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MODELING THE SPREAD OF WEST NILE
VIRUS IN A SPATIALLY HETEROGENEOUS

AND ADVECTIVE ENVIRONMENT∗

Jing Ge1, Zhigui, Lin2,† and Huaiping Zhu3

Abstract In this paper, we put forward and explore a reaction-diffusion-
advection system with free boundaries in spatially heterogeneous environment
to model the spatial transmission of West Nile virus. The transmission dy-
namics are given for the model involving mosquitoes and birds, and the free
boundaries are introduced to describe the moving fronts of the infected region.
The spatial-temporal risk index RF0 (t) , which depends on time t, spatial het-
erogeneity and advection intensity, is derived by variational method. Sufficient
conditions for the virus to extinct or to persist are given. Our results show
that, if RF0 (∞) ≤ 1, the virus extinct eventually, and if RF0 (t0) ≥ 1 for some
t0 ≥ 0, the virus will spread continuously, while if RF0 (0) < 1 < RF0 (∞),
the extinction or persistence of the virus depends on the initial scale of in-
fected mosquitoes and birds, or the size of the infected region, the advection
intensity and other factors. Finally, numerical simulations indicate that the
advection intensity and the expanding capability affect the spreading fronts of
the infected region.

Keywords West Nile virus, heterogeneity, advection, free boundary, the risk
index.
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1. Introduction
West Nile virus (WNv) is a mosquito-borne flavivirus and human, equine, and avian
neuropathogen. The virus is initially detected in Uganda in 1937, then spread across
Africa to the Middle East, West Asia, and eastern Europe. Birds are the natural
reservoir (amplifying) hosts, and WNv is maintained in nature in a mosquito-bird-
mosquito transmission cycle primarily involving Culex spp mosquitoes [9]. WNv
was recently introduced to North America, where it was first detected in 1999 dur-
ing an epidemic of meningoencephalitis in New York City. During 1999-2002, the
virus extended its range throughout much of the eastern parts of the USA, and its
range within the western hemisphere is expected to continue to expand. Since then
the virus has kept spreading to its neighboring states. By 2002, WNv was reported
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in 40 states and the District of Columbia with 4,156 human and 14,539 equine cases
of infection [12]. As we all know that the WNv still remains an important threat
to public health nowadays, it is an important issue to improve our understanding
of WNv transmission dynamics. In the absence of vaccines and specific treatments,
to explore the mosquitoes’and birds’ cross-infection mechanism is the effective and
affordable measure to control the viruses’ transmission broadly. The transmission
of mosquito-borne diseases, such as West Nile virus, malaria, dengue fever, is not
from human-to-human, but through infected mosquitoes. The West Nile virus are
transmitted from human-to-human via an effective bite from an infected female
adult mosquito. Also, the virus can be vertically transmitted from a mosquito to
its offspring. While adult male mosquitoes feed on plant liquids such as nectar,
honeydew, fruit juices and other sources of sugar for energy, female mosquitoes,
in addition to feeding on sugar sources (for energy), feed on the blood meals of
human and other mammals solely to acquire the proteins needed for eggs develop-
ment. Therefore, it is advantageous to predict human WNv risks for cost-effective
controls of the disease and optimal allocations of limited resources [4]. Although
mathematical modeling of the spread of epidemics poses intriguing challenges, it
can provide useful insights and possibly predictive capabilities, which can help pub-
lic health officials to provide a theoretical basis for decision-making. Mathematical
models, which reflect the spatial-independent dynamics, were developed by Kenkre
et al. [20], Bowman et al. [7] , Abdelrazec et al. [1], and references therein. Those
models considered different aspects of WNv, such as the periodicity of the infec-
tion by considering vertical transmission, the full life cycle of the mosquito, and
they determined threshold conditions regarding control strategies for prevention
and control of the virus. Lewis et al. firstly formulated spatially homogeneous
model [22]. They studied WNv propagation using traveling wave solutions as a
simplified model, in which they did not consider the vertical transmission, WNv
death rate or a recovering avian subpopulation. The effects of vertical transmission
and advection movement in the spatial propagation of the WNv for different bird
species were investigated by Maidana and Yang [31],
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where the avian population was divided into susceptible, infective and recovered
subpopulations, Sa, Ia and Ra, respectively, while the vector population was divided
into susceptible and infected subpopulations Sv, Iv. The total populations are Na =
Sa+ Ia+Ra and N∗

v = Sv+ Iv, where the mosquito population N∗
v was regarded as

constant. The biting rate b of mosquitoes is defined as the average number of bites
per mosquito per day. βa and βv were the transmission probabilities from vector to
bird and from bird to vector, respectively. The fraction of progeny of mosquitoes
that are infectious is denoted by p, with 0 < p < 1. The advection coefficients
were denoted by νa and νv for avian and mosquito populations, respectively, with
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νv ≪ νa. The constant µv accounted for the birth rate of the mosquito. The
constants µa, αa, and γa were defined as the birth rate, the death date induced by
disease and the recovery rate of the avian population, respectively. They explored
that the spreading wave speed was a function of the model’s parameters, which
can be used to assess the control strategies. The propagation of West Nile Virus
from New York City to California state is viewed as a consequence of the diffusion
and advection movements of birds, see Fig. 1. The results revealed the mosquito
movements do not play a key role in the disease dissemination, while the bird
advection became an important factor for lowering mosquito biting rates.

Figure 1. The diffusion and advection movements of West Nile virus from New York city to its neigh-
boring states from 1999 to 2002.

To explore the dynamics of disease transmission in a spatially heterogeneous
environment, Allen et al. put forward and explored an SIS type epidemic reaction-
diffusion model in [3]. The contact transmission rate and the recovery rate are
spatially dependent. Their results show that spatial heterogeneity has great in-
fluence on the persistence and extinction of the disease. Since then, there are a
series of work to describe the disease transmission mechanism in spatial hetero-
geneous environment. For instance, Lin and Wang [28] proposed and analyzed a
nonlocal and time-delayed model in spatially heterogeneous environment to describe
the WNv transmission between mosquitoes and birds. We refer interested readers
to [13, 16, 17, 21, 23, 25, 26, 32] and the references therein for related research work
on disease transmission in spatially heterogeneous environment.

Free boundary problem has been comprehensively applied in many application
fields, such as in chemical, biological and ecological problem as well as financial
mathematics since the 1950s. In 2010, Du and Lin [14] firstly formulated and ex-
plored a diffusive logistic type model in homogeneous environment. The free bound-
ary x = h(t) was introduced to describe the moving front of an invasive species. The
spreading-vanishing dichotomy, sharp criteria for spreading and vanishing, and the
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asymptotic spreading speed of the free boundary problem have been established,
where the asymptotic spreading speed is smaller than the minimal speed of the
traveling waves of the corresponding Cauchy problem in fixed region. Since then,
there has been much more increasing interest in understanding the importance that
the free boundary plays in the mathematical ecology [14, 16, 17, 19, 29, 35] and the
references therein.

To investigate the spatial transmission mechanism of WNv, Lin and Zhu [29]
proposed an reaction-diffusion simplified model with free boundaries in homoge-
neous environment
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(1.2)
where the infected area of the disease [g(t), h(t)] ⊂ R is a moving interval with its
two end points representing the spreading fronts of the disease and to be determined,
which models the spatial expanding of the infection (infected area); Vi(t) accounts
for infected mosquitoes, Hi(t) represents infected birds, rv is the recruitment rate
of the mosquitoes; βv is the contact transmission rate of hosts to vectors; dh is
the natural death rate of birds; βh is the contact transmission rate of the virus
from mosquitoes to birds and γh is the recovery rate of birds recovering from the
infection. Dv, Dh represent the diffusion rates for the vector mosquitoes and host
birds, respectively, and they assume that 0 < Dv ≪ Dh. The parameter 0 < q ≪ 1
measures the vertical transmission rate of the virus in culex mosquitoes. h0, and
µ are positive constants, and the initial functions Vi0 and Hi0 are nonnegative and
satisfyVi0 ∈ C2([−h0, h0]), Vi0(±h0) = 0 and 0 ≤ Vi0(x) ≤ N∗

v , x ∈ (−h0, h0),

Hi0 ∈ C2([−h0, h0]), Hi0(±h0) = 0 and 0 < Hi0(x) ≤ N∗
h , x ∈ (−h0, h0).

(1.3)

They introduced the spatial-temporal risk index RF0 (t) for the simplified model with
the free boundary, which was associated with the initial scales of infected vector
mosquitoes and host birds, the area of the initial infected region, the diffusion rates
and other factors. It was combined to develop sufficient conditions for the virus to
extinct or to become spatially endemic.

Several environmental factors including landuse, climate, and host community
composition can also influence the abundance of WNv hosts and vectors, and sub-
sequently, affect WNv transmission rates. Spatial heterogeneity exists in the risk
of human exposure to infectious disease vectors. For example, occurrences of infec-
tious diseases often are spatially correlated; human disease incidence at a location
is positively related to incidences at neighboring locations [6, 8, 11].
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In reality, some species or diseases prefer to move towards one direction because
of appropriate climate, wind direction, etc. For example, in studying the propaga-
tion of West Nile Virus in North America, it was observed in [31] that West Nile
Virus appeared for the first time in New York City in the summer of 1999. In the
second year the wave front travels 187 km to the north and 1100 km to the south,
till 2002, it has been spread across almost the whole America continent. Therefore,
the propagation of WNv from New York City to California state is a consequence of
the diffusion and advection movements of birds. Especially, bird advection becomes
an important factor to lower mosquito biting rates.

There have been many research to explore the propagation of WNv in the last
two decades, however, advection terms have not obtained much more attention in in-
vestigating the extinction and persistence of WNv. Therefore, it is much worthwhile
to take into consideration the influence of advection movement on the transmission
of West Nile virus. And due to the effect of advection rate on the mosquitoes is
small enough, so we will only consider the impact of advection movement on the
birds.

Sometime the mosquitoes are viewed as a sessile population, then Dv ≪ Dh.
For instance, the mean dispersal distance for Aedes aegypti was ranged from 28 to
199 m, according to Harrington et al. [18]. To better explore the heterogeneity and
advection on the movement on birds, in this paper we will ignore the diffusion and
advection on mosquitoes, that means we can consider the limiting case Dv ≡ 0.
This research is devoted to more explicitly describe the transmission mechanism of
WNv in the spatially heterogeneous and advection environment on the basis of [29]
and the above assumptions. Therefore, we will investigate the spatial degenerate
partial systems for Vi(t, x) and Hi(t, x) with free boundaries x = g(t) and x = h(t)
as follows
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(1.4)

where βv(x), rv(x), γh(x), dh(x),and βh(x) are positive Hölder continuous func-
tions, which represent the contact transmission rate of birds to mosquitoes, the
natural death rate of infected female mosquitoes, the recovery rate of infected birds
recovering from the infection, the natural death rate of infected birds, the contact
transmission rate of the virus from mosquitoes to birds, at location x, respectively.
The variables N∗

h , N
∗
v , Vi,Hi are the same as the statements in reference [29]. N∗

h

and N∗
v mean the the mosquitoes and the birds remain constant in space for all

time. Vi and Hi describe the infected mosquitoes and infected birds, respectively.
The constant β describe the infected birds move to the gradient of their density
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at a constant rate. And the functions Vi0 and Hi0 are nonnegative and satisfy the
initial conditions (1.3).

The free boundary conditions g′(t)=−µDh ∂Hi
∂x

(t, g(t)) and h′(t)=−µDh ∂Hi
∂x

(t, h(t))

mean that the expanding rate of the infected interval [g(t), h(t)] is proportional to
the outward flux of the population across the boundary of the range (see [14] for
further explanations and justification). Epidemiologically, it means that beyond
the free boundaries x = g(t) and x = h(t), there are only susceptible host birds,
and no birds carrying the virus.

Throughout this paper, we will assume
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which means that far sites of the habitat are similar and high-risk. Furthermore
we will assume |β| < 2

√
Dh(

β∞
v β∞

h N∗
v

N∗
hr

∞
v (1−q) − d∞h − γ∞h ) which means the advection

intensity is small.

2. Preliminaries
In this section, we firstly present the following local existence and uniqueness results
of the degenerate partial system (1.4) with the initial conditions (1.3) by applying
the contraction mapping theorem, standard Lp estimate and Sobolev embedding
theorem, and then we show global existence with the help of some suitable estimates.

Theorem 2.1. For any given (Vi0,Hi0) satisfying (1.3), and any α ∈ (0, 1), there
exists the constant T > 0 such that problem (1.4) admits a unique solution

(Vi,Hi; g, h) ∈ [C
1+α
2 ,1+α(DT )]

2 × [C1+α
2 ([0, T ])]2;

and the solution satisfies
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where DT = {(t, x) ∈ R2 : t ∈ [0, T ], x ∈ [g(t), h(t)]}, C and T depend only on
∥Vi0∥C2([−h0,h0]), h0, α and ∥Hi0∥C2([−h0,h0]).

Proof. For any given constant T > 0, we define

GT = {g ∈ C1([0, T ]) : g(0) = −h0, g′(t) ≤ 0, 0 ≤ t ≤ T},
HT = {h ∈ C1([0, T ]) : h(0) = h0, h

′(t) ≥ 0, 0 ≤ t ≤ T}.

Note that the first equation in (1.4) for Vi has no diffusion and advection terms ,
we can use g, h and Hi to represent Vi.

If g(t) ∈ GT , h(t) ∈ HT andHi(t, x) ∈ C(DT ), then for (t, x) ∈ DT , the unknown
Vi can be rewritten as

Vi(t, x) :=H(t,Hi(t, x)) = e
− βv(x)
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∫ t
0
Hi(s,x)ds−(1−q)rv(x)t

Vi(0, x)
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then problem (1.4) can be transformed into

wt −DhA
2wyy + (βA−B)wy

= β1
h(t, y)H(t, w)(1− w

N∗
h
)− d1h(t, y)w − γ1h(t, y)w, 0 < t < T, −1 < y < 1,

w(t, 1) = w(t,−1) = 0, 0 ≤ t < T,

w(0, y) = Hi0(h0y) = w0(y), −1 < y < 1,

(2.2)
and 

g′(t) = −µAwy(t,−1), 0 < t < T,

h′(t) = −µAwy(t, 1), 0 < t < T,

g(0) = −h0, h(0) = 0,

(2.3)

whereA=A(h(t), g(t)) = 2
h(t)−g(t) and B=B(h(t), g(t), y) = y h

′(t)−g′(t)
h(t)−g(t) + h′(t)+g′(t)

h(t)−g(t) .
This transformation changes the free boundary problem (1.4) to the initial boundary
problem (2.2)and (2.3) in [0, T ]× (−1, 1) with more complex equations.

Similarly as those in [2, 14], the rest of the proof follows from the contraction
mapping theorem together with the standard Lp theory and the Sobolev imbedding
theorem, we omit it here.

To prove that the local solution stated in Theorem 2.1 can be extended to all
t > 0, we need the following estimates.

Theorem 2.2. Let (Vi,Hi; g, h) be a solution to problem (1.4) defined for t ∈ (0, T0]
for some T0 ∈ (0,+∞). Then the following conclusion hold.

(i) 0 < Vi(t, x) ≤ N∗
v and 0 < Hi(t, x) ≤ N∗

h for t ∈ (0, T0], g(t) < x < h(t);
(ii) There exists a constant C1 independent of T0 such that

0 < −g′(t), h′(t) ≤ C1 for t ∈ (0, T0];

Proof. (i) is directly from the comparison principle, see Lemma 2.2 in [2]. The
proof of (ii) is similar to that of Lemma 2.2 in [14], where

C1 := max{ 1

2h0
,
β

D h
+

√
N∗
h

2Dh
,
4||Hi0||C1([−h0,h0])

3N∗
h

}.
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Remark 2.1. From (ii) in Theorem 2.2, we obtain an estimate about the upper
bound and lower bound of the asymptotic spreading speeds for the leftward front
and the rightward front of the infected region.

Combining Theorems 2.1 and 2.2 as in [14], we obtain the following global exis-
tence result.

Theorem 2.3. The solution of (1.4) exists and is unique for all t ∈ (0,∞).

Proof. In fact, since Vi,Hi and g′(t), h′(t) are bounded in (g(t), h(t))× (0, T0] by
constants independent of T0, the maximal existing time of the solution of (1.4) can
be extended to infinity.

In what follows, we exhibit a comparison principle for the free boundary problem
(1.4), which can be proved similarly as Lemma 3.5 in [14] and can be used to estimate
Vi,Hi and the free boundaries x = g(t), x = h(t).

Lemma 2.1 (The Comparison Principle). Assume that g, h ∈ C1([0,+∞)), V i(t, x),
Hi(t, x) ∈ C([0,+∞)× [g(t), h(t)]) ∩ C1,2((0,+∞)× (g(t), h(t))), and

∂V i
∂t

≥ βv(x)(N
∗
v−V i)Hi

N∗
h

−(1− q)rv(x)V i, t > 0, g(t) < x < h(t),

∂Hi

∂t
−Dh

∂2Hi

∂x2
+β

∂Hi

∂x
≥ βhV i(N

∗
h−Hi)

N∗
h

−(dh + γh)Hi, t > 0, g(t) < x < h(t),

Hi(t, x) = V i(t, x) = 0, t>0, x=g(t) orx=h(t),

g(0) ≤ −h0, g′(t) ≤ −µ∂Hi

∂x
(t, g(t)), t > 0,

h(0) ≥ h0, h
′
(t) ≥ −µ∂Hi

∂x
(t, h(t)), t > 0,

V i(0, x) ≥ Vi0(x), Hi(0, x) ≥ Hi0(x), −h0 ≤ x ≤ h0.

Then the solution (Vi,Hi; g, h) to the free boundary problem (1.4) satisfies

h(t) ≤ h(t), g(t) ≥ g(t), t ∈ [0,+∞),

Vi(t, x) ≤ V i(t, x), Hi(t, x) ≤ Hi(t, x), t ≥ 0, x ∈ [g(t), h(t)].

Remark 2.2. The pair (V i, Hi; g, h) in Lemma 2.1 is usually called an upper
solution (a supersolution) to problem (1.4). Correspondingly, the lower solution
(V i,Hi; g, h) (or a subsolution) can be defined analogously by reversing all the
inequalities in the obvious places, and the similar comparison principle holds.

To emphasize the dependence of the solution on the expanding capability µ, we
rewrite the solution as (V µi ,H

µ
i ; g

µ, hµ). As a corollary of Lemma 2.1, we have the
following monotonicities:

Corollary 2.1. For fixed Vi0,Hi0, β, h0, rv(x), γh(x), dh(x), βv(x) and βh(x). If
µ1 ≤ µ2, then V µ1

i (t, x) ≤ V µ2

i (t, x), Hµ1

i (t, x) ≤ Hµ2

i (t, x) in (0,∞)×[gµ1(t), hµ1(t)]
and gµ2(t) ≤ gµ1(t), hµ1(t) ≤ hµ2(t) in (0,∞).

Corollary (2.1) shows that the left free boundary for problem (1.4) is strictly
monotone decreasing and the right one is increasing. From the epidemiological
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point of view, it means that the infection area which contains infected birds is
always gradually expanding.

3. The risk index
In this section, we will give the risk index for the free boundary problem (1.4),
which is similar to the basic reproduction number in a fixed domain. And we will
derive its analytical properties.

First, we define the basic reproduction number and present its properties and im-
plications for the following reaction-diffusion-advection model with Dirichlet bound-
ary condition

∂Vi
∂t

=
βv(x)(N

∗
v − Vi)Hi

N∗
h

− rv(x)(1− q)Vi, t > 0, x ∈ (p, q),

∂Hi

∂t
−Dh
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∂x2
+β
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∂x
=
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∗
h−Hi)

N∗
h

−(dh + γh)Hi, t > 0, x ∈ (p, q),

Vi(t, x) = Hi(t, x) = 0, t > 0, x = p orx = q.

(3.1)

We linearize (3.1) around (0,0) to obtain the following linear system
ξt = βv(x)

N∗
v

N∗
h

η − (1− q)rv(x)ξ, t > 0, x ∈ (p, q),

ηt −Dhηxx + βηx = βh(x)ξ − (dh(x) + γh(x))η, t > 0, x ∈ (p, q),

ξ(t, x) = η(t, x) = 0, t > 0, x = p orx = q,

(3.2)

and consider the corresponding eigenvalue problem
0 =

βv(x)N
∗
v

λN∗
h

ϕ− (1− q)rv(x)ψ, x ∈ (p, q),

−Dhϕxx + βϕx =
βh(x)

λ
ψ − (dh(x) + γh(x))ϕ, x ∈ (p, q),

ψ(x) = ϕ(x) = 0, x = p orx = q.

(3.3)

By the variational method as stated in [3] in a fixed region, we can deduce the
eigenvalue λ as follows

λ= sup
ψ∈H1

0 (p,q),ψ ̸=0

{√√√√ ∫ q
p
N∗

vβh(x)βv(x)
N∗

h(1−q)rv(x)
ψ2dx∫ q

p
(Dhψ2

x+
β2

4Dh
ψ2+(dh(x)+γh(x))ψ2)dx

}
.

Define the basic reproduction number RDA0 = RDA0 ((p, q), Dh, β) of system (3.1)
as follows RDA0 = RDA0 ((p, q), Dh, β) := λ, where λ is the eigenvalue in system (3.3).

The following result follows from variational methods, see Chapter 2 in [10] for
datails.

Lemma 3.1. 1−RDA0 has the same sign as λ0, where λ0 is the principal eigenvalue
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of the reaction-diffusion-advection problem
0 =

N∗
v

N∗
h

βv(x)ϕ− (1− q)rv(x)ψ + λ0ψ, x ∈ (p, q),

−Dhϕxx + βϕx = βh(x)ψ − (dh(x) + γh(x))ϕ+ λ0ϕ, x ∈ (p, q),

ψ(x) = ϕ(x) = 0, x = p orx = q.

(3.4)

and the corresponding eigenfunction pair satisfy

(ϕ(x), ψ(x)) > 0, x ∈ (p, q), ϕ′(p) > 0, ψ′(p) > 0, ϕ′(q) < 0, ψ′(q) < 0.

Proof. Substituting the first equation in (3.4) to the second equation yields

−Dhϕxx + βϕx =
N∗
vβh(x)βv(x)

N∗
h((1− q)rv(x)− λ0)

ϕ− (dh(x) + γh(x))ϕ+ λ0ϕ. (3.5)

Let (RDA0 , ψ∗, ϕ∗) be the eigen-pair of problem (3.3), that is
0 =

N∗
vβv(x)

N∗
hR

DA
0

ϕ∗ − (1− q)rv(x)ψ
∗, x ∈ (p, q),

−Dhϕ
∗
xx + βϕ∗x =

βh(x)

RDA0

ψ∗ − (dh(x) + γh(x))ϕ
∗, x ∈ (p, q),

ψ∗(x) = ϕ∗(x) = 0, x = p orx = q,

(3.6)

which reduces to

−Dhϕ
∗
xx + βϕ∗x =

N∗
vβh(x)βv(x)

(RDA0 )2N∗
h(1− q)rv(x)

ϕ∗ − (dh(x) + γh(x))ϕ
∗. (3.7)

For convenience, taking Ψ = e
− β

2Dh
x
ϕ in (3.5)and Ψ∗ = e

− β
2Dh

x
ϕ∗ in (3.7) yields

−DhΨxx =
N∗
vβh(x)βv(x)

N∗
h((1− q)rv(x)− λ0)

Ψ− (dh(x) + γh(x))Ψ− β2

4Dh
Ψ+ λ0Ψ, (3.8)

and

−DhΨ
∗
xx =

N∗
vβh(x)βv(x)

(RDA0 )2N∗
h(1− q)rv(x)

Ψ∗ − (dh(x) + γh(x))Ψ
∗ − β2

4Dh
Ψ∗. (3.9)

By the multiply-multiply-subtract-integrate technique, we obtain∫ q

p

N∗
vβh(x)βv(x)

(RDA0 )2N∗
h(1− q)rv(x)

ΨΨ∗dx =

∫ q

p

[
N∗
vβh(x)βv(x)

N∗
h((1− q)rv(x)− λ0)

+ λ0]ΨΨ∗dx,

which means that
sign (1−RDA0 ) = sign λ0.

With the above definition of the basic reproduction number of RDA0 , we have
the following properties.
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Theorem 3.1. The following assertions hold.
(i) RDA0 is a positive and monotone decreasing function of the advection intensity

β;
(ii) RDA0 → 0 as Dh → ∞;
(iii) If Ω1 ⫅ Ω2 ⫅ R1, then RDA0 (Ω1) ≤ RDA0 (Ω2), with strict inequality if and

only if Ω2 \ Ω1 is an open set. Moreover,

lim
(q−p)→∞

RDA0 ((p, q), Dh, β) ≥

√√√√ N∗
vβ

∞
v β∞

h

N∗
h(1−q)r∞v

β2

4Dh
+ d∞h + γ∞h

provided that (H) holds;
(iv) In the special case, βv(x) ≡ β∗

v ,βh(x) ≡ β∗
h, rv(x) ≡ r∗v, dh(x) ≡ d∗h,

γh(x) ≡ γ∗h, then

RDA0 =

√√√√ N∗
vβ

∗
vβ

∗
h

N∗
h(1−q)r∗v

Dh(
π
q−p )

2
+ β2

4Dh
+ d∗h + γ∗h

.

Proof. The proof of part (i) is from the definition of RDA0 , and part (iv) can be
obtained through direct calculations, where( π

q−p )
2 is the principal eigenvalue of −∆

operator with the null Dirichlet boundary condition in the fixed interval (p, q).
For part (ii), by the definition of RDA0 and Poincáre’s inequality, we have

RDA0 = RDA0 ((p, q), Dh, β) = sup
ψ∈H1

0 (p,q),ψ ̸=0

{√√√√ ∫ q
p

N∗
vβhβv

N∗
h
(1−q)rv ψ

2dx∫ q
p
(Dhψ2

x +
β2

4Dh
ψ2 + (dh + γh)ψ2)dx

}

≤ sup
ψ∈H1

0 (p,q),ψ ̸=0

{√√√√√ ∫ q
p

N∗
vβ

M
h
βM
v

N∗
h
(1−q)rmv

ψ2dx∫ q
p
(Dhψ2

x +
β2

4Dh
ψ2 + (dmh + γmh )ψ2)dx

}

≤ sup
ψ∈H1

0 (p,q),ψ ̸=0

{√√√√√ ∫ q
p

N∗
vβ

M
h
βM
v

N∗
h
(1−q)rmv

ψ2dx∫ q
p
(Dh(

π
q−p )

2 + β2

4Dh
ψ2 + (dmh + γmh )ψ2)dx

}

=

√√√√√ N∗
vβ

M
h
βM
v

N∗
h
(1−q)rmv

Dh(
π
q−p )

2 + β2

4Dh
+ (dmh + γmh )

→ 0 as Dh → ∞,

where fM = sup
x∈(p,q)

{f(x)}, fm = inf
x∈(p,q)

{f(x)} for any bounded function f in the

interval (p, q).
The proof of the monotonicity in (iii) is similar to that of Corollary 2.3 in [10].

For the inequality, it follows from the assumption (H) that for any ε > 0, there
exists the constant L0 > 0, when |x| > L0, we can obtain

β∞
v − ε ≤ βv(x) ≤ β∞

v + ε, β∞
h − ε ≤ βh(x) ≤ β∞

h + ε,

r∞v − ε ≤ rv(x) ≤ r∞v + ε, γ∞h − ε ≤ γh(x) ≤ γ∞h + ε, d∞h − ε ≤ dh(x) ≤ d∞h + ε.

For the case q ≥ 2L0, simple computations yield

lim
(q−p)→∞

RDA0 ((p, q), Dh, β)
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≥ sup
ψ∈H1

0 (L0,2L0),ψ ̸=0

{√√√√ ∫ 2L0

L0

N∗
vβh(x)βv(x)

N∗
h(1−q)rv(x)

ψ2dx∫ 2L0

L0
(Dhψ2

x +
β2

4Dh
ψ2 + (dh(x) + γh(x))ψ2)dx

}

≥ sup
ψ∈H1

0 (L0,2L0),ψ ̸=0

{√√√√√ ∫ 2L0

L0

N∗
v (β

∞
h −ε)(β∞

v −ε)
N∗

h(1−q)(r∞v +ε) ψ
2dx∫ 2L0

L0
(Dhψ2

x +
β2

4Dh
ψ2 + (d∞h + γ∞h + ε)ψ2)dx

}

≥

√√√√ N∗
v (β

∞
h −ε)(β∞

v −ε)
N∗

h(1−q)(r∞v +ε)

(Dh(
π
L0

)
2
+ β2

4Dh
+ (d∞h + γ∞h + ε)

.

Due to the arbitraries of ε, letting L0 → ∞ yields

lim
(q−p)→∞

RDA0 ((p, q), Dh, β) ≥

√√√√ N∗
vβ

∞
h β∞

v

N∗
h(1−q)r∞v

β2

4Dh
+ d∞h + γ∞h

.

Similarly, for p ≤ −2L0, we obtain the same result by replacing the interval (L0, 2L0)
with the interval (−2L0,−L0).

Noticing that the habitat (g(t), h(t)) is varying with t, so the basic reproduction
number for the free boundary problem (1.4) will not be a constant and should be
changing with t. As a result, we introduce the risk index RF0 (t) by

RF0 (t) := RDA0 ((g(t), h(t))), Dh, β)

= sup
ψ∈H1

0 (g(t),h(t)),ψ ̸=0

{√√√√√ ∫ h(t)
g(t)

N∗
vβh(x)βv(x)

N∗
h(1−q)rv(x)

ψ2dx∫ h(t)
g(t)

(Dhψ2
x +

β2

4Dh
ψ2 + (dh(x) + γh(x))ψ2)dx

}
.

Lemma 3.1 together with the above risk index definition shows that

Lemma 3.2. 1−RF0 (t) has the same sign as λ0, where λ0 is the principal eigenvalue
of the problem

0 =
N∗
v

N∗
h

βv(x)ϕ− (1− q)rv(x)ψ + λψ, x ∈ (g(t), h(t)),

−Dhϕxx + βϕx = βh(x)ψ − (dh(x) + γh(x))ϕ+ λϕ, x ∈ (g(t), h(t)),

ψ(x) = ϕ(x) = 0, x = g(t) orx = h(t).

(3.10)

It follows from Theorems 2.2 and 3.1

Theorem 3.2. (i) RF0 (t) is a positive and monotonically decreasing function of β,
and RF0 (t) → 0 as β → ∞.
(ii)RF0 (t) is a strictly monotone increasing function of t, which means that if t1 < t2,

then RF0 (t1) < RF0 (t2). Moreover, lim
t→∞

RF0 (t) ≥

√
N∗

vβ∞
h

β∞
v

N∗
h
(1−q)r∞v

β2

4Dh
+d∞h +γ∞

h

if the hypothesis

(H) holds and h(t)− g(t) → ∞ as t→ ∞.

Remark 3.1. When β = 0, we suppose that the habitat at far distance is in high
risk, that is, RF0 (∞) > 1, which is equivalent to β∞

v β∞
h N∗

v

N∗
hr

∞
v (1−q) − d∞h − γ∞h > 0.
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Remark 3.2. There exists a threshold β∗ = 2
√
Dh(

β∞
v β∞

h N∗
v

N∗
hr

∞
v (1−q) − d∞h − γ∞h ). Re-

calling the monotonicity of RF0 (t) with respect to β, we derive that when |β| < β∗,
there exists t0 such that

RF0 (t0) = RDA0 ((g(t0), h(t0)), Dh, β) > 1

and
RF0 (∞) = RDA0 ((g∞, h∞), Dh, β) > 1

if h∞ − g∞ = ∞. When |β| > β∗, we derive RF0 (t) = RDA0 ((g(t), h(t)), Dh, β) < 1
for any t > 0.

Combining the above arguments about high-risk habitat at far distance and
small advection intensity, we give the assumption (H).

4. Virus extinction
It follows from Theorem 2.2 that x = g(t) is monotonically decreasing and x = h(t)
is monotonically increasing, therefore there exist h∞,−g∞ ∈ (0,+∞] such that
lim

t→+∞
g(t) = g∞ and lim

t→+∞
h(t) = h∞. The following lemma shows that both g∞

and h∞ are finite or infinite simultaneously, that is, if h∞ < ∞, then −g∞ < ∞,
vice versa.

First, we will give the definitions of extinction and persistence of the virus.

Definition 4.1. We called the virus extinction eventually if

h∞ − g∞ <∞ and lim
t→+∞

(||Hi(t, ·)||C([g(t),h(t)]) + ||Vi(t, ·)||C([g(t),h(t)])) = 0,

and the virus persistence continuously if

h∞ − g∞ = ∞ and lim sup
t→+∞

(||Hi(t, ·)||C([g(t),h(t)]) + ||Vi(t, ·)||C([g(t),h(t)])) > 0.

Then we give the following lemmas.

Lemma 4.1. Let (Hi, Vi; g, h) be the solution of (1.4). If h∞−g∞ <∞, then there
exists a constant C > 0 such that

∥Hi(t, .)∥C1([g(t),h(t)]) ≤ C, t ≥ 1

and
lim
t→∞

g′(t) = lim
t→∞

h′(t) = 0.

Proof. The first inequality can be proved by using the similar method as The-
orem 2.1 in [39]. In the following, we only prove lim

t→∞
h′(t) = 0, and the proof of

lim
t→∞

g′(t) = 0 is similar.

Factually,the transformation y = x
h(t)h0, w(t, y) = Hi(t,

h(t)
h0
y) = Hi(t, x) turns

problem (1.4) for Hi(t, x) in [0,+∞) × [0, h(t)] into a new problem for w(t, y) in
[0,+∞)× [0, h0]. Let χ be the function in C3([0, h0]) satisfyingχ(y) = 1, h0

2 ≤ y ≤ h0,

χ(y) = 0, 0 ≤ y ≤ h0

8 .
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Letting z(t, y) = w(t, y) × χ(y), where (t, y) ∈ [0,+∞) × [0, h0], it follows from
the Lp theory of parabolic equations and the Sobolev imbedding theory that there
exists M1 > 0 such that

∥z∥
C

1+α
2

,1+α([0,+∞)×[0,h0])
≤M1,

therefore, there exists M2 > 0 such that ∥Hi∥
C

1+α
2

,1+α([0,+∞)×[0,h(t)])
≤ M2. The

comparison principle together with the free boundary condition yields that there
exists M3 > 0 such that

∥h∥C1+α([0,+∞)) ≤M3,

which together with the assumption h∞ <∞ implies that lim
t→∞

h′(t) = 0.

Lemma 4.2. If h∞ <∞ or g∞ > −∞, then both h∞ and g∞ are finite and

RDA0 ((g∞, h∞), Dh, β)≤1 and lim
t→∞

(∥Vi(t, ·)∥C([g(t), h(t)])+∥Hi(t, ·)∥C([g(t), h(t)]))=0.

Proof. Firstly, without loss of generality, we assume that h∞ < ∞, and prove
that RDA0 ≤ 1, which implies that g∞ > −∞ by Remark 3.2. On the contrary, we
assume that RDA0 ((g∞, h∞), Dh, β) > 1 by contradiction. Similarly as Lemma 3.1
in [16], we know that there is ε0 > 0 such that h′(t) > ε0. This contradicts the fact
lim
t→∞

h′(t) = 0 in Lemma 4.1.
Next, let (V i(t, x), Hi(t, x)) be the unique solution of the problem l

∂V i
∂t

=
βv(x)(N

∗
v − V i)Hi

N∗
h

− rv(x)(1− q)V i, t > 0, g∞ < x < h∞,

∂Hi

∂t
−Dh

∂2Hi

∂x2
+β

∂Hi

∂x
=
βhV i(N

∗
h−Hi)

N∗
h

−(dh+γh)Hi, t > 0, g∞ < x < h∞,

V i(0, g∞) = Hi(0, g∞) = V i(0, h∞) = Hi(0, h∞) = 0, t > 0,

(V i(0, x), Hi(0, x)) = (Ṽi0(x), H̃i0(x)), g∞ ≤ x ≤ h∞,

(4.1)
with

(Ṽi0(x), H̃i0(x)) =

 (Vi0(x),Hi0(x)), g0 ≤ x ≤ h0,

(0, 0), otherwise.

It follows from the comparison principle that

(0, 0) ≤ (Vi(t, x),Hi(t, x)) ≤ (V i(t, x), Hi(t, x))

where t > 0, x ∈ [g(t), h(t)].
Recalling the fact RDA0 ((g∞, h∞), Dh, β) ≤ 1, we find that (0, 0) is the unique

nonnegative steady-state solution of problem (4.1). Choosing the lower solution
as (0, 0) and upper solution as (N∗

v , N
∗
h), it is easy to see, by the method of upper

and lower solutions and its associated monotone iterations, that the time-dependent
solution converges to the unique nonnegative steady-state solution. Therefore,

(V i(t, x), Hi(t, x)) → (0, 0) uniformly x ∈ [g∞, h∞] as t→ ∞,
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and then

lim
t→+∞

||Vi(t, ·)||C([g(t), h(t)]) = lim
t→+∞

||Hi(t, ·)||C([g(t), h(t)]) = 0.

The next result shows that if h∞ − g∞ <∞, then virus extinction will occur.

Lemma 4.3. If h∞ − g∞ <∞, then we have

lim
t→+∞

(||Vi(t, ·)||C([g(t),h(t)]) + ||Hi(t, ·)||C([g(t),h(t)])) = 0.

Proof. On the contrary, we assume that

lim sup
t→+∞

||Hi(t, ·)||C([g(t),h(t)]) = δ > 0.

Then there exists a sequence (tk, xk) ∈ (0,∞)× (g(t), h(t)) such that Hi(tk, xk) ≥
δ/2 for all k ∈ N, and tk → ∞ as k → ∞.

Subsequently, we will show that

∥Hi∥
C

1+α
2

,1+α([1,+∞)×[g(t),h(t)])
≤ C, (4.2)

||h′||
C

α
2 ([1,+∞))

≤ C, ||g′||
C

α
2 ([1,+∞))

≤ C (4.3)

where α ∈ (0, 1) and the constant C > 0.
In fact, straighten the double free boundaries by the following transformation

y =
2x

h(t)− g(t)
− (h(t) + g(t))

h(t)− g(t)
,

let w(t, y) = Hi(t, x), then the free boundary problem (1.4) is transformed into the
initial boundary problem (2.2) in the fixed interval (−h0, h0).

Combining (4.3) and the properties that −g(t) and h(t) are increasing and
bounded, it follows from standard Lp theory and the Sobolev imbedding theorem
[27] that for 0<α<1, there exists a constant C1 depending on α, h0, ∥Hi0∥C2([−h0,h0]),
∥Vi0∥C2([−h0,h0]), g∞, h∞ such that

∥w∥
C

1+α
2

,1+α([τ,τ+1]×[−h0,h0])
≤ C1 (4.4)

for any τ ≥ 1. Note that C1 is independent of τ , by using the free boundary
conditions in (1.4), it is easy to see that (4.2), (4.3) hold. Using (4.3) and the
assumption that h∞ − g∞ <∞ yields

h′(t) → 0 and g′(t) → 0 as t→ +∞.

It follows from the free boundary condition that ∂Hi

∂x (tk, h(tk)) → 0 as tk → ∞.
On the other hand, since −∞ < g∞ < g(t) < xk < h(t) < h∞ <∞, there exists

a subsequence {xkn} which converges to x0 ∈ [g∞, h∞] as n→ ∞. For convenience,
we still denote {xkn} as {xk}, it follows that xk → x0 ∈ [g∞, h∞] as k → ∞.
Thanks to the uniform boundedness in (4.2), we can derive that x0 ∈ (g∞, h∞).
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Define Zk(t, x) = Vi(tk + t, x) and Wk(t, x) = Hi(tk + t, x) for x ∈ (g(tk +
t), h(tk + t)), t ∈ (−tk,∞). According to the parabolic regularity, {(Zk,Wk)} has a
subsequence {(Zki ,Wki)} which converges to (Z̃, W̃ ) as i→ ∞, and (Z̃, W̃ ) satisfies

Z̃t = βv(x)
N∗
v − Z̃

N∗
h

W̃ − (1− q)rv(x)Z̃

W̃t −DhW̃xx + βW̃x = βh(x)(1−
W̃

N∗
h

)Z̃ − (dh(x) + γh(x))W̃ ,

where t ∈ (−∞,∞), x ∈ (g∞, h∞).
Since W̃ (t, x0) ≥ δ/2, we derive W̃ > 0 in (−∞,∞) × (g∞, h∞) by the strong

maximal principle. Using the Hopf lemma at the point (0, h∞) yields W̃x(0, h∞) ≤
−σ∗ for some σ∗ > 0.

Furthermore, the fact ∥Hi∥
C

1+α
2

,1+α([1,+∞)×[g(t),h(t)])
≤ C implies that

∂Hi

∂x
(tk + 0, h(tk)) = (Wk)x(0, h(tk)) → W̃x(0, h∞), k → ∞,

and then W̃x(0, h∞) = 0, which is a contradiction to W̃x(0, h∞) ≤ −σ∗ < 0;
therefore

lim
t→+∞

||Hi(t, ·)||C([g(t),h(t)]) = 0.

Note that Vi(t, x) satisfies

∂Vi
∂t

=
βv(x)(N

∗
v − Vi)Hi

N∗
h

− rv(x)(1− q)Vi, t > 0, g(t) < x < h(t),

and βv(x)(N
∗
v − Vi)Hi

N∗
h

→ 0 uniformly for x ∈ [g(t), h(t)] as t→ ∞, we then deduce

lim
t→+∞

||Vi(t, ·)||C([g(t),h(t)]) = 0.

Now we give sufficient conditions so that the virus will extinct.

Lemma 4.4. If RF0 (∞) ≤ 1, then h∞ − g∞ <∞ and

lim
t→+∞

(||Vi(t, ·)||C([g(t),h(t)]) + ||Hi(t, ·)||C([g(t),h(t)])) = 0.

In this paper we assume that the far site is high-risk and consider small advection
intensity, as a consequence, if h∞−g∞ = ∞, then RF0 (∞) > 1. Therefore RF0 (∞) ≤
1 means that virus extinction happens. The following result shows that ifRF0 (0) < 1,
the virus will extinct eventually for small initial values.

Theorem 4.1. If RF0 (0) < 1, then h∞ − g∞ <∞ and

lim
t→+∞

(||Vi(t, ·)||C([g(t),h(t)]) + ||Hi(t, ·)||C([g(t),h(t)])) = 0

provided that ||Vi0(·)||C([−h0,h0]), ||Hi0(·)||C([−h0,h0]) are sufficiently small.
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Proof. In order to complete the theorem, we need to construct a suitable upper
solution to problem (1.4).

Since RF0 (0) < 1, we can deduce from Lemma 3.3 that there exist the constant
λ0 > 0 and the functions satisfying 0 < ψ(x), ϕ(x) ≤ 1, x ∈ (−h0, h0) such that

0 = βv(x)
N∗
v

N∗
h

ϕ− (1− q)rv(x)ψ + λ0ψ, −h0 < x < h0,

−Dhϕxx + βϕx = βh(x)ψ − (dh(x) + dh(x))ϕ+ λ0ϕ, −h0 < x < h0,

ψ(x) = ϕ(x) = 0, x = ±h0.

(4.5)

Recalling that ψ′(h0), ϕ
′(h0) < 0 and ψ′(−h0), ϕ′(−h0) > 0, we can derive that

there exist some positive constants C1 and C2 such that

xψ′ ≤ C1ψ, xϕ
′ ≤ C2ϕ, x ∈ (−h0, h0).

Also, we can easily derive that there exists the constant L > 0 such that

1

L
≤ ϕ(x)

ψ(x)
≤ L, x ∈ (−h0, h0). (4.6)

Similarly as statements in [14], we set

σ(t) = h0(1 + δ − δ

2
e−δt), t ≥ 0,

and
V i = εe−δtψ(xh0/σ(t))e

β
2Dh

(1− h0
σ(t)

)x
, t ≥ 0, −σ(t) ≤ x ≤ σ(t).

Hi = εe−δtϕ(xh0/σ(t))e
β

2Dh
(1− h0

σ(t)
)x
, t ≥ 0, −σ(t) ≤ x ≤ σ(t).

Combining λ0 > 0 and the continuity of the function βv(x), βh(x), rv(x), dh(x)
and γh(x) in [−2h0, 2h0], we can derive from (4.6) that there exists a small δ > 0
such that

− δ − βh0
4Dh

(1 + δ)
h0

2

σ2(t)
δ2 − h0

2

σ2(t)

δ2

2
C1 + λ0 − L

N∗
v

N∗
h

|βv(x)− βv(y)|

+ (1− q)(rv(x)− rv(y)) ≥ 0,

and

− δ − βh0
4Dh

(1 + δ)
h0

2

σ2(t)
δ2 − h0

2

σ2(t)

δ2

2
C2 +

β2

4Dh
(1− h0

2

σ2(t)
) +

h0
2

σ2(t)
λ0

− L| h0
2

σ2(t)
βh(y)− βh(x)|+ (dh(x) + γh(x)−

h0
2

σ2(t)
(dh(y) + γh(y))) ≥ 0,

where y = xh0

σ(t) .

Direct computations yield

∂V i
∂t

− βv(x)(N
∗
v − V i)Hi

N∗
h

+ rv(x)(1− q)V i

≥ ∂V i
∂t

− βv(x)Hi + rv(x)(1− q)V i
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= −δV i +
βx

2Dh

h0
2

σ2(t)

δ2

2
e−δtV i −

xh0
2

σ2(t)

δ2

2
e−δtV iψ

−1ψ′ + (λ0V i +
N∗
v

N∗
h

βv(y)Hi

− (1− q)rv(y)V i)−
N∗
v

N∗
h

βv(x)Hi + (1− q)rv(x)V i

≥ V i(−δ −
βh0
4Dh

(1 + δ)
h0

2

σ2(t)
δ2 − h0

2

σ2(t)

δ2

2
C1 + λ0 − L

N∗
v

N∗
h

|βv(y)− βv(x)|

+ (1− q)(rv(x)− rv(y)))

≥ 0

and
∂Hi

∂t
−Dh

∂2Hi

∂x2
+ β

∂Hi

∂x
− βh(x)V i(N

∗
h −Hi)

N∗
h

+ (dh(x) + γh(x))Hi,

≥ ∂Hi

∂t
−Dh

∂2Hi

∂x2
+ β

∂Hi

∂x
− βh(x)V i + (dh(x) + γh(x))Hi,

= −δHi −
βx

2Dh

h0
2

σ2(t)

δ2

2
e−δtHi −

xh0
2

σ2(t)

δ2

2
e−δtHiϕ

−1ϕ′ +
β2

4Dh
(1− h0

2

σ2(t)
)Hi

+ λ0
h0

2

σ2(t)
Hi + εe−δte

β
2Dh

(1− h0
σ(t)

)x
ψ(

h0
2

σ2(t)
βh(y)− βh(x))

+ εe−δte
β

2Dh
(1− h0

σ(t)
)x
ϕ(dh(x) + γh(x)−

h0
2

σ2(t)
(dh(y) + γh(y)))

≥ Hi(−δ −
βh0
4Dh

(1 + δ)
h0

2

σ2(t)
δ2 − h0

2

σ2(t)

δ2

2
C2 +

β2

4Dh
(1− h0

2

σ2(t)
)

+
h0

2

σ2(t)
λ0 − L| h0

2

σ2(t)
βh(y)− βh(x)|+ (dh(x) + γh(x)−

h0
2

σ2(t)
(dh(y) + γh(y))))

≥ 0,

where t > 0 and x ∈ (−σ(t), σ(t)).
On the other hand, we can choose ε = δ2h0

2βe
β

2Dh
h0δ

min{ −1
ϕ′(h0)

, 1
ϕ′(−h0)

} such that

∂V i
∂t

≥ βv(x)(N
∗
v−V i)Hi

N∗
h

−rv(x)(1−q)V i, t > 0, x ∈ (−σ(t), σ(t)),

∂Hi

∂t
≥Dh

∂2Hi

∂x2
−β ∂Hi

∂x
+
βh(x)V i(N

∗
h−Hi)

N∗
h

−(dh(x)+γh(x))Hi, t > 0, x ∈ (−σ(t), σ(t)),

V i(t, x)=Hi(t, x) = 0, t > 0, x = ±σ(t),

−σ(0) < −h0, −σ′(t) ≤ −µ∂Hi

∂x
(t,−σ(t)), t > 0,

σ(0) > h0, σ
′(t) ≥ −µ∂Hi

∂x (t, σ(t)), t > 0.

If
||Vi0||L∞((−h0,h0)) ≤ ε min

[−h0,h0]
ψ(

h0
1 + δ/2

)e
β

2Dh

δ
2+δ (−h0),

and
||Hi0||L∞((−h0,h0)) ≤ ε min

[−h0,h0]
ϕ(

h0
1 + δ/2

)e
β

2Dh

δ
2+δ (−h0),
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then we deduce that

Vi0(x) ≤ εψ(
x

1 + δ/2
)e

β
2Dh

δ
2+δ x = V i(0, x), x ∈ [−h0, h0]

and
Hi0(x) ≤ εϕ(

x

1 + δ/2
)e

β
2Dh

δ
2+δ x = Hi(0, x), x ∈ [−h0, h0],

that is, (V i(t, x), Hi(t, x),−σ(t), σ(t)) is an upper solution to problem (1.4).
Applying the comparison principle, we conclude that

g(t) ≥ −σ(t), h(t) ≤ σ(t), t > 0.

It follows from Lemma 4.3 that

h∞ − g∞ ≤ lim
t→∞

2σ(t) = 2h0(1 + δ) <∞

and
lim

t→+∞
(||Hi(t, ·)||C([g(t),h(t)]) + ||Vi(t, ·)||C([g(t),h(t)])) = 0.

From the proof above, we can deduce the following result, see Lemma 3.8 in [14]
for details.

Theorem 4.2. Suppose RF0 (0)(:= RDA0 ((−h0, h0), Dh, β)) < 1. Then h∞ − g∞ <
∞ and

lim
t→+∞

(||Vi(t, ·)||C([g(t),h(t)]) + ||Hi(t, ·)||C([g(t),h(t)])) = 0

if µ is sufficiently small.

5. Virus persistence
In this section, we are going to give the sufficient conditions that the virus will
persist continuously. We first prove that if RF0 (0) ≥ 1, the virus are spreading
continuously.

Theorem 5.1. If RF0 (0) ≥ 1, then h∞−g∞ = ∞ and lim inf
t→+∞

||Hi(t, ·)||C([0,h(t)]) > 0,
that is, the virus will persist continuously.

Proof. We first consider the case that RF0 (0) := RD0 ((−h0, h0)) > 1. In this case,
the linear eigenvalue problem

0 =
N∗
v

N∗
h

βv(x)ϕ− (1− q)rv(x)ψ + λ0ψ, −h0 < x < h0,

−Dhϕxx + βϕx = βh(x)ψ − (dh(x) + γh(x))ϕ+ λ0ϕ, −h0 < x < h0,

ψ(x) = ϕ(x) = 0, x = ±h0.

(5.1)

admits a positive solution (ψ(x), ϕ(x)) with ||ψ||L∞ + ||ϕ||L∞ = 1, where λ0 is the
principal eigenvalue. It follows from Lemma 3.3 that λ0 < 0.
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We construct a suitable lower solution to problem (1.4) by define

Hi(t, x) = δϕ(x), V i(t, x) = δψ(x), t ≥ 0, −h0 ≤ x ≤ h0,

choose δ sufficiently small such that

λ0 + ||max {βv(x), βh(x)}||L∞
δ

K
< 0,

where K = min {N∗
v , N

∗
h}. Direct computations yield

∂V i
∂t

− βv(x)(N
∗
v − V i)Hi

N∗
h

+ (1− q)rv(x)V i

= −N
∗
v

N∗
h

βv(x)δϕ+ βv(x)
δϕ

N∗
h

δϕ+ (1− q)rv(x)δψ

= δψ(λ0 + βv(x)
δϕ

N∗
h

)

≤ 0,

∂Hi

∂t
−Dh

∂2H

∂x2
+ β

∂Hi

∂x
− βh(x)V i(N

∗
h −Hi)

N∗
h

+ (dh(x) + γh(x))Hi

= −Dhδϕxx + βδϕx − βh(x)δψ(1−
δϕ

N∗
h

) + (dh(x) + γh(x))δϕ

= δψ[λ0 +
δβh(x)ϕ

N∗
h

],

≤ 0,

where t > 0 and x ∈ (−h0, h0).
Recalling λ0 < 0, we can choose δ sufficiently small such that

∂V i
∂t

≤ βv(x)(N
∗
v − V i)Hi

N∗
h

− (1− q)rv(x)V i, t > 0, −h0 < x < h0,

∂Hi

∂t
−Dh

∂2H

∂x2
+ β

∂Hi

∂x

≤ βh(x)V i(N
∗
h −Hi)

N∗
h

− (dh(x) + γh(x))Hi, t > 0, −h0 < x < h0,

V i(x, t) = Hi(x, t) = 0, t > 0, x = ±h0,

0 = −h′0 ≥ −µDh
∂Hi

∂x
(−h0, t), t > 0,

0 = h′0 ≤ −µDh
∂Hi

∂x
(h0, t), t > 0,

Vi(x, 0) ≤ Vi0(x), Hi(x, 0) ≤ Hi0(x), −h0 ≤ x ≤ h0.

Hence, applying the comparison principle yields that

Hi(t, x) ≥ Hi(t, x), Vi(t, x) ≥ V i(t, x), (t, x) ∈ [0,∞)× [−h0, h0].

It follows that lim inf
t→+∞

||Hi(t, ·)||C([g(t),h(t)]) ≥ δϕ(0) > 0, therefore h∞ − g∞ = +∞
by Lemma 4.2.
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When RF0 (0) = 1, then for any positive time t0, we deduce g(t0) < −h0 and
h(t0) > h0; therefore, RF0 (t0) > RF0 (0) = 1 by the monotonicity in Theorem 3.4.
We then have h∞ − g∞ = +∞ as above by replacing the initial time 0 with the
positive time t0.

Remark 5.1. It follows from the above proof that the virus persist, if and only if
there exists t0 ≥ 0 such that RF0 (t0) ≥ 1.

Epidemiologically, Theorems 4.4 and 4.5 show that if RF0 (0) < 1, the virus will
extinct for small initial scale of mosquitoes or small expanding capability µ, and
Lemma 4.3 implies that if RF0 (∞) ≤ 1, the virus will persist eventually for any
initial values. The next result shows that the virus will persist for large expanding
capability µ, see similar results and the proofs in [14].

Theorem 5.2. Suppose that RF0 (0) < 1. Then h∞ − g∞ = ∞ if µ is sufficiently
large.

Theorem 5.3 (Sharp threshold). Fixed h0, Vi0 and Hi0. There exists µ∗ ∈ [0,∞)
such that the virus will persist when µ > µ∗, and the virus will extinct when
0 < µ ≤ µ∗.

Proof. If RF0 (0) ≥ 1, we have µ∗ = 0, since in this case spreading always happens
for µ > 0 from Theorem 5.1.

For the remaining case RF0 (0) < 1. We define

µ∗ := sup{σ0 : h∞(µ)− g∞(µ) <∞ for µ ∈ (0, σ0]}.

Theorem 4.5 implies that the virus extinction happens for all small µ > 0, therefore,
µ∗ ∈ (0,∞]. On the other hand, by Theorem 5.2, it is easy to derive that the virus
persistence happens for all big µ. Thus we have µ∗ ∈ (0,∞), and virus persistence
happens when µ > µ∗, the virus extinction occurs when 0 < µ < µ∗ by Corollary
2.4.

We now claim that the virus extinction happens when µ = µ∗. Otherwise

h∞ − g∞ = ∞ for µ = µ∗. Since lim
t→∞

RF0 (t) ≥

√
N∗

vβ∞
h

β∞
v

N∗
h
(1−q)r∞v

β2

4Dh
+d∞h +γ∞

h

> 1, there exists

T0 > 0 such that RF0 (T0) := RDA0 ((g(T0), h(T0), Dh, β) > 1. By the continuous
dependence of (Vi,Hi, g, h) on its expanding capability µ, we can find small ϵ >
0 such that the solution of (1.4) with µ = µ∗ − ϵ, denoted by (Viϵ,Hiϵ, gϵ, hϵ),
satisfies RDA0 ((gϵ(T0), hϵ(T0)), Dh, β) > 1. This implies that spreading happens for
the solution (Viϵ,Hiϵ, gϵ, hϵ), which contradicts the definition of µ∗. The proof is
complete.

Next, we consider the long-time asymptotical behavior of the solution to (1.4)
when the virus persist.

Theorem 5.4. Suppose that h∞ = −g∞ = ∞, then the solution to the free boundary
problem (1.4) satisfies lim

t→+∞
(Vi(t, x),Hi(t, x)) = (V ∗

i (x),H
∗
i (x)) uniformly in any

bounded subset of (−∞,∞), where (V ∗
i (x),H

∗
i (x)) is the unique bounded positive

solution of the following problem
0 =

βv(x)(N
∗
v − Vi)Hi

N∗
h

− rv(x)(1− q)Vi, −∞ < x <∞,

−Dh
∂2Hi

∂x2
+ β

∂Hi

∂x
=
βh(x)Vi(N

∗
h −Hi)

N∗
h

− (dh(x) + γh(x))Hi, −∞ < x <∞,

(5.2)
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Proof. Our proof will divide into several parts.
Step 1 The existence and uniqueness of the stationary solution
It is easy to see that problem (5.2) is equivalent to

−Dh
∂2Hi

∂x2
+ β

∂Hi

∂x
=

βh(x)βv(x)N
∗
vHi

βv(x)Hi + (1− q)N∗
hrv(x)

N∗
h −Hi

N∗
h

− (dh(x) + γh(x))Hi

(5.3)
for −∞ < x < ∞. Since h∞ = −g∞ = +∞, it follows from Remark 3.1 that there
exists t0 > 0 such that RF0 (t0) = RDA0 ((g(t0), h(t0)), Dh, β) > 1, therefore, denoting
L0 := max{−g(t0), h(t0)}, for any L satisfying L ≥ L0, we consider the problem

−Dh
∂2HL

i

∂x2
+β

∂HL
i

∂x
=

βhβvN
∗
vH

L
i

βvHL
i +(1−q)N∗

hrv

N∗
h−HL

i

N∗
h

−(dh+γh)H
L
i , −L < x < L,

HL
i (±L) = 0.

(5.4)
Setting H̃L

i = N∗
h , Ĥ

L
i = δϕ(x), where (ψ(x), ϕ(x)) is the corresponding eigen-

function to the principal eigenvalue λ0 of the following problem
−Dhϕxx + βϕx = βh(x)ψ − (dh(x) + γh(x))ϕ+ λ0ϕ, x ∈ (−L,L),

0 =
N∗
v

N∗
h

βv(x)ϕ− (1− q)rv(x)ψ + λ0ψ, x ∈ (−L,L),

ψ(x) = ϕ(x) = 0, x = ±L.

(5.5)

We can choose δ sufficiently small such that H̃L
i and ĤL

i are upper and lower
solutions to problem (5.4). As a result, there exists HL

i that solves problem (5.4).
Moreover, for the first equation in (5.4), taking HL

i = e
β

2Dh
x
u derives that

−Dhuxx = − β2

4Dh
u+

N∗
vβvβh(x)u

βve
β

2Dh
x
u+ (1− q)N∗

hrv
(1− e

β
2Dh

x
u

N∗
h

)− (dh+γh)u := f(u)u.

It is easy to see that f(u) is decreasing, therefore the positive solution is unique.
Using the comparison principle yields that as L increases to infinity, HL

i increases
to a positive solution H∗

i to problem (5.3). The uniqueness of positive solution to
problem (5.3) follows from the similar technique in [16].

Step 2 The limit superior of the solution
We recall that the comparison principle derives

(Vi(t, x),Hi(t, x)) ≤ (V i(t, x), Hi(t, x)), (t, x) ∈ (0,∞)× (−∞,∞),

where (V i(t, x), Hi(t, x)) is the solution to the following problem

∂V i
∂t

=
βv(x)(N

∗
v − V i)Hi

N∗
h

−(1− q)rv(x)V i, t > 0, −∞ < x <∞,

∂Hi

∂t
−Dh

∂2Hi

∂x2
+β

∂Hi

∂x

=
βh(x)V i(N

∗
h −Hi)

N∗
h

−(dh(x)+γh(x))Hi, t > 0, −∞ < x <∞,

V i(0, x) = N∗
v , Hi(0, x) = N∗

h .

(5.6)
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We can easily see that (V i(t, x), Hi(t, x)) ≤ (V i(0, x), Hi(0, x)), therefore we deduce

(V i(t+ δ, x), Hi(t+ δ, x)) ≤ (V i(t, x), Hi(t, x))

by comparing the initial conditions, that is, (V i, Hi) is monotone decreasing with
respect to t and lim

t→∞
(V i, Hi) = (V ∗

i (x),H
∗
i (x)) uniformly in any bounded subset

of (−∞,∞); therefore we deduce

lim sup
t→+∞

(Vi(t, x),Hi(t, x)) ≤ (V ∗
i (x),H

∗
i (x)) (5.7)

uniformly in any bounded subset of (−∞,∞).
Step 3 The lower bound of the solution for a large time
From step 1, we can deduce that the principal eigenvalue λ0 of

0 =
N∗
v

N∗
h

βv(x)ϕ− (1− q)rv(x)ψ + λ0ψ, x ∈ (−L0, L0),

−Dhϕxx + βϕx = βh(x)ψ − (dh(x)+γh(x))ϕ+λ0ϕ, x ∈ (−L0, L0),

ψ(x) = ϕ(x) = 0, x = ±L0

(5.8)

satisfies
λ0 < 0.

Since h∞ = ∞ = −g∞, for any L ≥ L0, there exists tL > 0 such that g(t) ≤ −L
and h(t) ≥ L for t ≥ tL.

Letting V i = δψ and Hi = δϕ, we can choose δ sufficiently small such that
(V i,Hi) satisfies

∂V i
∂t

≤ βv(x)(N
∗
v − V i)Hi

N∗
h

− (1− q)rv(x)V i, t>tL0 , −L0<x<L0,

∂Hi

∂t
−Dh

∂2H

∂x2
+β

∂Hi

∂x
≤ βhV i(N

∗
h−Hi)

N∗
h

−(dh+γh)Hi, t>tL0
, −L0<x<L0,

V i(t, x) = Hi(t, x) = 0, t>tL0
, −L0<x<L0,

V i(tL0
, x) ≤ Vi(tL0

, x), Hi(tL0
, x) ≤ Hi(tL0

, x), −L0 ≤ x ≤ L0,

which means that (V i,Hi) is a lower solution of (Vi,Hi) in [tL0 ,∞) × [−L0, L0].
We then deduce

(Vi,Hi) ≥ (δψ, δϕ), (t, x) ∈ [tL0 ,∞)× [−L0, L0],

which implies that the solution can not decay to zero.
Step 4 The limit inferior of the solution
Firstly, We extend ϕ(x) to ϕl0(x), and extend ψ(x) to ψl0(x) as follow

ϕl0(x) =

{
ϕ(x), −l0 ≤ x ≤ l0,

0, x < −l0 or x > l0,

ψl0(x) =

{
ψ(x), −l0 ≤ x ≤ l0,

0, x < −l0 or x > l0.
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Now for L ≥ L0, (Vi,Hi) satisfies

∂Vi
∂t

=
βv(x)(N

∗
v − Vi)Hi

N∗
h

− rv(x)(1− q)Vi, t > tL, g(t) < x < h(t),

∂Hi

∂t
−Dh

∂2Hi

∂x2
+β

∂Hi

∂x
=
βhVi(N

∗
h−Hi)

N∗
h

−(dh+γh)Hi, t > tL, g(t) < x < h(t),

Vi(t, x) = Hi(t, x) = 0, t>tL, x=g(t) orx=h(t),

Hi(tL, x) ≥ δϕL0 , Vi(tL, x) ≥ δψL0 , −L ≤ x ≤ L,

(5.9)
therefore, we have (Vi,Hi) ≥ (z, w) in [tL,∞)× [−L,L], where (z, w) satisfies

∂z

∂t
=
βv(x)(N

∗
v−z)w

N∗
h

−(1− q)rv(x)z, t > tL, −L < x < L,

∂w

∂t
−Dh

∂2w

∂x2
+β

∂w

∂x
=
βh(x)z(N

∗
h−w)

N∗
h

−(dh(x)+γh(x))w, t > tL, −L < x < L,

z(t, x) = w(t, x) = 0, t > tL, x = ±L,

z(tL, x) = δψL0 , w(tL, x) = δϕL0 , −L ≤ x ≤ L.

(5.10)
System (5.10) is quasimonotone increasing; therefore, it follows from the upper
and lower solution method and the theory of monotone dynamical systems( [34]
Corollary 3.6) that

lim
t→+∞

(z(t, x), w(t, x)) = (V Li (x),HL
i (x)) ≥ (δψL0

, δϕL0
)

uniformly on [−L,L], where (V Li (x),HL
i (x)) satisfies

0 =
βv(x)(N

∗
v − Vi)Hi

N∗
h

− rv(x)(1− q)Vi, −L < x < L,

−Dh
∂2Hi

∂x2
+ β

∂Hi

∂x
=
βh(x)Vi(N

∗
h −Hi)

N∗
h

− (dh(x) + γh(x))Hi, −L < x < L.

Hi(±L) = 0.

(5.11)
Now we claim the monotonicity and show that if 0 < L1 < L2, then (V L1

i (x),HL1
i (x))

≤ (V L2
i (x),HL2

i (x)) on [−L1, L1]. The result is derived by comparing the initial
conditions and boundary conditions in (5.10) for L = L1 and L = L2.

Letting L → ∞, by classical elliptic regularity theory and a diagonal proce-
dure, we derive that (V Li (x),HL

i (x)) converges uniformly on any compact subset of
(−∞,∞) to (V∞

i (x),H∞
i (x)), which is continuous on (−∞,∞) and satisfies

0 =
βv(x)(N

∗
v − V∞

i )H∞
i

N∗
h

− rv(x)(1− q)V∞
i , −∞ < x <∞,

−Dh
∂2H∞

i

∂x2
+ β

∂H∞
i

∂x

=
βh(x)V

∞
i (N∗

h−H
∞
i )

N∗
h

− (dh(x) + γh(x))H
∞
i , −∞ < x <∞,

V∞
i (x) ≥ δψL0

,H∞
i (x) ≥ δϕL0

, −∞ < x <∞.

(5.12)



1892 J. Ge, Z. Lin & H. Zhu

It follows from step 1 that V∞
i (x) = V ∗

i (x) and H∞
i (x) = H∗

i (x).
Now for any given interval [−X,X] with X ≥ L0, since (V Li (x),HL

i (x)) →
(V ∗
i (x),H

∗
i (x)) uniformly in [−X,X], which is the compact subset of (−∞,∞),

as L → ∞, we deduce that for any ε > 0, there exists L∗ > L0 such that
(V L

∗

i (x),HiL
∗(x)) ≥ (V ∗

i (x) − ε,H∗
i (x) − ε) in [−X,X]. As above, there is tL∗

such that [−L∗, L∗] ⊆ [g(t), h(t)] for t ≥ tL∗ . Therefore,

(Vi(t, x),Hi(t, x)) ≥ (z(t, x), w(t, x)), (t, x) ∈ [tL∗ ,∞)× [−L∗, L∗],

and
lim

t→+∞
(z(t, x), w(t, x)) = (V L

∗

i (x),HL∗

i (x)), x ∈ [−L∗, L∗].

Using the fact that (V L
∗

i (x),HL∗

i (x)) ≥ (V ∗
i (x)− ε,H∗

i (x)− ε) in [−X,X] derives

lim inf
t→+∞

(Vi(t, x),Hi(t, x)) ≥ (V ∗
i (x)− ε,H∗

i (x)− ε), x ∈ [−X,X].

Since ε > 0 is arbitrary, we deduce that

lim inf
t→+∞

Vi(t, x) ≥ V ∗
i (x), lim inf

t→+∞
Hi(t, x) ≥ H∗

i (x) uniformly on [−X,X],

which together with (5.7) imply that

lim
t→+∞

Vi(t, x) = V ∗
i (x), lim

t→+∞
Hi(t, x) = H∗

i (x)

uniformly in any bounded subset of (−∞,∞).
Combining Remarks 3.1 and 5.1, Lemma 4.1 and Theorem 5.4, we immediately

obtain the following spreading-vanishing dichotomy:
Theorem 5.5. If the hypothesis condition (H) holds and

|β| < 2

√
Dh(

β∞
v β

∞
h N

∗
v

N∗
hr

∞
v (1− q)

− d∞h − γ∞
h ).

Let (Vi(t, x),Hi(t, x); g(t), h(t)) be the solution of free boundary problem (1.4).
Then, the following spreading-vanishing dichotomy holds:

Either

(i) Spreading: h∞ − g∞ = +∞ and lim
t→+∞

(Vi(t, x),Hi(t, x)) = (V ∗
i (x),H

∗
i (x))

uniformly in any bounded subset of (−∞,∞);

or

(ii) Vanishing: h∞ − g∞ <∞ with RDA0 ((g∞, h∞), Dh, β) ≤ 1 and

lim
t→+∞

(||Vi(t, ·)||C([g(t),h(t)]) + ||Hi(t, ·)||C([g(t),h(t)])) = 0.

6. Simulation
In this section, we will carry out numerical simulations to illustrate the theoretical
results given above. In light of the free boundaries are to be determined, we will use
an implicit scheme to simulate problem (1.4) and change it to a nonlinear system
of algebraic equations, which was solved with Newton-Raphson method.
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Figure 2. µ = 0.4 and β = 0.0008. The solution Hi(t, x) turns left and stabilizes to a positive
equilibrium.
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Figure 3. µ = 0.4 and β = −0.0008. The solution Hi(t, x) turns right and stabilizes to a steady state
solution.

To explore the impact of the advection intensity β and expanding capability µ
on the long-time behaviors of the steady state solution to problem (1.4), we first fix
some coefficients and functions as follows.

Dh = 0.006, N∗
h = 2000, N∗

v = 10000, γh(x) = 0.018 sin(πx),

p = 0.007, dh = 0.0002 sin(πx), βh(x) = 0.012 sin(πx), βv(x) = 0.028 sin(πx),

h0 = 1, Hi(0, x) = 0.1 cos(
π

2h0
x), Vi(0, x) = 0.5 cos(

π

2h0
x).

Example 6.1. For big expanding capability µ = 0.4, we first choose the advection
intensity β = 0.0008. It is easy to see from Fig. 2 that the free boundaries x =
g(t) and x = h(t) increase fast, and the solution Hi(t, x) stabilizes to a positive
equilibrium gradually. Moreover, the left boundary moves faster that the right one
. If we choose the advection intensity β = −0.0008, we can see from Fig. 3 that the
right boundary goes faster than the left one.

Example 6.2. Let β = −0.009 and we now choose small expanding capability
µ = 0.05, compared the free boundaries in Fig. 4 with those in Fig. 3, the free
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Figure 4. β = −0.009 and µ = 0.05. The solution Hi(t, x) decays to zero quickly and the free
boundaries increase slowly.

boundaries x = h(t) and g(t) in Fig. 4 increase slower than those in Fig. 3.
Moreover, the solution Hi(t, x) decays to zero quickly.

7. Biological interpretations and discussion
The main purpose of the paper is to explore the spatial transmission mechanism of
WNv where the environment are heterogeneous and advection. In order to better
understand the threshold dynamics, we firstly introduce the thresholds RDA0 for the
reaction-diffusion-advection problem with Dirichlet boundary condition in a fixed
interval (p, q). On this basis, we derive the index risk RF0 (t) for the problem with the
free boundary by variation method and give some properties of the index risk RF0 (t).
With the risk index RF0 (t) as threshold, we give some sufficient conditions for the
virus to extinct or persist. Our theoretical results shown that if RF0 (t0) ≥ 1 for some
t0 ≥ 0, the virus persist eventually (Theorem 5.1, Remark 5.1). If RF0 (0) < 1, the
virus extinction happens provided that the initial scales of the infected mosquitoes
and infected birds are small (Theorem 4.4) or the expanding capability µ is small
enough (Theorem 4.5), while persistence occurs for the large expanding capability
(Theorem 5.2).

The risk index RF0 (t), which change with time t, is similar as the threshold
of the basic reproduction number in fixed region, that is an important parameter
in epidemiology. Additionally, from the expression of risk index RF0 (t), we can
derive that if the advection intensity is big, the risk index RF0 (t) will become small,
which is beneficial to the extinction for the virus. As we know, some environmental
factors, such as landuse, climate, and host community composition, can influence the
abundance of WNv hosts and vectors, and subsequently, affect WNv transmission
rates. Therefore, in our work we consider the environmental heterogeneity. That
means the spatial-dependent rates considered in our model close more to the reality.
Specifically, it is an effective way to stop WNv transmission by improving breeding
grounds for infected mosquitoes and infected birds, such as keeping environment
clean, getting rid of stagnant and dirty water, which can lower the transmission
rates.

There are still many meaningful and challenging mathematical questions which
need to be studied for the free boundary problem. For example, in this paper, we
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only consider small advection case and present the spreading-vanishing dichotomy.
However, for large advection, we believe, it will cause more complex transmission
dynamics, such as virtual spreading, virtual vanishing and transition, which de-
serves further study. Additionally, the model can also be generalized to the case
as discussed in Madana and Yang [31], where the infected mosquitoes and infected
birds are all dispersal and have the influence of advection. We leave these for future
investigations.
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