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MULTI-CLUSTER FLOCKING BEHAVIOR FOR
A CLASS OF CUCKER-SMALE MODEL WITH

A PERTURBATION

Chun-Bo Lian1, Gang-Ling Hou2, Bin Ge1,† and Kang Zhou1

Abstract In this paper, we study a Cucker-Smale-type system with a per-
turbation in which agents interact with each other by given communication
weights. By using a Lyapunov functional approach and some induction argu-
ments we will prove that every agent flocks to the leader, and the flocking of
the model depends on the perturbed conditions and initial conditions. Finally,
we also provide several numerical examples and compare them with analytical
results.
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1. Introduction
The purpose of this paper is to study the flocking behavior of the perturbed Cucker-
Smale model (in short C-S model). The terminology “flocking” represents the
phenomena that all birds, fish and other biological agents, e.g., flocking of birds,
swarming of locusts, surging of fish, etc. These behaviors have been gained increas-
ing interests from research communities in biology, mathematics and engineering.
In recent years, many scientists and scholars have devoted themselves to studying
synchronized behaviors, predation behaviors, and animal tracking behaviors in bi-
ological populations. As shown in Figure 1, the flocking behaviors are common in
nature.

In 2007, Cucker and Smale proposed a C-S model for group behavior research
in [3,4], which revealed the mathematical principles and operational mechanisms of
the flocking phenomenon described above. Later, there are many results of the C-S
model, such as random noise effects [5,15], time delay [24], free-will [25] and mean-
field limit [10, 11, 17, 18, 38], and other researchs can refer [6, 8–10, 12, 20, 26–29, 38,
40–42]. In [43], Shen firstly introduced the hierarchy to the C-S model and obtained
flocking under directed interactions. In the hierarchy C-S model, there exists an
important constant β capturing the rate of decay of the influences between agents
when they separate in the space. The main results show that unconditional flocking
occurs when 0 ≤ β < 1

2 . Meanwhile, flocking occurs under some initial conditions
for β ≥ 1

2 . Some research on this aspect can refer [16,30,31,34].
†The corresponding author. Email: gebin791025@hrbeu.edu.cn(B. Ge)
1College of Mathematical Sciences, Harbin Engineering University, Harbin,
150001, China

2College of Aerospace and Civil Engineering, Harbin Engineering University,
Harbin, 150001, China

http://www.jaac-online.com
http://dx.doi.org/10.11948/20200234


1826 C. B. Lian, G. L. Hou, B. Ge & K. Zhou

(a) Flocking of birds (b) Shark and panicked fish

Figure 1. the flocking behaviors are common in nature

In 2011, Motsch and Tadmor proposed a mathematical model of self organizing
dynamics in [33]. The improved model considers not only the relative distances
between agents, but also the impacts between agents which could solve several
shortcomings of the C-S model. In [40], the authors considered the multi-cluster
flocking behavior of the hierarchical Cucker-Smale model. However, there are no
results available about C-S multi-flocking under perturbation in the general case.

Motivated by the above discussion, we consider multi-flocking behavior of the
C-S model with a small perturbation. Our main results can describe as follow:
when β > 1

2 , the flocking would occur which only depend on the initial states of
the flock; when β = 1

2 , the model produces flocking under appropriate perturbation
conditions.

The rest of the paper is organized as follows. In Section 2, we give some pre-
liminaries about C-S-model. The main content is shown in the third section, which
is divided into two parts for demonstration (i.e., mono-cluster flocking and multi-
cluster flocking). The fourth section verifies our conclusions through simulation
experiments. The fifth section summarizes some conclusions and prospects for the
future.

2. Preliminaries and problem formulation
In this section, we give some preliminaries and some symbolic explanations of the
C-S model.

A class of C-S model with hierarchical leadership:
Consider then a system of n agents with positions and velocities denoted by

x(t) = (x1(t), x2(t), . . . , xn(t)) and v(t) = (v1(t), v2(t), . . . , vn(t)), respectively.
Here xi(t) ∈ R3 and vi(t) ∈ R3 denoted the position and velocity of i−th agent
at time t. Assume that the system evolves under hierarchical leadership, following
the continuous-time dynamics:

dxi(t)

dt
= vi(t),

dvi(t)

dt
=
∑
j∈τ(i)

aij(∥xi(t)− xj(t)∥)(vj(t)− vi(t)),
(2.1)
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where,
(a) i ∈ Ω = {1, 2, . . . , n}, the symbol“i” is defined as the i−th agent.
(b) τ(i) = {j : j < i} denotes the subgroup of agents that directly influence

agent i. Particularly, τ(1) = ∅ and v1(t) = v1(0), for all t ≥ 0. We can regards
agent 1 as a virtual leader, which maintains a constant velocity movement, and it
only affects the other agents unilaterally.

(c) The weighting coefficient aij(t) in the current paper take the form:

aij(t) = aij(∥xi(t)− xj(t)∥) =
K

n
ψ(∥xi(t)− xj(t)∥).

Here, K is the non-negative coupling strength, ψ(r) = 1
(1+r)2β

is the influence
function, and ψ(r) is a decreasing function. ∥ · ∥ represents l1−norm. At the same
time, the symbol “∥ · ∥1” in this paper also denotes “l1−norm”.

Remark 2.1 ( [40]). From the definition of ψ(r) and by recalling aij(t) if necessary,
let aii(t) = 1−

∑
j<i aij(t) ≥ 0, we have∑
j≤i

aij(t) = 1 and ai1(t) +
∑

j≤i,j ̸=1

aij(t) = 1,

where ψ(r) ≤ 1,
∑
j<i aij(t) ≤ 1.

A class of C-S models with a perturbation:
We added a perturbation term Gi(t) ∈ R3 to model (2.1) for analyzing the

flocking behaviors of the C-S system in a disturbing environment. In this situation,
we assume the following dynamic model:

dxi(t)

dt
= vi(t),

dvi(t)

dt
= K

∑
j∈τ(i)

aij(∥xi(t)− xj(t)∥)(vj(t)− vi(t)) +Gi(t),
(2.2)

where, Gi(t) ∈ R3. We choose the weighting coefficient (the alignment coefficients)
aij(t) (by [33]), i.e.,

aij(t) = aij(∥xi(t)− xj(t)∥) =
ψ(∥xj(t)− xi(t)∥)∑n
k=1 ψ(∥xk(t)− xi(t)∥)

, (2.3)

where ψ(r) = 1
(1+r)2β

, r ≥ 0. aij(t) is an asymmetric weight coefficient, which has
been explained in [33]. At the same time, this is also to show that the C-S system
under asymmetric aij(t) structure can also form flocking behavior.

Particularly, τ(1) = ∅ and v1(t) = v1(0) ⇒ G1(t) = 0, for all t ≥ 0.

Remark 2.2. Note that, the weight coefficient aij(t) in model (2.1) is symmetrical,
i.e., aij = aji. Furthermore, the weighting factor aij in model (2.2) is asymmetrical,
i.e., aij ̸= aji.

The goal in this paper is to prove that the flocking would occur almost surely
under some conditions on problem (2.2). We next give the definition of flocking.
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Definition 2.1 ( [40]). Mono-cluster flocking of the system (2.2) occurs if and only
if the solutions {xi(t), vi(t)}ni=1, to Eq. (2.2) satisfy the following two conditions:

(2.1a) the velocity diameter of the set {vi(t)}ni=1 goes to zero as time goes to
infinity (velocity alignment):

lim
t→∞

∥vi(t)− vj(t)∥ = 0, for 1 ≤ i, j ≤ n.

(2.1b) the position diameter of the set {xi(t)}ni=1 is uniformly bounded in time t
(forming a group):

sup
t≥0

∥xi(t)− xj(t)∥ <∞, for 1 ≤ i, j ≤ n.

Definition 2.2 ( [40]). Suppose that Ω = {1, 2, . . . , n} and {Ωi}mi=1(m ≥ 2) is a
partition of Ω. The system (2.2) is divided into m clusters (or m−cluster flocking
occurs) if and only if the solutions {xi(t), vi(t)}ni=1, to Eq. (2.2) satisfy the following
two conditions:

(2.2a) for each Ωi, flocking occurs:

(i) lim
t→∞

∥vj(t)− vl(t)∥ = 0, for j, l ∈ Ωi;

(ii) sup
t≥0

∥xj(t)− xl(t)∥ <∞, for j, l ∈ Ωi.

(2.2b) for any two distinct sets Ωi1 , Ωi2 , they satisfy at least one of the following
two conditions:

(i) lim inf
t→∞

∥vj1(t)− vj2(t)∥ > 0, for j1 ∈ Ωi1 , j2 ∈ Ωi2 ;

(ii) sup
t≥0

∥xj1(t)− xj2(t)∥ = ∞, for j1 ∈ Ωi1 , j2 ∈ Ωi2 .

Definition 2.3 ( [33, 40]). The diameter form of the position xi(t) and velocity
vi(t) between the agent ”1”(Leader) and the other agents is defined as follows:

dX(t) = max
1≤i≤n

∥xi(t)− x1(t)∥2 and dV (t) = max
1≤i≤n

∥vi(t)− v1(t)∥2.

Here ∥ · ∥2 denotes a l2−norm, ∥x∥2 = (
∑3
s=1 | xs |2)

1
2 , for x ∈ R3.

Remark 2.3 ( [33,40]). Combined with Definition 2.1 and Definition 2.3, Definition
2.1 is equivalent to the following conditions:

lim
t→∞

dV (t) = 0 and sup
t≥0

dX(t) <∞.

Remark 2.4. There exist two constants c1 > 0, c2 > 0, such that

c1∥x∥2 ≤ ∥x∥1 ≤ c2∥x∥2.

3. Main results
In [43], Shen has investigated the hierarchical leadership flocking under a free-will
leader. More precisely, unconditional flocking would occur for β < 1/2, while
for β ≥ 1/2 conditional flocking would occur under some condition on the initial
positions and velocities of the agents only. So we will begin to analyze the main
research content of this paper, which is divided into two cases: β = 1/2 and β > 1/2.
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Remark 3.1. By Definition 2.3, we can easily obtain the results similar to [33,
Theorem 3.5] and [40, Theorem 2.1], i.e.,

d

dt
dX(t) ≤ dV (t). (3.1)

3.1. Mono-cluster flocking behavior
Theorem 3.1. Let β = 1

2 . Consider the system (2.2) with the connectivity coeffi-
cients given by Eq. (2.3), and the system (2.2) satisfies the following conditions:

(i) there exist constants a > 0, b > 0,M0 > 0 such that

∥Gi(t)∥2 ≤M0e
−a(t+b), ∀t ≥ 0.

(ii) there exists two constants c2 > 0, T > 0 such that

dV (0) +

∫ TdX(0)

0

dV (ν)dν <
K

nc2

∫ ∞

c2dX(0)

ψ(ν)dν.

Moreover, assume that ∫ TdX(0)

0

dV (ν)dν ≥ M0

aeab
.

Then there exists a positive constant ξ ∈ [c2dX(0),+∞) satisfying the inequality

K

n
ψ(ξ) > a > 0,

and such that the estimate holds

sup
t>0

dX(t) ≤ ξ

c2
, dV (t) <

(
dV (0) +

B0

A0 − a

)
e−at, (3.2)

where A0 = K
n ψ(ξ) > a > 0, B0 = M0

eab .

Proof. At first, we will find t−derivative for ∥vi(t) − v1(t)∥22. For any t ≥ 0, fix
agent i and denote dV (t) = ∥vi(t)− v1(t)∥2, then by (2.2), we have

d

dt
d2V (t) =

d

dt
∥vi(t)− v1(t)∥22

=2⟨v̇i(t)− v̇1(t), vi(t)− v1(t)⟩

=2

⟨
K
∑
j<i

aij(∥xi(t)− xj(t)∥1)(vj(t)− vi(t)) +Gi(t), vi(t)− v1(t)

⟩

=2K

⟨∑
j<i

aij(t)vj(t)−
∑
j<i

aij(t)vi(t) + v1(t)− v1(t), vi(t)− v1(t)

⟩

+ 2

⟨
Gi(t), vi(t)− v1(t)

⟩
,

(3.3)
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owning to v1(t) is a constant and v̇1(t) = 0. Applying Remark 2.1 to (3.3) yields

d

dt
d2V (t) =2K

⟨∑
j<i

aij(t)vj(t)−

(∑
j≤i

aij(t)− aii(t)

)
vi(t)

+ v1(t)− v1(t), vi(t)− v1(t)

⟩
+ 2

⟨
Gi(t), vi(t)− v1(t)

⟩

=2K

⟨(∑
j≤i

aij(t)vj(t)−1×v1(t)

)
−

(
1× vi(t)− v1(t)

)
, vi(t)− v1(t)

⟩

+ 2

⟨
Gi(t), vi(t)− v1(t)

⟩

=2K

⟨∑
j≤i

aij(t)

(
vj(t)− v1(t)

)
, vi(t)− v1(t)

⟩

− 2K

⟨
vi(t)− v1(t), vi(t)− v1(t)

⟩
+ 2

⟨
Gi(t), vi(t)− v1(t)

⟩

=2K

⟨ ∑
j≤i,j ̸=1

aij(t)

(
vj(t)−v1(t)

)
+ai1(t)

(
v1(t)−v1(t)

)
, vi(t)−v1(t)

⟩

− 2K

⟨
vi(t)− v1(t), vi(t)− v1(t)

⟩
+ 2

⟨
Gi(t), vi(t)− v1(t)

⟩
.

(3.4)
Using condition (i) and Cauchy-Schwartz inequality lead to

d

dt
d2V (t) ≤2K

∑
j≤i,j ̸=1

aij(t)× ∥vj(t)− v1(t)∥2 × ∥vi(t)− v1(t)∥2

− 2Kd2V (t) + 2∥Gi(t)∥2 × ∥vi(t)− v1(t)∥2

≤2K

( ∑
j≤i,j ̸=1

aij(t)− 1

)
d2V (t) + 2∥Gi(t)∥2 × dV (t)

=− 2Kai1(t)d
2
V (t) + 2∥Gi(t)∥2dV (t).

(3.5)

According to Remark 2.4, ∥xi(t) − x1(t)∥1 and dX(t) are equivalent, that is,
there must be two constants c1 > 0, c2 > 0 such that

c1dX(t) ≤ ∥xi(t)− x1(t)∥1 ≤ c2dX(t).

By aij(t) = ψ(∥xj(t)−xi(t)∥1)∑n
k=1 ψ(∥xk(t)−xi(t)∥1)

, we have

0 < ψ

(
c2dX(t)

)
≤ ψ

(
∥xk(t)− xi(t)∥1

)
≤ 1

=⇒
n∑
k=1

ψ

(
∥xk(t)− xi(t)∥1

)
≤

n∑
k=1

1 = n.
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=⇒ai1(t) =

ψ

(
∥x1(t)− xi(t)∥1

)
∑n
k=1 ψ

(
∥xk(t)− xi(t)∥1

) ≥
ψ

(
c2dX(t)

)
n

> 0.

Thence, by inequality (3.5), we obtain

d

dt
d2V (t) ≤ −2K

n
ψ

(
c2dX(t)

)
d2V (t) + 2∥Gi(t)∥2dV (t). (3.6)

=⇒ d

dt
dV (t) ≤ −K

n
ψ

(
c2dX(t)

)
dV (t) + ∥Gi(t)∥2.

We can construct the energy function of system (2.2) as

L(t) = dV (t)−
∫ t

0

∥Gi(ν)∥2dν +
K

nc2

∫ c2dX(t)

0

ψ(ν)dν. (3.7)

Then, combining with the estimate of (3.7), we calculate

d

dt
L(t) =

d

dt
dV (t)− ∥Gi(t)∥2 +

K

n
ψ

(
c2dX(t)

)
d

dt
dX(t)

≤− K

n
ψ

(
c2dX(t)

)
dV (t) + ∥Gi(t)∥2 − ∥Gi(t)∥2

+
K

n
ψ(c2dX(t))

d

dt
dX(t)

≤0,

(3.8)

where used the inequality d
dtdX(t) ≤ dV (t) (see Remark 3.1). Therefore, L(t) ≤ L(0)

for any t ≥ 0, thus,

dV (t)−
∫ t

0

∥Gi(ν)∥2dν +
K

nc2

∫ c2dX(t)

0

ψ(ν)dν

≤dV (0) +
K

nc2

∫ c2dX(0)

0

ψ(ν)dν.

(3.9)

The above inequality (3.9) is simplified to

dV (t) ≤ dV (0) +
K

nc2

∫ c2dX(0)

c2dX(t)

ψ(ν)dν +

∫ t

0

∥Gi(ν)∥2dν. (3.10)

Using β = 1
2 in (2.3), we get∫ ∞

0

ψ(r)dr =

∫ ∞

0

1

1 + r
dr = ∞.

From assumption (ii) it follows that there exists a γ ≥ c2dX(0) such that

dV (0) +

∫ TdX(0)

0

dV (ν)dν =
K

nc2

∫ γ

c2dX(0)

ψ(ν)dν. (3.11)
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Substituting (3.11) into (3.10) and using the assumption (i), we obtain

0 ≤dV (t) ≤ dV (0) +
K

nc2

∫ c2dX(0)

c2dX(t)

ψ(ν)dν +

∫ t

0

M0e
−a(ν+b)dν

=
K

nc2

∫ γ

c2dX(0)

ψ(ν)dν −
∫ TdX(0)

0

dV (ν)dν

+
K

nc2

∫ c2dX(0)

c2dX(t)

ψ(ν)dν +
M0

aeab
(1− e−at)

=
K

nc2

∫ γ

c2dX(t)

ψ(ν)dν −

(∫ TdX(0)

0

dV (ν)dν −
M0

aeab

)
− M0

aeab
e−at.

(3.12)

Note that − M0

aeab e
−at ≤ 0,∀t ≥ 0 and −

(∫ TdX(0)

0
dV (ν)dν − M0

aeab

)
≤ 0. Hence, we

have
c2dX(t) ≤ γ ⇒ sup

1≤i≤n
∥xi(t)− x1(t)∥ ≤ γ

c2
.

⇒ ψ(γ) ≤ ψ(c2dX(t)).

(3.13)

Using inequality (3.13) and condition (i), we obtain the following estimate

d

dt
dV (t) ≤− K

n
ψ

(
c2dX(t)

)
dV (t) + ∥Gi(t)∥2

≤− K

n
ψ(ξ)dV (t) +M0e

−a(t+b)

=−A0dV (t) +B0e
−at,

(3.14)

where
A0 =

K

n
ψ(ξ) > a > 0, B0 =

M0

eab
.

Applying Gronwall’s inequality to inequality (3.14), we have

dV (t) ≤e−A0tdV (0) +
B0

A0 − a
e−at

(
1− e−(A0−a)t

)

≤e−A0tdV (0) +
B0

A0 − a
e−at

<

(
dV (0) +

B0

A0 − a

)
e−at.

(3.15)

The proof is completed.

3.2. Multi-cluster flocking behavior
We use the position and velocity errors in [40] and give the following definition:

Definition 3.1. Let

x(t) = (x1(t), x2(t), . . . , xn(t)); v(t) = (v1(t), v2(t), . . . , vn(t)).
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The error is defined as

x̂(t) = (x̂1(t), x̂2(t), . . . , x̂n−1(t)) ∈ R3(n−1),

here x̂i(t) = xi(t)− xi+1(t);

v̂(t) = (v̂1(t), v̂2(t), . . . , v̂n−1(t)) ∈ R3(n−1),

here v̂i(t) = vi(t)− vi+1(t);

Ĝi(t) = Gi(t)−Gi+1(t), for i, i+ 1 ∈ Ω = {1, 2, . . . , n}.

In the following discussion, we choose aij(t) = ψ(∥xi(t)−xj(t)∥1)
n .

According to the Definition 3.1 of the position and velocity errors, we can change
the form of the C-S model (2.2) into ˙̂xi(t) = ẋi(t)− ẋi+1(t),

˙̂vi(t) = v̇i(t)− v̇i+1(t).
(3.16)

By (2.2) and (3.16), we have
˙̂xi(t) = v̂i(t),

˙̂vi(t) = K

(∑
j<i aij(t)

∑i−1
m=j v̂m(t)−

∑
j<i+1 ai+1,j(t)

∑i
m=j v̂m(t)

)
+ Ĝi(t)

(3.17)
where, vj(t) − vi(t) =

∑i−1
m=j v̂m(t), vj(t) − vi+1(t) =

∑i
m=j v̂m(t) and aij(t) =

ψ(∥xi(t)−xj(t)∥1)
n . In this subsection, we will demonstrate that the agent can be

flocked at β > 1/2 in a disturbing environment. In order to get this result, we
need the following lemma.

Lemma 3.1. Assume that the initial data of the position and velocity of the system
(3.17) satisfies the following order condition in the case of β > 1/2.

x1(0) ≥ x2(0) ≥ . . . ≥ xn(0),

v1(0) > v2(0) > . . . > vn(0),

G1(t) = G2(t) ≥ G3(t) ≥ . . . ≥ Gn(t),

(3.18)

where Gi(t) is a continuous and differentiable function. Then, for any 1 ≤ i ≤ n−1
and t ≥ 0, we have

x̂i(t) ≥ x̂i(0), v̂i(t) ≥ Θ, (3.19)
here we write y > z (y ≥ z) when each entry of y is larger (not smaller) than that
of z, i.e., yk > zk(yk ≥ zk) for 1 ≤ k ≤ 3. Also, Θ ∈ R3 denotes the vector in R3,
whose all of entries are equal to zero.

Proof. Let xi(t) = (x1i (t), x
2
i (t), x

3
i (t)), vi(t) = (v1i (t), v

2
i (t), v

3
i (t)) ∈ R3. For i =

1, using v1(t) = v1(0), Ĝ
ℓ
1(t) = Gℓ1(t)−Gℓ2(t) = 0 (ℓ = 1, 2, 3), we have

˙̂vℓ1(t) =− a21(t)v̂
ℓ
1(t) = − Kv̂ℓ1(t)

n (1 + ∥x̂1(t)∥)2β
+ Ĝℓ1(t)

=− Kv̂ℓ1(t)

n (1 + ∥x̂1(t)∥)2β
.

(3.20)
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According to [40, Lemma 3.1], we have

v̂1(t) = v1(t)− v2(t) ≥ Θ, for any t ≥ 0.

Since x1(t) = x1(0) +
∫ t
0
v1(s)ds, x2(t) = x2(0) +

∫ t
0
v2(s)ds, we have

x̂1(t) = x1(t)− x2(t) = x1(0)− x2(0) +

∫ t

0

(
v1(s)− v2(s)

)
ds ≥ x̂1(0).

Finally, it is clearly that

x̂1(t) ≥ x̂1(0), v̂1(t) = v1(t)− v2(t) ≥ Θ.

For i > 1, on the one hand, by continuity and differentiation of v̂ℓi (t), there exists
t4 satisfying:

1. v̂ℓi (t4) = 0, that is to say vℓi (t4) = vℓi+1(t4);
2. There exists a δ′ > 0 such that v̂ℓi (t) < 0, t ∈ (t4, t4 + δ′].
Obviously, at the moment t4 we have

˙̂vℓi (t4) ≤ 0. (3.21)

On the other hand, according to (3.18), we have v̂ℓj(t) ≥ Θ, for t ≤ t4 and j < i.
According to [40, Lemma 3.1] and Ĝℓi(t) = Gℓi(t) − Gℓi+1(t) ≥ 0, Eq. (3.17) takes
the form at the moment t4

v̂ℓi (t4) =
∑
j<i

aij (t4)
(
vℓj (t4)− vℓi (t4)

)
−
∑
j<i+1

ai+1,j (t4)
(
vℓj (t4)− vℓi+1 (t4)

)
+ Ĝℓi(t)

=
∑
j<i

(aij (t4)− ai+1,j (t4))
(
vℓj (t4)− vℓi (t4)

)
>0,

which is contrary to Eq. (3.21). Therefore, v̂ℓi (t) ≥ 0.

Remark 3.2. Since x̂i(t) ∈ R3, v̂i(t) ∈ R3, then x̂i(t) = (x̂1i (t), x̂
2
i (t), x̂

3
i (t)),

v̂i(t) = (v̂1i (t), v̂
2
i (t), v̂

3
i (t)), for 1 ≤ i ≤ n− 1, and

∥xj(t)−xi(t)∥1 =

3∑
ℓ=1

| xℓj(t)− xℓi(t) |=
3∑
ℓ=1

i−1∑
m=j

(xℓm(t)− xℓm+1(t)) =

3∑
ℓ=1

i−1∑
m=j

x̂ℓm(t),

∥vj(t)−vi(t)∥1 =

3∑
ℓ=1

| vℓj(t)− vℓi (t) |=
3∑
ℓ=1

i−1∑
m=j

(vℓm(t)− vℓm+1(t)) =

3∑
ℓ=1

i−1∑
m=j

v̂ℓm(t).

For convenience, we need to introduce some mathematical expressions of the
article [40]. According to equation (3.17) and Remark 3.2, we have∫ t

0

˙̂vℓi (t) =K

∫ t

0

(∑
j<i

(aij(ν)

i−1∑
m=j

v̂ℓm(ν))

−
∑
j<i+1

(ai+1,j(ν)

i∑
m=j

v̂ℓm(ν))

)
dν +

∫ t

0

Ĝℓi(ν)dν.

(3.22)
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Similarly, we also can deduce that

3∑
ℓ=1

∫ t

0

˙̂vℓi (t) =
K

n

3∑
ℓ=1

∫ t

0

(∑
j<i

(
∑i−1
m=j x̂

ℓ
m(ν))′

(1 +
∑3
ℓ=1

∑i−1
m=j x̂

ℓ
m(ν))2β

−
∑
j<i+1

(
∑i
m=j x̂

ℓ
m(ν))′

(1 +
∑3
ℓ=1

∑i
m=j x̂

ℓ
m(ν))2β

)
dν

+

3∑
ℓ=1

∫ t

0

Ĝℓi(ν)dν.

(3.23)

Moreover, by a simple calculation we have

∥v̂i(t)∥1 =
fi(t)− fi−1(t)

2β − 1
− ρi +

∫ t

0

∥Ĝi(ν)∥1dν, (3.24)

where

fi(t) =
K

n

∑
j<i+1

1

(1 +
∑3
ℓ=1

∑i
m=j x̂m(t))2β−1

,

ρi =
fi(0)− fi−1(0)

2β − 1
− ∥v̂i(0)∥.

where
fi(0) =

K

n

∑
j<i+1

1

(1 +
∑3
ℓ=1

∑i
m=j x̂m(0))2β−1

,

When i = 0, f0(t) does not exist and is set to f0(t) = 0, Particularly, if aij(t) =

aij(∥xi(t) − xj(t)∥) =
ψ(∥xj(t)−xi(t)∥)∑n

k=1 ψ(∥xk(t)−xi(t)∥) , the right side of this equality is not
integrable, which causes us not to obtain an equality similar to Eq. (3.24). Thus,
we cannot obtain the similar results about multi-cluster flocking.

Now, we are ready to prove our main result. The proof idea is mainly due
to Ru and Xue [40, Theorem 3.1], who found a multi-cluster flocking behavior for
hierarchical Cucker-Smale model. For the completeness, we also give the details for
the readers here.

Theorem 3.2. Suppose that the initial data of the system (3.17) with β > 1/2
satisfy Eq. (3.18). Defines Ω̂ = {̂i1, î2, . . . , în−1}, and divides Ω̂ into Ω̂ = Ω̂1 ∪
Ω̂2 ∪ Ω̂3. Here îk denotes the relative initial state of the k-th agent, that is, ρi =
fi(0)−fi−1(0)

2β−1 − ∥v̂i(0)∥. Sets Ω̂1, Ω̂2, and Ω̂3 are defined as

Ω̂1 =

{
îi ∈ Ω̂ : ρi −

∫ t

0

∥Ĝi(ν)∥1dν > 0,∀t ≥ 0

}
,

Ω̂2 =

{
îi ∈ Ω̂ : ρi −

∫ t

0

∥Ĝi(ν)∥1dν ≤ 0,

∃j ∈ N, 1 ≤ j ≤ i,

i∑
k=j

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) > 0,∀t ≥ 0

}
,
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Ω̂3 =

{
îi ∈ Ω̂ : ρi −

∫ t

0

∥Ĝi(ν)∥1dν ≤ 0,

∀j ∈ N, 1 ≤ j ≤ i,

i∑
k=j

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) ≤ 0,∀t ≥ 0

}
,

where ρi = fi(0)−fi−1(0)
2β−1 − ∥v̂i(0)∥. The perturbation Ĝi(t) in the above set satisfies

the following conditions:
(H1) Ĝi(t) is a derivable function with respect to time t, and

∥Ĝi(t)∥ ≤M0e
−a(t+b), (a > 0, b > 0,M0 > 0), for any t ≥ 0,

and ρi >
M0

aeab
=M, i = 1, 2, · · · , n.

(3.25)

(H2) for any t ≥ 0 and i, j ∈ Ω̂, there exist a positive constant δ such that

| Ĝi(t)− Ĝj(t) |≤ δ. (3.26)

Then the system (3.17) can be divided into | Ω̂3 | +1 clusters. The meaning of | Ω̂3 |
here is the cardinality of Ω̂3.

Remark 3.3 (Barbalat′s lemma). If F : [0,∞) → R is uniformly continuous
(Lipschitz continuous), and the limt→∞

∫ t
0
F (ν)dν exists and is bounded, then

lim
t→∞

F (t) = 0. (3.27)

Now, we are ready to prove Theorem 3.2.
Proof of Theorem 3.2. To complete the proof of the main result, we need to
consider the following four steps.

Step 1: If îi ∈ Ω̂1, then limt→∞ ∥v̂i(t)∥1 = 0 and limt→∞ ∥x̂i(t)∥1 <∞.
Based on the ordered conditions (3.18) and (3.19) of the initial data in Lemma

3.1, when m = j < i, then

x̂ℓm(t) = x̂ℓj(t) ≥ x̂ℓi(t) = xℓi(t)− xℓi+1(t) ≥ 0.

Consequently, for all t ≥ 0, i = 1, 2, . . . , n − 1, we obtain fi(t) ≥ 0, f0(t) = 0, and
∥x̂m(t)∥1 ≥ ∥x̂i(t)∥1 =⇒ K

n(1+∥x̂m(t)∥1)2β−1 ≤ K
n(1+∥x̂i(t)∥1)2β−1 , for β > 1/2, thus

fi(t)− fi−1(t) ≤
K

n(1 + ∥x̂i(t)∥1)2β−1

=⇒ fi(t)− fi−1(t)−
K

n(1 + ∥x̂i(t)∥1)2β−1
≤ 0.

(3.28)

Thus, equation (3.24) can be further written as

0 ≤ ∥v̂i(t)∥1 =
1

2β − 1

(
fi(t)− fi−1(t)−

K

n(1 + ∥x̂i(t)∥1)2β−1

)

+
K

n(2β − 1)(1 + ∥x̂i(t)∥1)2β−1
− ρi +

∫ t

0

∥Ĝi(ν)∥1dν.

(3.29)
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From the estimate of (3.28) and equation (3.29), we have

K

n(2β − 1)(1 + ∥x̂i(t)∥1)2β−1
− ρi +

∫ t

0

∥Ĝi(ν)∥1dν ≥ 0. (3.30)

In addition, according to the disturbance conditions (H1), we have

∥Ĝi(ν)∥ ≤M0e
−a(t+b) =⇒

∫ t

0

∥Ĝi(ν)∥1dν ≤ M0

aeab
=M <∞. (3.31)

For îi ∈ Ω̂1, the condition ρi −
∫ t
0
∥Ĝi(ν)∥1dν > 0 and (H1) of Theorem 3.2, we

deduce that

K

n(2β − 1)(1 + ∥x̂i(t)∥1)2β−1
≥ ρi −

∫ t

0

∥Ĝi(ν)∥1dν > 0

=⇒ ∥x̂i(t)∥1 ≤

(
K

n(2β − 1)(ρi −
∫ t
0
∥Ĝi(ν)∥1dν)

) 1
2β−1

− 1 (3.32)

≤

(
K

n(2β − 1)(ρi −M)

) 1
2β−1

− 1.

Therefore, ∥x̂i(t)∥1 remains bounded at t ≥ 0, which means that x̂ℓi(t) is also
bounded on t ≥ 0. Since ˙̂xℓi(t) = v̂ℓi (t) ≥ 0, x̂ℓi(t) is monotonically increasing.

In summary, it is indicated that there is x̂ℓi < +∞ such that x̂ℓi(t) → x̂ℓi when
t→ ∞. From this, it can be seen that when t→ ∞, ∥x̂i(t)∥1 → ∥x̂i∥1 =

∑3
ℓ=1 | x̂ℓi |.

The following proves limt→∞ v̂ℓi (t) = 0. According to equation (2.1) and condi-
tion (H2) in Theorem 3.2, applying Lemma 3.1, we have

| ˙̂vℓi (t) |= | v̇ℓi (t)− v̇ℓi+1(t) |

= | K
n∑
j=1

aij(t)

(
vℓj(t)− vℓi (t)

)
+Gℓi(t)

−K

n∑
j=1

ai+1,j(t)

(
vℓj(t)− vℓi+1(t)

)
−Gℓi+1(t) |

≤2K

n∑
j=1

vℓ1(0)

(
ai,j(0) + ai+1,j(0)

)
+ | Gℓi(t)−Gℓi+1(t) |

≤2K

n∑
j=1

vℓ1(0)

(
ai,j(0) + ai+1,j(0)

)
+ δ

=L <∞.

(3.33)

This implies for any t1 ≥ 0, t2 ≥ 0, applying differential mean value theorem to
v̂ℓi (t) between t1 and t2, we obtain

| v̂ℓi (t1)− v̂ℓi (t2) |=| ˙̂vℓi (t)(t1 − t2) |≤ L | t1 − t2 | .

Note that v̂ℓi (t) ≥ 0, v̂ℓi (t) ∈ C1[0,+∞) and
∫∞
0
v̂ℓi (ν)dν = x̂ℓi(t) − x̂ℓi(0), then by

Remark 3.3, we have limt→∞ v̂ℓi (t) = 0. Means v̂i(t) → Θ ∈ R3, when t→ ∞, which
proves the conclusion of Step 1.
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Step 2: If îi ∈ Ω̂2, then limt→∞ ∥v̂i(t)∥1 = 0 and limt→∞ ∥x̂i(t)∥1 <∞.
Similarly we can also prove Step 2, according to the estimation of Step 1, for

any t ≥ 0 and j − 1 < i, we have

fi(t)− fj−1(t) ≤
K(i− j + 1)

n(1 + ∥x̂i(t)∥1)2β−1
,

=⇒ fi(t)− fj−1(t)−
K(i− j + 1)

n(1 + ∥x̂i(t)∥1)2β−1
≤ 0.

By îi ∈ Ω̂2, we have

i∑
k=j

∥v̂k(t)∥1 =
1

2β − 1

i∑
k=j

(
fk(t)− fk−1(t)

)

−
i∑

k=j

(
ρk −

∫ t

0

∥Ĝk(ν)∥1dν

)

=
1

2β − 1

(
fi(t)− fj−1(t)

)

−
i∑

k=j

(
ρk −

∫ t

0

∥Ĝk(ν)∥1dν

)
≥ 0.

(3.34)

Similar to inequality (3.30), (3.32), we have

K(i− j + 1)

n(2β − 1)(1 + ∥x̂i(t)∥1)2β−1
−

i∑
k=j

(
ρk −

∫ t

0

∥Ĝk(ν)∥1dν

)
≥ 0

=⇒ ∥x̂i(t)∥1 ≤

(
K(i− j + 1)

n(2β − 1)
∑i
k=j(ρk −

∫ t
0
∥Ĝk(ν)∥1dν)

) 1
2β−1

− 1.

(3.35)

For the proof of limt→∞ ∥v̂i(t)∥1 = 0, it is the same as Step 1. Thus, we prove the
conclusion of Step 2.

For convenience, we put the specific demonstration process of Step 3 in the form
of Appendix A at the end of the paper.

Next we briefly explain the sequence of the entire proof of Step 3. In order to as-
sist the better and faster reading of the specific demonstration process of Appendix
A.

Step 3: If îi ∈ Ω̂3 ̸= ∅, then limt→∞ ∥x̂i(t)∥1 = ∞. Since the set Ω̂3 constructed
in Step 3 is special, we need to divide the set Ω̂3.
Let

Ω̂3 = Ω̂4 ∪ Ω̂5 =

{
îi ∈ Ω̂ : ρi −

∫ t

0

∥Ĝi(ν)∥1dν ≤ 0,∀j ∈ N, 1 ≤ j ≤ i,

i∑
k=j

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) ≤ 0,∀t ≥ 0

}
,
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where

Ω̂4 =

{
îi ∈ Ω̂3 : ρi −

∫ t

0

∥Ĝi(ν)∥1dν ≤ 0,

∀j ∈ N, 1 ≤ j ≤ i,

i∑
k=j

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) ≤ 0,

and ∃j
′
∈ N, 1 ≤ j

′
≤ i,

i∑
k=j′

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) = 0,∀t ≥ 0

}
,

Ω̂5 =

{
îi ∈ Ω̂3 : ρi −

∫ t

0

∥Ĝi(ν)∥1dν ≤ 0,

∀j ∈ N, 1 ≤ j ≤ i,

i∑
k=j

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) < 0,∀t ≥ 0.

}

The proof of Step 3 is proved in three cases.
Step 3.1: If îi ∈ Ω̂4 ̸= ∅, then limt→∞ ∥v̂i(t)∥1 = 0.
Step 3.2: If îi ∈ Ω̂5 ̸= ∅, then

lim
t→∞

∥v̂i(t)∥1 > 0 and lim
t→∞

∥x̂i(t)∥1 = ∞.

Step 3.3: If îi ∈ Ω̂4 ̸= ∅, then limt→∞ ∥x̂i(t)∥1 = ∞.
Next we will prove the last step of the Theorem 3.2.
Step 4: System (3.17) can be divided into | Ω̂3 | +1 clusters.
The proof of Step 4 is demonstrated in conjunction with Steps 1, 2, and 3. Thus,

we can easily find that after the results of Steps 1 and 2 above are proved, we obtain
if the agent îi ∈ Ω̂1 ∪ Ω̂2, then

lim
t→∞

∥v̂i(t)∥1 = 0 and lim
t→∞

∥x̂i(t)∥1 <∞.

By Step 3, if îi ∈ Ω̂3, then limt→∞ ∥x̂i(t)∥1 = ∞. Let | Ω̂3 |= m, accordingly
Ω̂3 = {̂ii1 , îi2 , . . . , îim}, where m ≤ n− 1 ⇒ m+ 1 ≤ n.

Combined with the Ω = {1, 2, . . . , n} in the previous Definition 2.2, we have
Ωk = {ik−1+1, ik−1+2, . . . , ik}, for k = 1, 2, . . . ,m+1, where i0 = 0 and im+1 = n.
Thus, k − 1 = 1, 2, . . . ,m =⇒ ik−1 = i0, i1, i2, . . . , im =⇒

ik−1 + 1 = i0 + 1, i1 + 1, i2 + 1, . . . , im + 1,

ik−1 + 2 = i0 + 2, i1 + 2, i2 + 2, . . . , im + 2,

ik−1 + 3 = i0 + 3, i1 + 3, i2 + 3, . . . , im + 3,

. . . . . .

ik = i1, i2, . . . , im+1.

By Ω̂3 = {̂ii1 , îi2 , . . . , îim} and the above equations ik−1+1, ik−1+2, ik−1+3, . . . , ik,
we find that îi = îik−1+1, îik−1+2, îik−1+3, . . . , îik−1 ∈ Ω̂1 ∪ Ω̂2. Thus, for each Ωk =
{ik−1 + 1, ik−1 + 2, . . . , ik}, ordered conditions using Lemma 3.1, we can obtain

lim
t→∞

sup
i,j∈Ωk

∥vi(t)− vj(t)∥1 = lim
t→∞

∥vik(t)− vik−1−1(t)∥1
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= lim
t→∞

ik+1∑
i=ik−1+1

∥v̂i(t)∥1 = 0.

Similarly, we can also get

sup
0≤t≤∞,i,j∈Ωk

∥xi(t)− xj(t)∥1 <∞.

In the following we will take two sets Ωk and Ωk+1, we have

lim
t→∞

∥xik(t)− xik+1(t)∥1 = lim
t→∞

∥x̂ik(t)∥1 = ∞,

this is because îik ∈ Ω̂3 = {̂ii1 , îi2 , . . . , îim} causes the above situation to occur
between the agents.

For the same reason, take i1 ∈ Ωk and i2 ∈ Ωk+1, according to Lemma 3.1, we
have

sup
t≥0

∥xi1(t)− xi2(t)∥1 ≥ sup
t≥0

∥xik(t)− xik+1(t)∥1 = ∞.

Looking back at our previous Definition 2.2, it is not difficult to find any different
segmentation set i1 ∈ Ωk1 , i2 ∈ Ωk2 , k1 < k2, we have

sup
t≥0

∥xi1(t)− xi2(t)∥1 = ∞.

Therefore, by Definition 2.2, we obtain the system (2.2) is divided into | Ω3 | +1
clusters.

In summary, we prove the Theorem 3.2.

4. Numerical results
In this section, we use numerical examples with 40 agents to illustrate our theoretical
results. In order to test the results of single flocking cluster behavior and multi-
flocking cluster behavior of our models (2.2) and (3.17), we take the number of
agents as n = 40 and the step size is h = 0.5. Next we test the Theorem 3.1 and
the result of Theorem 3.2.

Experiment A: Verification Theorem 3.1.

x(t) = (x1(t), x2(t), x3(t), . . . , x40(t)) ∈ R3∗40,

v(t) = (v1(t), v2(t), v3(t), . . . , v40(t)) ∈ R3∗40.

Take β = 1/2,K = 14, Gi(t) = (G1
i (t), G

2
i (t), G

3
i (t)) ∈ R3, where G1

i (t) =
1

(t+1)2 + 1
3 t exp(−t

2), G2
i (t) = 1− 1

(t+1)2 , and G3
i (t) =

2
3 t exp(−t

2)− 1.

For the interference Gi(t), we have

∥Gi(t)∥1 = G1
i (t) +G2

i (t) +G3
i (t) = t exp(−t2).

For the integration of ∥Gi(t)∥1, we obtain∫ +∞

0

∥Gi(ν)∥1dν =

∫ +∞

0

ν exp(−ν2)dν =
1

2
< +∞.
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(a) x(t) = {x1(t), x2(t), . . . , x40(t)} ∈ R3∗40 (b) v(t) = {v1(t), v2(t), . . . , v40(t)} ∈ R3∗40

Figure 2. Dynamic trends of velocity and position of 40 agents with disturbance systems

Obviously, the disturbance ∥Gi(t)∥1 satisfies the condition of Theorem 3.1. There-
fore, after experimental analysis, we obtained the phenomenon of Mono-cluster
flocking behavior as shown in Figure 2.

Thus, we verify the conclusion of Theorem 3.1.
Experiment B: Verification Theorem 3.2.

x(t) = (x1(t), x2(t), x3(t), . . . , x40(t)) ∈ R3∗40,

v(t) = (v1(t), v2(t), v3(t), . . . , v40(t)) ∈ R3∗40.

In this experiment, based on the convenience and significance of the experiment,
we still take K = 14, and n = 40. For the model (3.17), ψ(r) = 1

(1+r)2β
, and the

attenuation coefficient β > 1/2.
Experiment B1: For the interference factor Ĝi(t) = Gi(t) − Gi+1(t), here,

Gi(t) = (G1
i (t), G

2
i (t), G

3
i (t)) ∈ R3. We assume

G1
i (t) =

1

3

1

(t4 + 1)1/2
+

1

(1 + t)2β
, (β >

1

2
),

G1
i+1(t) = −2

3

1

(t4 + 1)1/2
− exp(−2t) cos(t),

G2
i (t) =

sign(sin(t))

1 + t2
+

2

3
exp(−2t)− 1

100

1

(exp(t))1/2
,

G2
i+1(t) =

sign(sin(t))

1 + t2
+

1

4
exp(−2t) +

3

100

1

(exp(t))1/2
,

G3
i (t) =

3

100

1

(exp(t))1/2
+

1

5
exp(−2t)cos(t)− 1

(t4 + 1)1/2
,

G3
i+1(t) = − 1

100

1

(exp(t))1/2
+ (

4

5
cos(t) +

5

12
) exp(−2t).

Therefore, we have

∥Ĝi(t)∥1 =

3∑
p=1

| Gpi (t)−Gpi+1(t) |=
1

(1 + t)2β
.
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On both sides of the ∥Ĝi(t)∥1 integral, we obtain∫ +∞

0

∥Ĝi(ν)∥1dν =

∫ +∞

0

1

(1 + ν)2β
dν =

1

2β − 1
< +∞.

Therefore, the interference function Ĝi(t) satisfies the requirements of Theorem 3.2.
At the same time, we give the initial values of the position and velocity of 40 agents,
and require these initial data to satisfy Lemma 3.1, i.e.,

x1(0) ≥ x2(0) ≥ x3(0) ≥, . . . ,≥ x40(0),

v1(0) > v2(0) > v3(0) >, . . . , > v40(0).

Take β = 0.60 > 1/2, we obtained the results shown in Figure 4 after experimental
simulation. From Figure 3, we can easily find that among the experimental phe-
nomena of system (3.17) with 40 agents, 40 agents can be divided into 3 clusters
and synchronized into clusters.

(a) x(t) = {x1(t), x2(t), . . . , x40(t)} ∈ R3∗40 (b) v(t) = {v1(t), v2(t), . . . , v40(t)} ∈ R3∗40

Figure 3. Dynamic trends of velocity and position of 40 agents with disturbance systems

After the given initial data, we calculate that the three clusters are Ω1 =
{1, 2, 3, . . . , 24}, Ω2={25, 26, . . . , 30}, Ω3={31, 32, . . . , 40}, and Ω={1, 2, 3, . . . , 40}=
Ω1 ∪ Ω2 ∪ Ω3, which further embodies the meaning of Definition 2.2 in this paper.
This presents a phenomenon of multiple flocking cluster behavior between agents
in an environment with interference factors.

Experiment B2: Similarly, in the case of satisfying Theorem 3.2, we take
∥Ĝi(t)∥1 = t exp(−t2) again. Here, β = 0.60 > 1/2, and we can divide 40 agents
into 4 clusters, e.i.,

Ω = {1, 2, 3, . . . , 40} = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4,

where Ω1 = {1, 2, 3, . . . , 10}, Ω2 = {11, 12, . . . , 34}, Ω3 = {35, 36, . . . , 40} and Ω4 =
{31, 32, . . . , 40}, as shown in Figure 4.

In summary, we have fully verified the results of Theorem 3.1 and Theorem 3.2.

5. Conclusions
In this paper, we study the perturbed C-S model, which contains the structure of
hierarchical leadership. The research in this paper shows that flocking (Mono-cluster
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(a) x(t) = {x1(t), x2(t), . . . , x40(t)} ∈ R3∗40 (b) v(t) = {v1(t), v2(t), . . . , v40(t)} ∈ R3∗40

Figure 4. Dynamic trends of velocity and position of 40 agents with disturbance systems

flocking) occurs when the perturbation in system (2.2) satisfies some conditions
and β = 1

2 , while for β > 1
2 conditional flocking (Multi-cluster flocking) would

occur provided the initial data [40, Lemma 3.1] and perturbation satisfy some given
conditions. Moreover, we verify the main results of this paper through numerical
simulation experiments. Our results maybe applied to aircraft formations, team
coordinated operations, financial fluctuations, etc.

We leave a few far-reaching questions in this paper, since the conditions for
analyzing flocking behavior are limited, we hope to try to improve it in the future
research process, and we can also consider the multi-flocking behavior of the C-S
model with fractional order and time delay.

Appendix A
In this part, we will prove Step 3 in Theorem 3.2. The proof of Step 3 is divided in
three cases.

Step 3.1: If îi ∈ Ω̂4 ̸= ∅, then limt→∞ ∥v̂i(t)∥1 = 0. We divide Step 3.1 into
two parts:

ρk −
∫ t

0

∥Ĝk(ν)∥1dν = 0 and ρk −
∫ t

0

∥Ĝk(ν)∥1dν < 0.

Step 3.1.1: Assume ρk −
∫ t
0
∥Ĝk(ν)∥1dν = 0. Thus for equation (3.24) we

obtain the following form:

∥v̂i(t)∥1 =
fi(t)− fi−1(t)

2β − 1
.

Note that, we obtain limt→∞ ∥v̂i(t)∥1 = 0. The proof process is the same as in case
I of article [40]. Thence, the following contradiction

0 < lim
t→∞

∥v̂i(t)∥1 ≤ lim inf
t→∞

−fi−1(t)

2β − 1
≤ 0.

Therefore, limt→∞ ∥v̂i(t)∥1 = 0.
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Step 3.1.2: Assume ∀t ≥ 0, ρk −
∫ t
0
∥Ĝk(ν)∥1dν < 0, and ∃j′ ∈ N, 1 ≤ j

′ ≤
i,
∑i
k=j′ (ρk −

∫ t
0
∥Ĝk(ν)∥1dν) = 0, for îi ∈ Ω̂4 =⇒ limt→∞ ∥v̂i(t)∥1 = 0. Suppose

not, we have limt→∞ ∥v̂i(t)∥1 > 0 =⇒ limt→∞ ∥x̂i(t)∥1 = ∞. Combining (3.24) and
(3.35), we have

0 <

i∑
k=j′

∥v̂k(t)∥1 =
1

2β − 1

i∑
k=j′

(fk(t)− fk−1(t))

−
i∑

k=j′

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν)

=
1

2β − 1
(fi(t)− fj′−1(t))

≤ K(i− j
′
+ 1)

n(2β − 1)(1 + ∥x̂i(t)∥1)2β−1
→ 0, (as t→ ∞).

(5.1)

As a result, there is a contradiction, hence limt→∞ ∥v̂i(t)∥1 = 0 .
Next, we use mathematical induction to prove Step 3.2 and 3.3.
Step 3.2: If îi ∈ Ω̂5 ̸= ∅, then limt→∞ ∥v̂i(t)∥1 > 0, limt→∞ ∥x̂i(t)∥1 = ∞.

For any îi ∈ Ω̂5, Assuming that there are j elements belonging to Ω̂5, and these j
elements are smaller than îi, then, we have

{̂ii1 , îi2 , . . . , îij , îij+1
= îi} ⊂ Ω̂5 =⇒ îi1 < îi2 <, . . . , < îij < îij+1

= îi.

Under the premise of the above assumptions, we will prove

lim
t→∞

∥v̂i(t)∥1 > 0 and lim
t→∞

∥x̂i(t)∥1 = ∞.

For any 1 ≤ m ≤ j + 1, we use mathematical induction to prove this situation.
(3.2.1) If j = 0 ⇒ îi1 = îi ⇒ i1 = i. Therefore, we need to prove the situation

of m = 1. For j < i1, since îi1 is the first element of Ω̂5, thus îj ̸∈ Ω̂5.
Since îj ̸∈ Ω̂5, then we only have limt→∞ ∥v̂j(t)∥1 = 0, for j < i1. By (5.1),

similar we can get
i1∑
k=1

∥v̂k(t)∥1 =
1

2β − 1

i1∑
k=1

(fk(t)− fk−1(t))

−
i1∑
k=1

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν)

=
1

2β − 1
fi1(t)−

i1∑
k=1

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν)

≥−
i1∑
k=1

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) > 0.

(5.2)

=⇒ ∥x̂i1(t)∥1 → ∞, as t→ ∞, this proves the conclusion of m = 1.
(3.2.2) If j ̸= 0 ⇒ m ≥ 1. Under the induction hypothesis, we assume that

if m ≥ 1, limt→∞ ∥x̂im(t)∥1 = ∞ and limt→∞ ∥v̂im(t)∥1 > 0 hold, which means
fim(t) → 0, (as t→ ∞).
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(3.2.3) If the assumption of (3.2.2) is reasonable and meaningful, we next prove
that limt→∞ ∥x̂im+1

(t)∥1 = ∞ and limt→∞ ∥v̂im+1
(t)∥1 > 0 are hold. According to

the derivation of equation (5.2), we can obtain the equation
im∑
k=1

∥v̂k(t)∥1 =
1

2β − 1

im∑
k=1

(fk(t)− fk−1(t))

−
im∑
k=1

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν)

=
1

2β − 1
fim(t)−

im∑
k=1

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν).

(5.3)

Combining the conclusions in (3.2.2), we have limt→∞
∑im
k=1 ∥v̂k(t)∥1=−

∑im
k=1(ρk−∫ t

0
∥Ĝk(ν)∥1dν) on both sides of equation (5.3) with respect to t tending to infinity.

Thus, we obtain

lim
t→∞

im+1∑
k=1

∥v̂k(t)∥1

=
1

2β − 1
lim
t→∞

fim+1
(t)−

im+1∑
k=1

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν)

=
1

2β − 1
lim
t→∞

fim+1
(t)−

im∑
k=1

(ρk −
∫ t

0

∥Ĝk(ν)∥1)

− (ρim+1
−
∫ t

0

∥Ĝim+1
(ν)∥1)

>0 + 0− (ρim+1
−
∫ t

0

∥Ĝim+1
(ν)∥1)

=−
im∑
k=1

(ρk −
∫ t

0

∥Ĝk(ν)∥1) > 0.

(5.4)

When îi∈ Ω̂5 ̸=∅, the above inequality holds. Thus, we have ρim+1−
∫ t
0
∥Ĝim+1(ν)∥1≤

0,
∑im
k=1(ρk −

∫ t
0
∥Ĝk(ν)∥1) < 0, and fim+1

(t) ≥ 0.
Accordingly, we obtain limt→∞ ∥v̂im+1

(t)∥1 > 0. Applying the ordered relation-
ship of Lemma 3.1, it is easy to obtain

lim
t→∞

∥x̂im+1
(t)∥1 = ∞.

According to the inductive hypothesis, our conclusions are further proved by (3.2.1),
(3.2.2) and (3.2.3) above.

Similar to the proof in Step 3.3 of [40] and Step 3.2 above, we can show the
following Step 3.3.

Step 3.3: If îi ∈ Ω̂4 ̸= ∅, then limt→∞ ∥x̂i(t)∥1 = ∞. For any îi ∈ Ω̂4, Assuming
that there are j elements belonging to Ω̂4, and these j elements are smaller than îi,
then we have

{̂ii1 , îi2 , . . . , îij , îij+1
= îi} ⊂ Ω̂4 =⇒ 1 ≤ îi1 < îi2 <, . . . , < îij < îij+1

= îi.
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Under the premise of the above assumptions, we will prove limt→∞ ∥v̂i(t)∥1 = 0
and limt→∞ ∥x̂i(t)∥1 = ∞.

For any 1 ≤ m ≤ j + 1, we use mathematical induction to prove this situation.
(3.3.1) If j = 0 ⇒ îi1 = îi ⇒ i1 = i and m = 1. Therefore, we need to prove

the situation of m = 1. Since îi1 is the first element of Ω̂4, there is a unique j′ that
satisfies 1 ≤ j

′ ≤ i1 and
∑i1
k=j′

(ρk −
∫ t
0
∥Ĝk(ν)∥1dν) = 0.

Next we will prove that îi ∈ Ω̂4 ̸= ∅ is true in both ρi1 −
∫ t
0
∥Ĝi1(ν)∥1dν = 0

and ρi1 −
∫ t
0
∥Ĝi1(ν)∥1dν < 0 cases.

(3.3.1A) Suppose ρi1 −
∫ t
0
∥Ĝi1(ν)∥1dν = 0.

When i1 = 1, we can get limt→∞ ∥v̂1(t)∥1 = K
(2β−1)(1+∥x̂1(t)∥1)2β−1 , by equation

(3.24). According to the previously proven Step 3.1, we obtain

lim
t→∞

∥v̂1(t)∥1 = 0.

Thus, it is proved that limt→∞ ∥x̂1(t)∥1 = ∞.
When i1 > 1, for 1 ≤ j ≤ i1 − 1, we deduce that

i1−1∑
k=j

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν)

=0 +

i1−1∑
k=j

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν)

=ρi1 −
∫ t

0

∥Ĝi1(ν)∥1dν +
i1−1∑
k=j

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν)

=

i1∑
k=j

(ρk −
∫ t

0

∥Ĝk(ν)∥1) < 0.

(5.5)

The reason why the above inequality holds is because i1 is the first element of the
set Ω̂4, then i1 − 1 is not in the Ω̂4. Obviously, the inequality meets the definition
of Ω̂5, hence îi1−1 ∈ Ω̂5.

According to the previously proven Step 3.2, we obtain

lim
t→∞

∥x̂i1−1(t)∥1 = ∞ =⇒ lim
t→∞

fi1−1(t) = 0.

By equation (3.24), we obtain

lim
t→∞

∥v̂i1(t)∥1 =
1

2β − 1
lim
t→∞

(fi1(t)− fi1−1(t))

− (ρi −
∫ t

0

∥Ĝi(ν)∥1dν)

=
1

2β − 1
lim
t→∞

fi1(t).

(5.6)

In a similar way, we can also prove

ρi1 −
∫ t

0

∥Ĝi1(ν)∥1dν = 0 =⇒ ρ1 −
∫ t

0

∥Ĝ1(ν)∥1dν = 0,
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thus limt→∞ ∥x̂i(t)∥1 = ∞.
(3.3.1B) Suppose ρi1 −

∫ t
0
∥Ĝi1(ν)∥1dν < 0.

When i1 ̸= 1 ⇒ i1 ≥ 2, and i1 ∈ Ω̂4. Due to specialization of i1, there exists a
unique j′ satisfying

∑i1
k=j′

(ρk−
∫ t
0
∥Ĝk(ν)∥1dν) = 0 which use the counter-evidence.

Suppose not, then
i1∑

k=j′

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) < 0, for j ̸= j
′
.

When j′ = 1 =⇒
∑i1
k=1(ρk−

∫ t
0
∥Ĝk(ν)∥1dν) = 0 and

∑i1
k=2(ρk−

∫ t
0
∥Ĝk(ν)∥1dν) <

0 =⇒ ρ1 −
∫ t
0
∥Ĝ1(ν)∥1dν) > 0, since

(ρ1 −
∫ t

0

∥Ĝ1(ν)∥1dν) +
i1∑
k=2

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) = 0,

we deduce that

ρ1 −
∫ t

0

∥Ĝ1(ν)∥1dν = −
i1∑
k=2

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) > 0.

Moreover, for 1 ≤ j ≤ i1−1, we have
∑j
k=1(ρk−

∫ t
0
∥Ĝk(ν)∥1dν) > 0. Suppose not,

then ∃j′′ ∈ [1, i1 − 1] such that
∑j

′′

k=1(ρk −
∫ t
0
∥Ĝk(ν)∥1dν) ≤ 0. From the above

ordered relationship, we get the following equation

0 =

i1∑
k=1

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν)

=

j
′′∑

k=1

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) +
i1∑

k=j′′+1

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν)

≤
i1∑

k=j′′+1

(ρk −
∫ t

0

∥Ĝk(ν)∥1dν) < 0,

(5.7)

this contradicts the facts of the above hypothesis. Since (5.7) meets the definition
of Ω1 and Ω2, thus, for 1 ≤ j ≤ i1 − 1 ⇒ îj ∈ Ω̂1 ∪ Ω̂2. Therefore, by Step 1 and
Step 2, we have limt→∞ ∥v̂j(t)∥1 = 0, for 1 ≤ j ≤ i1 − 1. By equation (3.24), we
obtain

lim
t→∞

∥v̂i1(t)∥1 =0 + 0+, . . . ,+ lim
t→∞

∥v̂i1(t)∥1

= lim
t→∞

(∥v̂1(t)∥1 + ∥v̂2(t)∥1+, . . . ,+∥v̂i1(t)∥1)

=
1

2β − 1
lim
t→∞

i1∑
k=1

(fk(t)− fk−1(t))

−
i1∑
k=1

(ρk −
∫ t

0

∥Gk(ν)∥1dν)

=
1

2β − 1
lim
t→∞

fi1(t).

(5.8)
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By Step 3.1, it follows that limt→∞ ∥v̂1(t)∥1 = 0. Then we have limt→∞ fi1(t) = 0,
meaning limt→∞ ∥x̂1(t)∥1 = ∞.

When j
′ ≥ 2, for 1 ≤ j ≤ j

′ − 1, we have

i1∑
k=j

(ρk −
∫ t

0

∥Gk(ν)∥1dν)

=

j
′
−1∑

k=j

(ρk −
∫ t

0

∥Gk(ν)∥1dν) +
i1∑

k=j′

(ρk −
∫ t

0

∥Gk(ν)∥1dν)

=

j
′
−1∑

k=j

(ρk −
∫ t

0

∥Gk(ν)∥1dν) < 0.

(5.9)

Since îi1 ∈ Ω̂4, and îi1 is the first element in Ω̂4. By Step 3.2, we have
limt→∞ ∥x̂j′−1(t)∥1 = ∞ ⇒ limt→∞ fj′−1(t) = 0. This proves the case of j′ ≥ 2
and m = 1.

(3.3.2) Similarly, under the induction hypothesis, we assume that

lim
t→∞

∥x̂im(t)∥1 = ∞ holds for m ≥ 1.

(3.3.3) Next we will prove the case of m + 1, and also consider the following
two cases ρim+1

−
∫ t
0
∥Gim+1

(ν)∥1dν = 0 and ρim+1
−
∫ t
0
∥Gim+1

(ν)∥1dν < 0 to prove
limt→∞ ∥x̂im+1

(t)∥1 = ∞.
(3.3.3A) Suppose ρim+1 −

∫ t
0
∥Gim+1(ν)∥1dν = 0.

For 1 ≤ j ≤ im+1 − 1, we again get a similar result of

im+1−1∑
k=j

(ρk −
∫ t

0

∥Gk(ν)∥1dν)

=

im+1∑
k=j

(ρk −
∫ t

0

∥Gk(ν)∥1dν) ≤ 0.

(5.10)

This result conforms to the definition of Ω̂3, thus îim+1−1 ∈ Ω̂3 =⇒
∑im+1−1
k=j (ρk −∫ t

0
∥Gk(ν)∥1dν) =

∑im+1

k=j (ρk −
∫ t
0
∥Gk(ν)∥1dν) ≤ 0.

On the one hand, we find that if îim+1−1 ∈ Ω̂4, then im+1 − 1 = im. Thus, the
result of limt→∞ ∥x̂im+1−1(t)∥1 = ∞ can also be obtained according to the induction
method.

On the other hand, if îim+1−1 ∈ Ω̂5, then limt→∞ ∥x̂im+1−1(t)∥1 = ∞ can be
obtained by Step 3.2. According to the fim+1−1(t) defined in equation (3.24), we
can know that limt→∞ fim+1−1(t) = 0, of course, the prerequisite for reaching this
limit is limt→∞ ∥x̂im+1−1(t)∥1 = ∞. By equation (3.24), we can also get a similar
(5.8) result, i.e.,

lim
t→∞

∥v̂im+1
(t)∥1 =

1

2β − 1
lim
t→∞

(fim+1
(t)− fim+1−1(t))

=
1

2β − 1
lim
t→∞

fim+1(t).

(5.11)



Multi-cluster flocking behavior for a class of Cucker-Smale model 1849

In the same way as the case of j′ = 1 in (3.3.1B), we have

lim
t→∞

∥x̂im+1
(t)∥1 = ∞.

(3.3.3B) Suppose ρim+1
−
∫ t
0
∥Gim+1

(ν)∥1dν < 0. We have
∑im+1

k=im+1(ρk −∫ t
0
∥Gk(ν)∥1dν) = 0. We now prove that the process is the same as in the case of

j
′ ≥ 2 of (3.3.1B) in (3.3.1), thus proving our conclusion of limt→∞ ∥x̂im+1(t)∥1 =
∞.

In summary, we use the method in [40] to prove that limt→∞ ∥x̂ij+1
(t)∥1 = ∞,

further illustrating that the results of similar [40] can also be obtained in the case
of disturbance.

Finally, the conclusion of Step 3 is proved in conjunction with Steps 1, 2 and 3
of the inductive hypothesis in Step 3.3.
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