary roots for any τ > 0 and accordingly,
the equilibrium E∗ is locally asymptotically stable for all τ ≥ 0.

If h1 > 0 and p0 < q0, then Eq.(3.5) has always one positive root z0. Accordingly,
Eq.(3.4) has a pair of purely imaginary roots ±iω0 given by

τk =
2kπ

ω0
+

1

ω0
arccos

q1ω0(ω
3
0 − p1ω0)− (p2ω

2
0 − p0)(q2ω

2
0 − q0)

(q1ω0)2 + (q2ω2
0 − q0)2

, k = 0, 1, 2, · · · .

Differentiating the two sides of (3.1) with respect to τ , it follows that(
dλ

dτ

)−1

=
3λ2 + 2p2λ+ p1

−λ(λ3 + p2λ2 + p1λ+ p0)
+

2q2λ+ q1
λ(q2λ2 + q1λ+ q0)

− τ

λ
.

After some algebra, one obtains that

sgn

{
dReλ

dτ

}
τ=τk

= sgn

{
Re

(
dλ

dτ

)−1
}

τ=τk

= sgn

{
h′(zk)

(q1ω0)2 + (q2ω2
0 − q0)2

}
.

Based on the theory of characteristic equation of delay differential equations
with delay-dependent parameters developed by [7], one can obtain the following
results.
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Theorem 3.1. For system (1.2), assume that (H1) holds and h1 > 0, we have

(i) If p0 > q0, then the equilibrium E∗ is locally asymptotically stable.
(ii) If p0 < q0, then the equilibrium E∗ is locally asymptotically stable for τ ∈ [0, τ0)

and unstable for τ > τ0. System (1.2) undergoes a Hopf bifurcation at E∗ when
τ = τ0.

Theorem 3.2. Assume that (H1) holds, h1 > 0 and p0 > q0, then the equilibrium
E∗ is globally asymptotically stable provided that

(H2) x2 >
a2[(a2 − η)x0

2 − d3]

k2[a1(a2 − η) + ab]
.

Here, x2 is the persistency constant for x2(t) as defined in Lemma 2.3.

Proof. By Theorem 3.1, we see that if (H1) holds, h1 > 0 and p0 > q0, then E∗
is locally asymptotically stable. Hence, we only prove that all positive solutions of
system (1.2) with initial conditions (1.3) converge to E∗. Let (x1(t), x2(t), y(t)) be
any positive solution of system (1.2) with initial conditions (1.3). System (1.2) can
be rewritten as

ẋ1(t) =
r

x∗
1

[−x2(t)(x1(t)− x∗
1) + x1(t)(x2(t)− x∗

2)],

ẋ2(t) =
r1
x∗
2

[−x1(t)(x2(t)− x∗
2) + x2(t)(x1(t)− x∗

1)] + x2(t)[−a(x2(t)− x∗
2)]

+a1y
∗x2(t)− a1x2(t)y(t), (3.6)

ẏ(t) = a2x2(t− τ)y(t− τ)− d3y(t)− by2(t)− ηx2(t)y(t).

Define

V (t) = k1(x1 − x∗
1 − x∗

1 ln
x1

x∗
1

) + k2(x2 − x∗
2 − x∗

2 ln
x2

x∗
2

) + y − y∗ − y∗ ln
y

y∗
,

where k1 = r1x
∗
1/(rx

∗
2), k2 = (a2 − η)/(a1).

Calculating the derivative of V (t) along positive solutions of system (1.2), it
follows that

V̇ (t) =k1
x1(t)− x∗

1

x1(t)
ẋ1(t) + k2

x2(t)− x∗
2

x2(t)
ẋ2(t) +

y(t)− y∗

y(t)
ẏ(t)

=−r1k2
x∗
2

[√
x2(t)

x1(t)
(x1(t)− x∗

1)−

√
x1(t)

x2(t)
(x2(t)− x∗

2)

]2
− ak2(x2(t)− x∗

2)
2

+a2y
∗(x2(t)− x∗

2)− a2x2(t)y(t) + a2x2(t− τ)y(t− τ)

−a2
y∗

y(t)
x2(t− τ)y(t− τ)− b(y(t)− y∗)2 + a2x

∗
2y

∗. (3.7)

Define

V∗(t) = V (t) + a2

∫ t

t−τ

[
x2(u)y(u)− x∗

2y
∗ − x∗

2y
∗ ln

x2(u)y(u)

x∗
2y

∗

]
du.

Direct calculation shows that

V̇∗(t) =−r1k2
x∗
2

[√
x2(t)

x1(t)
(x1(t)− x∗

1)−

√
x1(t)

x2(t)
(x2(t)− x∗

2)

]2
− b(y(t)− y∗)2
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−a2x
∗
2y

∗
[
x2(t− τ)y(t− τ)

x∗
2y(t)

− 1− ln
x2(t− τ)y(t− τ)

x∗
2y(t)

]
−a2x

∗
2y

∗
[

x∗
2

x2(t)
− 1− ln

x∗
2

x2(t)

]
− (x2(t)− x∗

2)
2

[
ak2 −

a2y
∗

x2(t)

]
. (3.8)

Note that the function g(x) = x − 1 − lnx is always non-negative for any x > 0,
and g(x) = 0 if and only if x = 1. Hence, if (H2) hols, we have x2(t) > a2y

∗

ak2
for

t ≥ T . Thus V̇∗(t) ≤ 0 with equality if and only if x1(t) = x∗
1, x2(t) = x2(t−τ) = x∗

2

and y(t) = y(t− τ) = y∗. Hence, the only invariant set in M is Λ = {(x∗
1, x

∗
2, y

∗)}.
Therefore, the global attractiveness of E∗ follows from LaSalle invariant principle
for delay differential systems.

4. Stability analysis of the boundary equilibria
In this section, we discuss the stability of the trivial equilibrium E0 and the predator-
extinction equilibrium E1 of system (1.2).

Now we consider the local stability of the E0 and E1. The Jacobian matrix at
the equilibrium E0 is given by

JE0
=


−(r1 + d1) r 0

r1 −d2 0

0 0 −d3

 .

So, the characteristic equation of system ( 1.2 ) at E0 takes the form

(λ+ d3)[λ
2 + (r1 + d1 + d2)λ+ d2(r1 + d1)− rr1] = 0. (4.1)

Obviously, Eq. (4.1) always has a negative real root: λ = −d3. If rr1 < d2(r1+d1),
then all roots of Eq. (4.1) are negative. If rr1 > d2(r1 + d1), then Eq. (4.1) has a
positive real root. Hence, E0 is locally asymptotically stable when rr1 < d2(r1+d1)
and unstable when rr1 > d2(r1 + d1).

The Jacobian matrix at the equilibrium E1 is given by

JE1
=


−(r1 + d1) r 0

r1 −(d2 + 2ax0
2) −a1x

0
2

0 0 −(d3 + ηx0
2) + a2x

0
2e

−λτ

 .

Hence, the corresponding characteristic equation of the above Jacobian matrix is

(λ+d3+ηx0
2−a2x

0
2e

−λτ )[λ2+(r1+d1+d2+2ax0
2)λ+rr1−d2(r1+d1)]=0. (4.2)

Clearly, all the roots of the following equation

λ2 + (r1 + d1 + d2 + 2ax0
2)λ+ rr1 − d2(r1 + d1) = 0

are negative as rr1 > d2(r1 + d1). Other roots of Eq (4.2) are determined by the
following equation:

f1(λ) := λ+ d3 + ηx0
2 − a2x

0
2e

−λτ = 0. (4.3)
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If (a2 − η)x0
2 > d3, for λ real, it is easy to show that,

f1(0) = d3 − (a2 − η)x0
2 < 0, f ′

1(λ) = 1 + τa2x
0
2e

−λτ > 0.

Hence, f1(λ) = 0 has at least one positive real root in this case. If (a2 − η)x0
2 < d3,

one has

Re(λ) = a2x
0
2 cos(τImλ)− (d3 + ηx0

2) ≤ (a2 − η)x0
2 − d3 < 0.

Accordingly, by Theorem 3.4.1 in Kuang [7], we see that if (a2 − η)x0
2 < d3, the

equilibrium E1 is locally asymptotically stable. If (a2 − η)x0
2 > d3, the equilibrium

E1 is unstable.
From above discussions, we have the following theorem.

Theorem 4.1. For system (1.2), we have the following:

(i) If rr1 < d2(r1 + d1), then the equilibrium E0 is locally asymptotically stable;
if rr1 > d2(r1 + d1), then E0 is unstable;

(ii) Assume that rr1 > d2(r1 + d1). If (a2 − η)x0
2 < d3, then the equilibrium E1 is

locally asymptotically stable; if (a2 − η)x0
2 > d3, then E1 is unstable.

Now, we study the global stability of the equilibria E0 and E1, respectively. The
strategy of proofs is to use Lyapunov functions and LaSalle’s invariance principle.

Theorem 4.2. If rr1 < d2(r1+d1), then the trivial equilibrium E0 of system (1.2)is
globally asymptotically stable.

Proof. Based on Theorem 4.1, it is seen that E0 is locally asymptotically stable
when rr1 < d2(r1 + d1). Hence, we only prove that all positive solutions of system
(1.2) with initial conditions (1.3) converge to E0. Let (x1(t), x2(t), y(t)) be any
positive solution of system (1.2) with initial conditions (1.3). Define

V0(t) =
r1(a2 − η)

a1(r1 + d1)
x1(t) +

a2 − η

a1
x2(t) + y(t) + a2

∫ t

t−τ

x2(u)y(u)du.

Calculating the derivative of V0(t) along positive solutions of system (1.2), it follows
that

V̇0(t)=− (a2−η)[d2(r1+d1)−rr1]

a1(r1+d1)
x2(t)−

a(a2−η)

a1
x2
2(t)−d3y(t)−by2(t). (4.4)

If rr1 < d2(r1 + d1), it then follows from (4.4) that V̇0(t) ≤ 0. By Theorem 5.3.1
in [4], solutions limit to Λ, the largest invariant subset of {V̇0(t) = 0}. Clearly, we
see from (4.4) that V̇0(t) = 0 if and only if x2(t) = 0 and y(t) = 0. Noting that Λ
is invariant, for each element in Λ, we have x2(t) = 0. It therefore follows from the
second equation of system (1.2) that

0 = ẋ2(t) = rx1(t),

which yields x1(t) = 0. Hence, V̇0(t) = 0 if and only if (x1(t), x2(t), y(t)) = (0, 0, 0).
Accordingly, the global asymptotic stability of E0 follows from LaSalle’s invariant
principle for delay differential systems.
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Theorem 4.3. Assume that rr1 > d2(r1 + d1) holds. If (a2 − η)x0
2 < d3, then the

predator-extinction equilibrium E1(x
0
1, x

0
2, 0) of system (1.2) is globally asymptoti-

cally stable.

Proof. By Theorem 4.1, we see that if (a2 − η)x0
2 < d3, then E1 is locally asymp-

totically stable. Hence, we only prove that all positive solutions of system (1.2)
with initial conditions (1.3) converge to E1. Let (x1(t), x2(t), y(t)) be any positive
solution of system (1.2) with initial conditions (1.3). System (1.2) can be rewritten
as

ẋ1(t) =
r

x0
1

[−x2(t)(x1(t)− x0
1) + x1(t)(x2(t)− x0

2)],

ẋ2(t) =
r1
x0
2

[−x1(t)(x2(t)− x0
2) + x2(t)(x1(t)− x0

1)] + x2(t)[−a(x2(t)− x0
2)]

− a1x2(t)y(t),

ẏ(t) = a2x2(t− τ)y(t− τ)− d3y(t)− by2(t)− ηx2(t)y(t). (4.5)

Define

V11(t) = c1

(
x1 − x0

1 − x0
1 ln

x1

x0
1

)
+ c2

(
x2 − x0

2 − x0
2 ln

x2

x0
2

)
+ y(t),

where c1 = r1x
0
1/(rx

0
2), c2 = (a2− η)/a1. Calculating the derivative of V11(t) along

positive solutions of (4.5), it follows that

V̇11(t) =c1
x1(t)− x0

1

x1(t)
ẋ1(t) + c2

x2(t)− x0
2

x2(t)
ẋ2(t) + ẏ(t)

=− r

x0
2

(√
x2(t)

x1(t)
(x1(t)− x0

1)−

√
x1(t)

x2(t)
(x2(t)− x0

2)

)2

− ac2(x2(t)− x0
2)

2

− a2x2(t)y(t) + a2x2(t− τ)y(t− τ)− [d3 − (a2 − η)x0
2]y(t)− by2(t).

(4.6)

Define

V1(t) = V11(t) + a2

∫ t

t−τ

x2(u)y(u)du.

By calculation, we have that

V̇1(t) =− r1
x0
2

(√
x2(t)

x1(t)
(x1(t)− x0

1)−

√
x1(t)

x2(t)
(x2(t)− x0

2)

)2

− ac2(x2(t)− x0
2)

2

− [d3 − (a2 − η)x0
2]y(t)− by2(t). (4.7)

If (a2 − η)x0
2 < d3, it then follows from (4.7) that V̇2(t) ≤ 0. By Theorem 5.3.1

in [4], solutions limit to Λ, the largest invariant subset of {V̇2(t) = 0}. Clearly, we
see from (4.7) that V̇2(t) = 0 if and only if x1(t) = x0

1, x2(t) = x0
2 and y(t) = 0.

Hence, the only invariant set Λ = {(x0
1, x

0
2, 0)}. Using LaSalle’s invariant principle

for delay differential systems, the global asymptotic stability of E1 follows.
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5. Numerical simulations
In this section, we give some examples to illustrate the main results in this paper.

Example 5.1. In system (1.2), let a = 1, a1 = 1, a2 = 1.2, b = 1, d1 = 0.8, d2 =
0.8, d3 = 0.5, r = 1, r1 = 0.7 and η = 1. System (1.2) always has a trivial equilibrium
E0(0, 0, 0). It is easy to show that rr1 < d2(r1 + d1). By Theorem 4.1, we see that
the equilibrium E0 is locally asymptotically stable. Numerical simulation illustrates
this fact (see Fig.1).
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Figure 1. The temporal solution found by numerical integration of system (1.2) with τ = 0.5 and
(φ1(0), φ2(0), ϕ(0)) = (1, 1, 1)

Example 5.2. In system (1.2), let a = 1, a1 = 1, a2 = 1.2, b = 1, d1 = 0.5, d2 =
0.5, d3 = 0.5, r = 2, r1 = 0.8 and η = 1. By calculation, we obtain rr1 > d2(r1 + d1)
and therefore, system (1.2) has a predator-extinction equilibrium E1(1.1243, 0.7308, 0).
By Theorem 4.1, we see that the equilibrium E1 is locally asymptotically stable.
Numerical simulation illustrates this fact (see Fig.2).

Example 5.3. In (1.2), let a = 1, a1 = 0.5, a2 = 1.5, b = 0.1, d1 = 0.5, d2 =
0.5, d3 = 0.1, r = 3, r1 = 0.8 and η = 1. By calculation, we obtain system (1.1) has
a unique coexistence equilibrium E∗(0.0536, 0.0121, 0.0735, 0.8263). By calculation,
we have

(p2 + q2)(p3 + q3)− (p1 + q1) = 50.6392 > 0,

(p2 + q2)(p3 + q3)(p1 + q1)− (p1 + q1)
2 − (p0 + q0)(p3 + q3)

2 = 20.7950 > 0,

2α(r1 + d1)− 2rr1 − (r1 + d1)
a1y

∗
2

(1 +mx∗
2)

2
= −4.2142 < 0,

τ0 ≈ 2.3147.

By Theorem 2.1, E∗ is locally asymptotically stable if 0 < τ < τ0 and is unstable
if τ > τ0, and system (1.1) undergoes a Hopf bifurcation at E∗ when τ = τ0.
Numerical simulation illustrates this fact(see Fig.3 and Fig.4).
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Figure 2. The temporal solution found by numerical integration of system (1.2) with τ = 0.5 and
(φ1(0), φ2(0), ϕ(0)) = (1, 1, 1)
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Figure 3. The temporal solution found by numerical integration of system (1.2) with τ = 0.5 and
(φ1(0), φ2(0), ϕ(0)) = (1, 1, 1)

6. Discussion
In this paper, we have investigated the stability of a predator-prey model with stage
structure for the prey and anti-predator behaviour. By analyzing the corresponding
characteristic equation, the local stability of the trivial equilibrium, the predator-
extinction equilibrium and the positive equilibrium has been established. It has been
shown that, under some conditions, the time delay due to gestation of the predators
may destabilize the positive equilibrium of system (1.2) and cause the population
to fluctuate. From Theorem 2.1, we see that there is a threshold τ0 for the time
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Figure 4. The temporal solution found by numerical integration of system (1.2) with τ = 15.706 and
(φ1(0), φ2(0), ϕ(0)) = (1, 1, 1)

delay such that below it the positive equilibrium is stable, but if the delay is greater
than the threshold, sustained oscillations arise. By means of Lyapunov functionals
and LaSalle’s invariant principle, sufficient conditions were obtained for the global
stability of the the trivial equilibrium, the predator-extinction equilibrium and the
positive equilibrium of system (1.2).
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