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A REACTION-DIFFUSION MODEL FOR
NESTED WITHIN-HOST AND

BETWEEN-HOST DYNAMICS IN AN
ENVIRONMENTALLY-DRIVEN INFECTIOUS

DISEASE∗

Ning Wang1, Long Zhang1 and Zhidong Teng1,†

Abstract A reaction-diffusion model for nested within-host and between-
host dynamics in an environmentally-driven infectious disease is proposed.
The model is composed of the within-host virus infectious fast time model
of ordinary differential equations and the between-host disease transmission
slow time model of reaction-diffusion equations. The isolated fast model has
been investigated in previous literature, and the main results are summarized.
For the isolated slow model, the well-posedness of solutions, and the basic
reproduction number Rb are obtained. When Rb ≤ 1, the model only has
the disease-free equilibrium which is globally asymptotically stable, and when
Rb > 1 the model has a unique endemic equilibrium which is globally asymp-
totically stable. For the nested slow model, the positivity and boundedness
of solutions, the basic reproduction number Rc and the existence of equilib-
rium are firstly obtained. Particularly, the nested slow model can exist two
positive equilibrium when Rc < 1 and a unique endemic equilibrium when
Rc > 1. When Rc < 1 the disease-free equilibrium is locally asymptotically
stable, and when Rc > 1 and an additional condition is satisfied the unique
endemic equilibrium is locally asymptotically stable. When there are two pos-
itive equilibria, then a positive equilibria is locally asymptotically stable under
an additional condition and the other one is unstable, which implies that the
nested slow model occurs the backward bifurcation at Rc = 1. Lastly, numer-
ical examples are given to verify the main conclusions. The research shows
that the nested slow model has more complex dynamical behavior than the
corresponding isolated slow model.
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1. Introduction
Infectious diseases have emerged in many countries around the world, for example:
SARS, MERS, COVID-19, etc. (see [4, 10, 14, 32, 35]). Infectious diseases severely
harm human health, economic development, and social stability. Therefore, the
research of infectious diseases has attracted much attention.

Many researchers have considered various viral infection models and obtained
many practical conclusions (see [7,8,11–13,15,18,30,37]). Especially for the research
of environmental driven infectious diseases, many researchers have come up with
new insights by analyzing the epidemic dynamics from two different levels of cell and
population. See, for example, Feng et al. [11–13], Cen et al. [7], Mideo et al. [30],
Coombs et al. [8], and the references cited therein.

In [11–13], a class of coupling within-host and between-host epidemic dynamical
model is considered. 

dS

dt
= A− βES − µS,

dI

dt
= βES − (µ+ α)I,

dE

dt
= θIV (s)(1− E)− γE,

(1.1)



dT

ds
= Λ− kV T −mT,

dT ∗

ds
= kV T − (m+ d)T ∗,

dV

ds
= g(E(t)) + pT ∗ − cV.

(1.2)

Here, model (1.1) describes the dynamics of disease transmission between the hosts
and the corresponding time variable is t, model (1.2) describes the dynamics of
virus infection in the host and the corresponding time variable is s. The process of
virus infection in the host is much faster than the process of disease transmission
between the hosts. Therefore, it can be considered that the process of virus infection
in the host is a fast time-varying process, and the process of disease transmission
between the hosts is a slow time-varying process. In other words, the time variable
t in model (1.1) is a slow time variable, and the time variable s in model (1.2) is
a fast time variable. However, we further see that there is a fast time term V (s)
in slow time model (1.1), and a slow time term E(t) in fast time model (1.2), so
model (1.1)-(1.2) is the nested model of fast and slow time interaction. In [11, 12]
the singular perturbation theory in [5] is used to analyze slow submodel (1.1) and
fast submodel (1.2). According to the analysis results of the two submodels, the
dynamic behavior of nested models (1.1)-(1.2) is further analyzed.

Inspired by the above research works, in [39] the authors proposed a discrete-
time analog for coupled within-host and between-host dynamics in environmentally
driven infectious disease. The system is composed of the discrete fast time subsys-
tem of virus infection in the host and the discrete slow time subsystem of disease
transmission between the hosts. The authors separately investigated the dynamic
behavior of the isolated fast system, isolated slow system, and coupled slow system.
Recently, in [22] the authors proposed an age-structured model for coupling within-
host and between-host dynamics in environmentally-driven infectious diseases. The
model is composed of the fast time ordinary differential submodel of virus infection
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in the host and the age-dependent partial differential submodel of disease transmis-
sion between the hosts. Firstly, the isolated fast model and the isolated slow model
are discussed. On this basis, the dynamic properties of the coupled slow model are
deeply analyzed.

Since the population density in different regions is different, the contact rate
among individuals is also different. Therefore, the number of the infected with a
certain infectious disease is usually related to geographical factors (see [31, 34]).
In recent years, the theory of reaction-diffusion equations has become one of the
core theories for studying the spread of infectious disease in a spatial region. Many
scholars have studied different types of reaction-diffusion epidemic models, see for
example [3, 6, 9, 20, 21, 23, 24, 26, 28, 29, 36, 41, 43] and the references cited therein.
In particular, Luo et al. [23] proposed a reaction-diffusion multi-group SIR epi-
demic model with nonlinear incidence. In the spatially heterogeneous environment,
the authors established the threshold criteria for the global asymptotic stability of
disease-free equilibrium and the uniform persistence of solutions. In the homoge-
neous space, the authors obtained the global asymptotic stability of disease-free and
endemic equilibrium by constructing suitable Lyapunov functions.

So far, it can be seen that almost all the existing studies of epidemic models
with reaction-diffusion are about the SIS or SIR model (see [3, 6, 9, 20, 23, 41]) and
rarely about the SIE (Susceptible-Infected-Environmental contamination) model.
According to the knowledge of epidemiology in [25], it can be known that the best
time to control the epidemic is the early stage of its spread. However, in the early
stage of the spread of the epidemic, the statistics of the epidemic only show the
number of patients in a certain province or city, and the coverage of the data was too
small (see [1, 33]). Therefore, the homogeneous reaction-diffusion epidemic model
is more convenient and more applicable than the heterogeneous reaction-diffusion
epidemic model in the early stage of the spread of the epidemic.

Based on the above discussion, we construct a reaction-diffusion model for nested
within-host and between-host dynamics in an environmentally-driven infectious dis-
ease, the model is given as below

∂

∂t
S(t, x) =D1△S(t, x) +A− βES − µS,

∂

∂t
I(t, x) =D2△I(t, x) + βES − (µ+ α)I,

∂

∂t
E(t, x) =D3△E(t, x) + θIV (1− E)− γE,

(1.3)



dT

ds
= Λ− kV T −mT,

dT ∗

ds
= kV T − (m+ d)T ∗,

dV

ds
= g(E(t, x)) + pT ∗ − cV,

(1.4)

where x ∈ Ω, Ω ⊂ Rn is a bounded domain with the smooth boundary ∂Ω and
x = (x1, x2, ..., xn), n ≥ 1 is an integer. S(t, x), I(t, x), E(t, x) denote the numbers
of susceptible and infectious individuals, the level of environmental contamination
at slow time t, and spatial location x, respectively. T (s), T ∗(s), and V (s) denote
the densities of healthy cells and infected cells and the viral load at fast time s,
respectively; ∆ = Σn

i=1
∂2

∂x2
i

denotes the Laplace operator. Dj (j = 1, 2, 3) denote
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the diffusive rate of the susceptible, infected and the level of environmental con-
tamination, respectively.

In model (1.3), A denotes the supplement rate of susceptible persons. β is the
infection rate of susceptible people in a polluted environment. µ denotes the natural
mortality rate of the total population. α is the induced mortality rate of infectious
individuals. θ denotes the emission rate of contamination from the infected to the
environment. γ is the clearance rate of environmental contamination. It is assumed
that the rate of environmental contamination is proportional to the number of
infected individuals and the virus load V within a host, which has the form θIV . In
model (1.4), function g(E) denotes an added rate in the change of virus load due to
the continuous ingestion of viruses by the host from a contaminated environment.
Λ is the recruitment rate of healthy cells. k denotes the infection rate of cells. m
and d denote the natural and infection-induced mortality rates of infected cells,
respectively. p is the virus reproduction rate by an infected cell. c denotes the
within-host mortality rate of viruses. Our purpose in the article is to study the
dynamic behavior of model (1.3)-(1.4).

The structure of this paper is as follows. In Section 2, some main results for
the within-host fast time model are summarized. In Section 3, the between-host
isolated slow time model is discussed. The well-posedness of solutions, including
the nonnegativity and ultimate boundedness, is established. The basic reproduction
number Rb is calculated. Furthermore, we obtain the global asymptotic stability
of disease-free and endemic equilibrium. In Section 4, the nested between-host
slow time model is discussed. Here, we first obtain the positivity and boundedness
of solutions, the basic reproduction number Rc and the existence of equilibrium.
Particularly, the nested slow model can have two positive equilibrium when Rc < 1.
The locally asymptotic stability of disease-free equilibrium is proved when Rc < 1,
and the locally asymptotic stability of unique endemic equilibrium is obtained when
Rc > 1 and an additional condition is satisfied. The locally asymptotic stability
of a positive equilibrium under an additional condition and the instability of the
other one are established when there is two positive equilibrium, which shows that
the nested between-host slow time reaction-diffusion epidemic model produces the
backward bifurcation at Rc = 1. In Section 5, the numerical examples verify the
main conclusions obtained in Section 4. Lastly, in Section 6, we draw a concise
conclusion.

2. Within-host fast time model
For within-host fast time model (1.4), it is usually assumed that its state changes
very quickly. Therefore, during the dynamic change of model (1.4), slow time
model (1.3) will maintain the original state. Thus, we assume that the level of
environmental contamination E(t, x) is a constant E, and 0 ≤ E ≤ 1, where E = 0
means there is no virus in the environment, 0 < E < 1 represents there is the virus
in the environment, and E = 1 is that the contamination reaches its maximum
in the environment. Thus, model (1.4) becomes an isolated within-host fast time
model of virus infection.

The function g(E) of model (1.4) is assumed to satisfy the following assumption.
(H) g(E) is nonnegative and two order continuously differentiable on [0, 1],

g(0) = 0, g′(E) > 0 and g′′(E) ≤ 0 for all 0 ≤ E ≤ 1.
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One of the simplest forms for g(E) considered in [11–13] is the linear function
g(E) = aE, where a is a positive constant.

It is assumed that any solution (T (s), T ∗(s), V (s)) of model (1.4) satisfies the
following initial conditions:

T (0) > 0, T ∗(0) > 0, V (0) > 0. (2.1)

The complete dynamical properties of model (1.4) have been established in [11–
13]. We here summarize the main conclusions as follows.

Lemma 2.1. Any solution
(
T (s), T ∗(s), V (s)

)
of model (1.4) with initial con-

ditions (2.1) is positive for all s ≥ 0, and ultimately bounded. Furthermore,
lim sups→∞(T (s) + T ∗(s)) ≤ T0, lim sups→∞ V (s) ≤ pΛ+gm

mc , where T0 = Λ
m and

g = max0≤E≤1{g(E)}.

The within-host reproduction number is defined by

Rw =
kpT0

c(m+ d)
.

Lemma 2.2. When E = 0, then model (1.4) always has infection-free equilib-
rium B0(T0, 0, 0), and if Rw > 1, model (1.4) has a unique infectious equilibrium
B∗(Ť , Ť ∗, V̌ ).

Ť =
c(m+ d)

kp
, Ť ∗ =

cm

pk
(Rw − 1), V̌ =

pmT0

c(m+ d)

(
1− 1

Rw

)
.

Lemma 2.3. When 0 < E ≤ 1, then model (1.4) always has a unique infectious
equilibrium B1(Ť (E), Ť ∗(E), V̌ (E)), where

V̌ (E) =
1

c
[g(E) +

pm

(m+ d)
(T0 − Ť (E))],

Ť ∗(E) =
m

m+ d
(T0 − Ť (E)), (2.2)

Ť (E) =
1

2
(a1(E)−

√
a21(E)− 4a2),

where a1(E) = (m+d)g(E)
pm + T0(1 +

1
Rw

) and a2 =
T 2
0

Rw
. Furthermore,

lim
E→0+

B1(Ť (E), Ť ∗(E), V̌ (E)) =

{
B0(T0, 0, 0), if Rw ≤ 1,

B∗(Ť , Ť ∗, V̌ ), if Rw > 1.

On the global asymptotic stability of the infection-free and infectious equilibrium
of model (1.4), the following conclusions have been established.

Theorem 2.1. Let E = 0 in model (1.4).
(i) If Rw ≤ 1, then infection-free equilibrium B0 is globally asymptotically stable;
(ii) If Rw > 1, then infectious equilibrium B∗ is globally asymptotically stable.

Theorem 2.2. Let 0 < E ≤ 1 in model (1.4), then infectious equilibrium B1(Ť (E),
Ť ∗(E), V̌ (E)) is globally asymptotically stable.
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3. Between-host isolated slow model
In this section, we assume that environmental contamination does not affect the
viral infection in the host, that is, E = 0. In this way, in fast time model (1.4),
V (s) will quickly stabilize to its equilibrium position V̌ , and we have that V̌ > 0 if
Rw > 1 and V̌ = 0 if Rw ≤ 1.

For slow time model (1.3), we first see that V̌ = 0 will result in E(t) → 0 as
t → ∞ from the third equation of model (1.3). It implies that the disease will
extinct between the hosts. Therefore, in this section we always assume Rw > 1 and
viral concentration V (s) is a positive constant V . Thus, model (1.3) becomes an
isolated between-host disease transmission model.

From the biological background of model (1.3), it is assumed that any solution
(S(t, x), I(t, x), E(t, x)) satisfies the following initial condition:

0 < S(0, x) = ϕ1(x), 0 ≤ I(0, x) = ϕ2(x), 0 ≤ E(0, x) = ϕ3(x) ≤ 1

and homogeneous Neumann boundary condition:

∂

∂n
S(t, x) =

∂

∂n
I(t, x) =

∂

∂n
E(t, x) = 0, x ∈ ∂Ω, t ≥ 0,

where ϕi(x)(i = 1, 2, 3) is the nonnegative Hölder continuous bounded functions
defined on Ω, and ∂

∂n denotes the outward normal derivative on ∂Ω.
Denote by Y = C(Ω, R) the Banach space of all continuous functions ϕ : Ω → R

with the supremum norm ∥ϕ∥ = supx∈Ω |ϕ(x)|. Let Y+ = C(Ω, R+) be the positive
cone of Y . Then (Y, Y+) is an ordered Banach space. Additionally, denote X = Y ×
Y × Y with the norm ∥ϕ∥X = max{∥ϕ1∥, ∥ϕ2∥, ∥ϕ3∥}, where ϕ = (ϕ1, ϕ2, ϕ3) ∈ X
with ϕi ∈ Y (i = 1, 2, 3). Let X+ = Y+ × Y+ × Y+ be the positive cone of X.

As a preliminary, the following scalar reaction-diffusion model is considered:

∂

∂t
u(t, x) =D̂△u(t, x) + ϑ− ϱu(t, x), x ∈ Ω, t > 0,

∂

∂n
u(t, x) =0, x ∈ ∂Ω, t > 0,

(3.1)

where D̂, ϑ and ϱ are positive constants. From Lemma 1 in [21], we obtain the
following result.

Lemma 3.1. Model (3.1) admits a unique positive equilibrium u0(x) =
ϑ
ϱ , which

is globally asymptotically stable in C(Ω, R+).

3.1. Well-posedness
We denote by Tk(t) : C(Ω, R) → C(Ω, R) the C0 semigroup associated with Dk△−
gk(k = 1, 2, 3) subjects to the Neumann boundary condition, where g1 = µ, g2 =
µ+ α and g3 = γ, respectively.

Denote 
F1(ϕ)(x) = A− βϕ3(x)ϕ1(x),

F2(ϕ)(x) = βϕ3(x)ϕ1(x), x ∈ Ω,

F3(ϕ)(x) = θϕ2(x)V (1− ϕ3(x)),
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where ϕ = (ϕ1, ϕ2, ϕ3) ∈ X+. We define u(t, ·, ϕ) = (S(t, ·, ϕ), I(t, ·, ϕ), E(t, ·, ϕ))
the solution of model (1.3) with initial value function ϕ = (ϕ1, ϕ2, ϕ3) ∈ X+, then
model (1.3) can be rewritten as the following integral equations:



S(t, ·, ϕ) = T1(t)ϕ1 +

∫ t

0

T1(t− s)F1(S(s, ·, ϕ1))ds,

I(t, ·, ϕ) = T2(t)ϕ2 +

∫ t

0

T2(t− s)F2(I(s, ·, ϕ2))ds, t > 0,

E(t, ·, ϕ) = T3(t)ϕ3 +

∫ t

0

T3(t− s)F3(E(s, ·, ϕ3))ds.

(3.2)

According to Corollary 4 of in [27], it can be seen that model (3.2) satisfies the
subtangential condition. Thus, the following lemma is valid.

Lemma 3.2. For any initial function ϕ = (ϕ1, ϕ2, ϕ3) ∈ X+ with 0 ≤ ϕ3 ≤ 1, model
(1.3) has a unique nonnegative mild solution u(t, ·, ϕ) = (S(t, ·, ϕ), I(t, ·, ϕ), E(t, ·, ϕ))
∈ X+ on the interval of existence [0, τ∞) and τ∞ ≤ ∞. Additionally, this solution
is a classical solution.

On the existence and ultimate boundedness of global solutions, and the existence
of global attractor for model (1.3), the following results have been established.

Theorem 3.1. For any initial function ϕ = (ϕ1, ϕ2, ϕ3) ∈ X+ with 0 ≤ ϕ3 ≤ 1,
model (1.3) has a unique nonnegative solution u(t, ·, ϕ) = (S(t, ·, ϕ), I(t, ·, ϕ), E(t, ·,
ϕ)) ∈ X+ defined on [0,∞) and this solution is also ultimately bounded. Addition-
ally, 0 ≤ E(t, ·, ϕ) ≤ 1 for all t ≥ 0 and x ∈ Ω.

Proof. Adopting the similar method introduced in Section 2 in [2] or Chap-
ter 3 in [19], we obtain the existence of the global solution. Let u(t, ·, ϕ) =
(S(t, ·, ϕ), I(t, ·, ϕ), E(t, ·, ϕ)) ∈ X+ be a nonnegative solution of model (1.3) with
the interval of existence [0, τ∞) by Lemma 3.2. Suppose that τ∞ < ∞, then we
have ∥u(t, ·, ϕ)∥X → ∞ as t → τ∞ by Theorem 2 in [25]. From the first equation of
model (1.3), we have

∂

∂t
S(t, ·, ϕ) ≤ D1△S(t, ·, ϕ) +A− µS(t, ·, ϕ), t ∈ [0, τ∞), x ∈ Ω. (3.3)

By the comparison principle and Lemma 3.1, it follows that there exists a constant
P1 > 0 such that S(t, ·, ϕ) ≤ P1 for all t ∈ [0, τ∞) and x ∈ Ω.

Consider the third equation of model (1.3). Let Q(E) = θIV (1−E)−γE. Since
Q(0) = θIV ≥ 0 and Q(1) = −γ < 0, we can obtain that E = 1 and E = 0 are
the upper and lower solutions of the third equation of model (1.3), respectively (see
Definition 2.4.3 in [42]). Therefore, it is known from Theorem 2.4.6 in [42] that
for the solution u(t, ·, ϕ) = (S(t, ·, ϕ), I(t, ·, ϕ), E(t, ·, ϕ)), as long as the initial value
0 ≤ ϕ3 ≤ 1, then there is 0 ≤ E(t, ·, ϕ) ≤ 1 for all t ∈ [0, τ∞) and x ∈ Ω.

Therefore, we further obtain

∂

∂t
I(t, ·, ϕ) ≤ D2△I(t, ·, ϕ) + βP1 − (µ+ α)I(t, ·, ϕ), t ∈ [0, τ∞), x ∈ Ω.
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The comparative model is considered as follows
∂

∂t
Z(t, ·, ϕ) =D2△Z(t, ·, ϕ) + βP1 − (µ+ α)Z(t, ·, ϕ), t > 0, x ∈ Ω,

∂

∂n
Z(t, ·, ϕ) =0, t > 0, x ∈ ∂Ω.

It follows from the comparison principle and Lemma 3.1 that there exists a constant
P2 > 0 such that I(t, ·, ϕ) ≤ P2 for all t ∈ [0, τ∞) and x ∈ Ω. Thus, we finally get
a contradiction with ∥u(t, ·, ϕ)∥X → ∞ as t → τ∞. Therefore, τ∞ = ∞, and the
global existence of u(t, ·, ϕ) is derived.

Now we will prove that the solution is ultimately bounded. In fact, from in-
equality (3.3) and Lemma 3.1, we get lim supt→∞ S(t, ·, ϕ) ≤ A

µ uniformly for x ∈ Ω,
which implies that S(t, ·, ϕ) is ultimately bounded. For any constant ε > 0 there is
a t1 > 0 such that S(t, ·, ϕ) < A

µ + ε for all t ≥ t1 and x ∈ Ω. Thus, we also have

∂

∂t
I(t, ·, ϕ) ≤ D2△I(t, ·, ϕ) + β(

A

µ
+ ε)− (µ+ α)I(t, ·, ϕ), t ≥ t1, x ∈ Ω.

Again using the comparison principle and Lemma 3.1 we obtain lim supt→∞ I(t, ·, ϕ)
≤ β(A

µ +ε)

µ+α uniformly for x ∈ Ω, which implies that I(t, x) is ultimately bounded.
This completes the proof.

We denote X∗
+ = {ϕ = (ϕ1, ϕ2, ϕ3) ∈ X+, 0 ≤ ϕ3 ≤ 1}. According to Theorem

3.4.8 in [17] and Theorem 3.1, we know that all nonnegative solutions u(t, ·, ϕ) =
(S(t, ·, ϕ), I(t, ·, ϕ), E(t, ·, ϕ)) of model (1.3) with ϕ ∈ X∗

+ generate a solution semi-
flow Φ(t) : X∗

+ → X∗
+ with Φ(t)ϕ = u(t, ·, ϕ) for all t ≥ 0. In addition, as a

consequence of Theorem 3.1, the following conclusion is introduced.

Corollary 3.1. The solution semiflow Φ(t) : X∗
+ → X∗

+ of model (1.3) has a
compact and global attractor.

3.2. Stability of equilibrium
The between-host reproduction number for the isolated slow model is defined by

Rb =
βθV S0

(µ+ α)γ
,

where S0 = A
µ . On the existence of equilibrium, we have the following conclusion.

Lemma 3.3. Model (1.3) always has the disease-free equilibrium W0 = (S0, 0, 0),
and when Rb > 1 model (1.3) also has an endemic equilibrium W ∗ = (S∗, I∗, E∗)
with

S∗ =
[βAθV + (µ+ α)γβ]

βθV (β + µ)
, I∗ =

βAθV − (µ+ α)µγ

(µ+ α)θV (β + µ)
, E∗ =

βAθV − (µ+ α)µγ

βAθV + (µ+ α)γβ
.

The proof of Lemma 3.3 is simple, we hence omit it here. Now, we investigate
the stability of equilibrium W0 and W ∗. We can establish the following result.

Theorem 3.2. (i) If Rb ≤ 1, then disease-free equilibrium W0 is globally asymp-
totically stable in X∗

+;
(ii) If Rb > 1, then endemic equilibrium W ∗ is globally asymptotically stable in

X∗
+.
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Proof. With regard to conclusion (i). The Lyapunov function H1(t) is defined as
below

H1(t) =

∫
Ω

[(S − S0 − S0 ln
S

S0
) + I +

(µ+ α)

θV
E]dx.

The derivative of H1(t) along solution W0 of model (1.3) is given by

dH1(t)

dt
=

∫
Ω

{(1− S0

S
)[D1△S(t, x) +A− βES − µS] +D2△I(t, x) + βES

− (µ+ α)I +
(µ+ α)

θV
[D3△E(t, x) + θIV (1− E)− γE]}dx.

By the divergence theorem (see Theorem 3.3 in [16]), we get

dH1(t)

dt
=

∫
Ω

[µS0(2−
S

S0
− S0

S
) +

(µ+ α)γ

θV
(Rb − 1)E

− (µ+ α)IE − S0D1
∥∇S∥2

S2
]dx.

When Rb ≤ 1, we have dH1(t)
dt ≤ 0. Additionally, dH1(t)

dt = 0 implies S = S0. From
the first equation of model (1.3) we have E = 0. From the third equation of model
(1.3) we further have I = 0. Thus, W0 is globally asymptotically stable by the
LaSalle’s invariance principle.

With regard to conclusion (ii). The Lyapunov function H2(t) is defined as below

H2(t) =

∫
Ω

[(S − S∗ − S∗ ln
S

S∗ ) + (I − I∗ − I∗ ln
I

I∗
)

+
(µ+ α)

θV (1− E∗)
(E − E∗ − E∗ ln

E

E∗ )]dx.

The derivative of H2(t) along solution W ∗ of model (1.3) is given by

dH2(t)

dt
=

∫
Ω

{(1− S∗

S
)[D1△S(t, x) +A− βES − µS]

+ (1− I∗

I
)[D2△I(t, x) + βES − (µ+ α)I]

+
(µ+ α)

θV (1− E∗)
(1− E∗

E
)[D3△E(t, x) + θIV (1− E)− γE]}dx.

By the divergence theorem (see Theorem 3.3 in [16]), we further obtain

dH2(t)

dt
=

∫
Ω

[µS∗(2− S

S∗ − S∗

S
) + (µ+ α)I∗(3− S∗

S
− E∗I

EI∗
− ESI∗

E∗S∗I
)

− (µ+ α)I(E − E∗)2

(1− E∗)E
− S∗D1

∥∇S∥2

S2
− I∗D2

∥∇I∥2

I2

− (µ+ α)E∗

θV (1− E∗)
D3

∥∇E∥2

E2
]dx.

Notably, H ′
2(t) ≤ 0. Furthermore, H ′

2(t) = 0 if and only if (S, I, E) = (S∗, I∗, E∗).
Thus, W ∗ is globally asymptotically stable by the LaSalle’s invariance principle.
This completes the proof.
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Remark 3.1. From the conclusions given in Theorem 3.2, we see that isolated
between-host slow time reaction-diffusion epidemic model (1.3) possess complete
dynamical properties.

4. Nested between-host slow model
Now, we consider slow time model (1.3) with the assumption which the environ-
mental contamination has an impact on viral infection in the host, i.e., 0 < E ≤ 1
in fast time model (1.4). In this way, V (s) in model (1.4) will quickly stabilize to
its equilibrium position V̌ (E), and this equilibrium position depends on E. Thus,
we can take V (s) = V̌ (E) in model (1.3), and further acquire the following nested
between-host slow time model:



∂

∂t
S(t, x) = D1△S(t, x) +A− βES − µS,

∂

∂t
I(t, x) = D2△I(t, x) + βES − (µ+ α)I,

∂

∂t
E(t, x) = D3△E(t, x) + θIV̌ (E)(1− E)− γE.

(4.1)

In Section 2, we obtain that any solution (T (s), T ∗(s), V (s)) of model (1.4) has
the limit

lim
s→∞

(T (s), T ∗(s), V (s)) =


(T0, 0, 0), if E = 0, Rw ≤ 1;

(Ť , Ť ∗, V̌ ), if E = 0, Rw > 1;

(Ť (E), Ť ∗(E), V̌ (E)), if 0 < E ≤ 1.

Denote

B∗(E) = (Ť (E), Ť ∗(E), V̌ (E)) =


(T0, 0, 0), if E = 0, Rw ≤ 1;

(Ť , Ť ∗, V̌ ), if E = 0, Rw > 1;

(Ť (E), Ť ∗(E), V̌ (E)), if 0 < E ≤ 1.

It is clear that

V̌ (0) = lim
E→0

V̌ (E) =


0, Rw ≤ 1,

m(Rw − 1)

k
, Rw > 1.

In this section, for the convenience of discussions we always assume Rw > 1.
Thus, we have V̌ (0) = m(Rw−1)

k .
On the well-posedness of solutions of model (4.1), we have the following result

which is similar to isolated slow model (1.3).

Lemma 4.1. For any initial function ϕ = (ϕ1, ϕ2, ϕ3) ∈ X+ with 0 ≤ ϕ3 ≤ 1, model
(4.1) has a unique nonnegative solution W (t, ·, ϕ) = (S(t, ·, ϕ), I(t, ·, ϕ), E(t, ·, ϕ)) ∈
X+ defined on [0,∞) and this solution is also ultimately bounded. Furthermore,
0 ≤ E(t, ·, ϕ) ≤ 1 for all t ≥ 0 and x ∈ Ω.
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4.1. Existence of equilibrium
The basic reproduction number for the nested between-host slow model is defined
by

Rc =
βθV̌ (0)S0

γ(µ+ α)
.

The function is defined as below

F (E) = (1− E)V̌ (E), G(E) =
γ(µ+ α)E

θA
+

γ(µ+ α)µ

βθA
, (4.2)

where V̌ (E) is defined in (2.2). Furthermore, we define H(E) = F (E)−G(E) and
HM = max0≤E≤1{H(E)}.

On the existence of nonnegative equilibrium of model (4.1), we have the following
result.

Lemma 4.2. Assume Rw > 1. Then we have

(i) Model (4.1) always has the disease-free equilibrium W0=(S0, 0, 0) with S0=
A
µ ;

(ii) Model (4.1) has a unique endemic equilibrium W̃ = (S̃, Ĩ, Ẽ) if and only if
one of the following conditions holds
(a) Rc > 1; (b) Rc = 1 and HM > 0; (c) Rc < 1 and HM = 0;

(iii) Model (4.1) has two positive equilibrium W̃1=(S̃1, Ĩ1, Ẽ1) and W̃2=(S̃2, Ĩ2, Ẽ2)
if and only if the following condition holds
(d) Rc < 1 and HM > 0;

(iv) Model (4.1) has only disease-free equilibrium W0 = (S0, 0, 0) if and only if the
following condition holds
(e) HM < 0; (f) Rc = 1 and HM = 0.

Proof. It is obvious that model (4.1) always has disease-free equilibrium W0 =

(Aµ , 0, 0). The positive equilibrium W̃ = (S̃, Ĩ, Ẽ) satisfies equation
A− βẼS̃ − µS̃ = 0,

βẼS̃ − (µ+ α)Ĩ = 0,

θĨV̌ (Ẽ)(1− Ẽ)− γẼ = 0.

By computing, we obtain S̃ = A

βẼ+µ
, Ĩ = βẼA

(µ+α)(βẼ+µ)
, and Ẽ ∈ (0, 1) satisfying

V̌ (Ẽ)(1− Ẽ) =
γ(µ+ α)Ẽ

θA
+

γ(µ+ α)µ

βθA
.

Thus, Ẽ is a solution of equation F (E) = G(E) with 0 < E < 1, where F (E) and
G(E) are given in (4.2). Equivalently, Ẽ is a zero of function H(E).

By calculating we have

H(0) = V̌ (0)(1− 1

Rc
), H(1) = −γ(µ+ α)

θA
− γ(µ+ α)µ

βθA
< 0.
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When 0 < E < 1, from (2.2) we have

H
′′
(E) =− 2

c
[g

′
(E)− mp

(m+ d)
Ť

′
(E)] +

(1− E)

c
[g

′′
(E)− mp

(m+ d)
Ť

′′
(E)].

From assumption (H) and (2.2) we acquire a′1(E) > 0 and a′′1(E) < 0, then

Ť
′
(E) =

1

2
a′1(E)

(
1− a1(E)√

a21(E)− 4a2

)
< 0,

Ť
′′
(E) =

1

2
a

′′

1 (E)[1− a1(E)√
a21(E)− 4a2

] +
1

2
(a

′

1(E))2
4a2

[a21(E)− 4a2]
3
2

> 0.

Hence, the second derivative H
′′
(E) < 0 for all 0 < E ≤ 1. This shows that H(E)

is an upper convex function in 0 < E ≤ 1.
Assume that condition (a) holds, then owing to Rc > 1, H(E) = 0 has a unique

positive root Ẽ ∈ (0, 1). Therefore, endemic equilibrium W̃ = (S̃, Ĩ, Ẽ) exists and
is unique.

If condition (b) holds, then from Rc = 1, we have H(0) = 0. By HM > 0, we
easily see that H(E) = 0 has a unique positive root Ẽ ∈ (0, 1). Hence, endemic
equilibrium W̃ = (S̃, Ĩ, Ẽ) exists and is unique.

If condition (c) holds, then from Rc < 1 we have H(0) < 0. By HM = 0, we see
that H(E) = 0 has a unique positive root Ẽ ∈ (0, 1). Hence, endemic equilibrium
W̃ = (S̃, Ĩ, Ẽ) also exists and is unique.

If condition (d) holds, by HM > 0 and Rc < 1, we get H(0) < 0. Hence
H(E) = 0 has only two positive roots. Thus, model (4.1) has only two endemic
equilibrium W̃1 = (S̃1, Ĩ1, Ẽ1) and W̃2 = (S̃2, Ĩ2, Ẽ2).

If condition (e) holds. From HM < 0, we see that H(E) = 0 has no root.
Therefore, there is only disease-free equilibrium W0 = (Aµ , 0, 0).

At last, if condition (f) holds, then from HM = 0 and Rc = 1, we obtain
H(0) = 0. Hence H(E) < 0 for all E ∈ (0, 1]. It follows that H(E) = 0 has a
unique root Ẽ = 0, and then there is only disease-free equilibrium W0 = (Aµ , 0, 0).
This completes the proof.

Remark 4.1. Comparing Lemma 4.2 with previous Lemma 3.3, we see that the
existence of equilibrium for nested slow model (4.1) is more complex than isolated
slow time model (1.3). Particularly, when the basic reproduction number less than 1,
model (1.3) has only the disease-free equilibrium, but model (4.1) have two positive
equilibria.

4.2. Stability of equilibrium
From Lemma 4.2, we see that nested slow model (4.1) may have a unique endemic
equilibrium or two positive equilibrium depending on parameter values. This shows
that the nested slow model may have complex dynamical behavior. Therefore, in
this section, we will investigate the local stability of these equilibria. We choose the
spatial domain Ω = [0, π] mainly for the simplified calculation and for convenience
of carrying out demonstrating numerical results. Generally, closed interval [a, b] can
be transformed to [0, π] by a translation and rescaling. For this case, we have that
the operator ∆ = ∂2

∂x2 .
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Theorem 4.1. (i) If Rc < 1, then disease-free equilibrium W0 of model (4.1) is
locally asymptotically stable;

(ii) If Rc > 1, then equilibrium W0 is unstable.

Proof. Let M∗ = (S∗, I∗, E∗) be any equilibrium of model (4.1) and N0 = {0, 1, 2
, 3...}. Linearizing model (4.1) at equilibrium M∗, we get

∂M(t, x)

∂t
= D

∂2M(t, x)

∂x2
+ L1(M(t, x)), (4.3)

where M(t, x) = (M1(t, x),M2(t, x),M3(t, x))
T and

D =


D1 0 0

0 D2 0

0 0 D3



and L1 : X∗
+ → R3 is defined by

L1(M(t, x))

=


−(βE∗ + µ)M1(t, x)− βS∗M3(t, x)

βE∗M1(t, x)− (µ+ α)M2(t, x) + βS∗M3(t, x)

(θV̌ (E∗)(1− E∗))M2(t, x) + [θI∗V̌
′
(E∗)(1− E∗)− θI∗V̌ (E∗)− γ]M3(t, x)

 .

Taking M(t, x) = eδty1(x) into system (4.3), we obtain

δy1 −D∆y1 − L1(y1) = 0, y1 ∈ dom(∆)\{0}, dom(∆) ⊂ X. (4.4)

From the properties of Laplacian operator in [38, 40] defined in space X with ho-
mogeneous Neumann boundary conditions, the operator ∂2

∂x2 has the eigenvalues
−l2, where l ∈ N0 is the wave velocity, with the corresponding eigenfunctions on
X are φ1

l = (γl, 0, 0)
T , φ2

l = (0, γl, 0)
T and φ3

l = (0, 0, γl)
T , where γl = cos(lx)

and sequence {φ1
l , φ

2
l , φ

3
l }∞l=0 composes a basis of space X. Therefore, any element

y1 ∈ X can be expanded as a Fourier series in the form.

y1 =

∞∑
l=0

Y T
1l


φ1
l

φ2
l

φ3
l

 , where Y T
1l =


⟨y1, φ1

l ⟩

⟨y1, φ2
l ⟩

⟨y1, φ3
l ⟩

 , (4.5)

and for any l ∈ N0 and i = 1, 2, 3, ⟨y1, φi
l⟩ is defined to be the inner product of y1

and φi
l in space X. We have for any l ∈ N0,

L1(Y
T
1l


φ1
l

φ2
l

φ3
l

) = L1(Y
T
1l )


φ1
l

φ2
l

φ3
l

 ,∆y1 = −
∞∑
l=0

l2Y T
1l


φ1
l

φ2
l

φ3
l

 . (4.6)
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It follows from the third equation of (4.1) that

θI∗ =
γE∗

V̌ (E∗)(1− E∗)
=

γE∗

F (E∗)
. (4.7)

Thus,

θI∗[V̌
′
(E∗)(1− E∗)− V̌ (E∗)]− γ = θI∗F

′
(E∗)− γ =

−γ[F (E∗)− E∗F
′
(E∗)]

F (E∗)
.

From (4.5)-(4.7), equation (4.4) is equivalent to

∞∑
l=0

Y T
1l


c11 0 βS∗

−βE∗ c22 −βS∗

0 −θF (E∗) c33




φ1
l

φ2
l

φ3
l

 = 0,

where c11 = δ + D1l
2 + βE∗ + µ, c22 = δ + D2l

2 + µ + α and c33 = δ + D3l
2 +

γ[F (E∗)−E∗F
′
(E∗)]

F (E∗)
. Therefore, we finally obtain the characteristic equation as fol-

lows£º ∣∣∣∣∣∣∣∣∣
c11 0 βS∗

−βE∗ c22 −βS∗

0 −θF (E∗) c33

∣∣∣∣∣∣∣∣∣ = 0, l ∈ N0, (4.8)

where δ denotes the eigenvalue.
Denote K(E) = F (E)−EF

′
(E). Since V̌ ′(E) = 1

c [g
′(E)− mp

(m+d) Ť
′(E)] > 0 and

V̌
′′
(E) = 1

c [g
′′(E)− mp

(m+d) Ť
′′(E)] < 0, we get F ′′

(E) = V̌
′′
(E)(1−E)−2V̌

′
(E) < 0.

Thus, K ′
(E) = −EF

′′
(E) > 0 for 0 < E ≤ 1. By K(0) = m(Rw−1)

k > 0, we have
K(E) > 0 for 0 < E ≤ 1.

Notably, the characteristic equation of model (4.1) at equilibrium W0 = (S0, 0, 0)
can be obtained from (4.8) as follows

(δ +D1l
2 + µ)[(δ +D2l

2 + µ+ α)(δ +D3l
2 + γ)− βS0θV̌ (0)] = 0, (4.9)

where l ∈ N0. It is shown that one root of equation (4.9) is δ1 = −(D1l
2 + µ) < 0.

The remaining two roots δ2 and δ3 are obtained by the following equation

δ2 + [(D2 +D3)l
2 + µ+ α+ γ]δ + (D2l

2 + µ+ α)(D3l
2 + γ)− βS0θV̌ (0) = 0.

(4.10)

Consider conclusion (i), when Rc < 1, then (µ+ α)γ − βS0θV̌ (0) > 0, we get{
δ2 + δ3 = −[(D2 +D3)l

2 + µ+ α+ γ] < 0,

δ2δ3 = D2D3L
4 +D2l

2γ + (µ+ α)D3l
2 + (µ+ α)γ − βS0θV̌ (0) > 0.

Hence, two roots of equation (4.10) have negative real parts. Thus, W0 is locally
asymptotically stable.
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Consider conclusion (ii), when Rc > 1, then (µ+ α)γ − βS0θV̌ (0) < 0, we have{
δ2 + δ3 = −[(D2 +D3)l

2 + µ+ α+ γ] < 0,

δ2δ3 = D2D3l
4 +D2l

2γ + (µ+ α)D3l
2 + (µ+ α)γ − βS0θV̌ (0).

It is clear that there is an integer number l1 ≥ 0 such that if l < l1 then δ2δ3 < 0,
if l = l1 then δ2δ3 ≤ 0 and if l > l1 then δ2δ3 > 0. Therefore, when l ≤ l1 equation
(4.10) has a positive root, which indicates that W0 is unstable. This completes the
proof.

To discuss the stability of endemic equilibrium W̃ = (S̃, Ĩ, Ẽ), positive equilib-
rium W̃1 = (S̃1, Ĩ1, Ẽ1) and W̃2 = (S̃2, Ĩ2, Ẽ2) for model (4.1), we need to introduce
the following assumptions.

(A) F ′(Ẽ) ≤ 0; (B) D1 = D2 and Ẽ ≤ µ2

βα ; (C) F ′(Ẽ2) ≤ 0.

Theorem 4.2. (i) Assume that (A) and one of conditions (a) and (b) in Lemma
4.2 hold. Then endemic equilibrium W̃ = (S̃, Ĩ, Ẽ) of model (4.1) is locally asymp-
totically stable;

(ii) Assume that (B) and condition (c) in Lemma 4.2 hold. Then endemic
equilibrium W̃ = (S̃, Ĩ, Ẽ) of model (4.1) is locally asymptotically stable.

Proof. From (4.8), the characteristic equation of model (4.1) at equilibrium W̃ =

(S̃, Ĩ, Ẽ) can be calculated as follows

δ3 + j2(W̃ )δ2 + j1(W̃ )δ + j0(W̃ ) = 0, (4.11)

where

j2(W̃ ) =(D1 +D2 +D3)l
2 +

γK(Ẽ)

F (Ẽ)
+ µ+ α+ βẼ + µ > 0,

j1(W̃ ) =(D1l
2 + βẼ + µ)(D2l

2 + µ+ α+D3l
2 +

γK(Ẽ)

F (Ẽ)
)

+ (D2l
2 + µ+ α)(D3l

2 +
γK(Ẽ)

F (Ẽ)
)− βθS̃F (Ẽ),

j0(W̃ ) =(D1l
2 + βẼ + µ)[(D2l

2 + µ+ α)(D3l
2 +

γK(Ẽ)

F (Ẽ)
)− βθS̃F (Ẽ)]

+ βẼβθS̃F (Ẽ).

Firstly, we consider conclusion (i). According to (4.7) and the second equation
of model (4.1), we obtain S̃ = (µ+α)γ

βθF (Ẽ)
. By the expressions of j1(W̃ ) and j0(W̃ ), we

further obtain

j1(W̃ ) =D1D2l
4 +D1D3l

4 +D1l
2 γK(Ẽ)

F (Ẽ)
+D1l

2(µ+ α) +D2l
2(βẼ + µ)

+D3l
2(βẼ + µ) + (βẼ + µ)

γK(Ẽ)

F (Ẽ)
+ (βẼ + µ)(µ+ α) +D2D3l

4

+D2l
2 γK(Ẽ)

F (Ẽ)
+ (µ+ α)D3l

2 + γ(µ+ α)[
K(Ẽ)

F (Ẽ)
− 1],
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j0(W̃ ) =D1D2D3l
6 +D1D2l

4 γK(Ẽ)

F (Ẽ)
+D1D3l

4(µ+ α) +D2D3l
4(βẼ + µ)

+D2l
2(βẼ + µ)

γK(Ẽ)

F (Ẽ)
+ (µ+ α)(βẼ + µ)D3l

2 + βẼγ(µ+ α)

+D1l
2γ(µ+ α)[

K(Ẽ)

F (Ẽ)
− 1] + (βẼ + µ)γ(µ+ α)[

K(Ẽ)

F (Ẽ)
− 1].

Using assumption (A) and the expression of K(E), we have K(Ẽ) = F (Ẽ) −
ẼF ′(Ẽ) ≥ F (Ẽ). Therefore, we obtain

K(Ẽ)

F (Ẽ)
− 1 ≥ 0. (4.12)

Furthermore, we also obtain j1(W̃ ) > 0 and j0(W̃ ) > 0.

Next, we prove j2(W̃ )j1(W̃ )− j0(W̃ ) > 0. By calculating, we have

j2(W̃ )j1(W̃ )− j0(W̃ )

=D1l
2[D1D2l

4 +D1D3l
4 +D1l

2 γK(Ẽ)

F (Ẽ)
+D1l

2(µ+ α) +D2l
2(βẼ + µ)

+D3l
2(βẼ + µ) + (βẼ + µ)

γK(Ẽ)

F (Ẽ)
+ (βẼ + µ)(µ+ α) +D2D3l

4

+D2l
2 γK(Ẽ)

F (Ẽ)
+ (µ+ α)D3l

2] +D2l
2[D1D2l

4 +D1D3l
4 +D1l

2(µ+ α)

+D2l
2(βẼ + µ) + (βẼ + µ)(µ+ α) +D2D3l

4 +D2l
2 γK(Ẽ)

F (Ẽ)
+ (µ+ α)D3l

2

+ (βẼ + µ)
γK(Ẽ)

F (Ẽ)
+Ac] +D3l

2[D1D3l
4 +D1l

2 γK(Ẽ)

F (Ẽ)
+D2l

2(βẼ + µ)

+D3l
2(βẼ + µ) + (βẼ + µ)(µ+ α) +D2D3l

4 +D2l
2 γK(Ẽ)

F (Ẽ)
+ (µ+ α)D3l

2

+ (βẼ + µ)
γK(Ẽ)

F (Ẽ)
+Ac] +

γK(Ẽ)

F (Ẽ)
[D1D2l

4 +D1D3l
4 +D1l

2 γK(Ẽ)

F (Ẽ)

+D1l
2(µ+ α) +D2l

2(βẼ + µ) +D3l
2(βẼ + µ) +D2D3l

4 +D2l
2 γK(Ẽ)

F (Ẽ)

+ (µ+ α)D3l
2 + (βẼ + µ)

γK(Ẽ)

F (Ẽ)
+Ac] + (µ+ α)[D1D2l

4 +D1D3l
4

+D1l
2 γK(Ẽ)

F (Ẽ)
+D1l

2(µ+ α) +D2l
2(βẼ + µ) +D3l

2(βẼ + µ)

+ (βẼ + µ)(µ+ α) +D2D3l
4 +D2l

2 γK(Ẽ)

F (Ẽ)
+ (µ+ α)D3l

2

+ (βẼ + µ)
γK(Ẽ)

F (Ẽ)
+Ac] + (βẼ + µ)[D1D2l

4 +D1D3l
4 +D1l

2 γK(Ẽ)

F (Ẽ)
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+D1l
2(µ+ α) +D2l

2(βẼ + µ) +D3l
2(βẼ + µ) + (βẼ + µ)(µ+ α)

+D2D3l
4 + (βẼ + µ)

γK(Ẽ)

F (Ẽ)
+Ac],

where Ac = γ(µ+α)[K(Ẽ)

F (Ẽ)
− 1]. From (4.12) again, we further have j2(W̃ )j1(W̃ )−

j0(W̃ ) > 0. Based on the above discussion, all roots of equation (4.11) have negative
real parts by the Routh-Hurwitz criterion. Therefore, equilibrium W̃ is locally
asymptotically stable.

Secondly, we consider conclusion (ii). Since HM = 0, we obtain F (Ẽ) = G(Ẽ) =
γẼ

θĨ
and F ′(Ẽ) = G′(Ẽ). By S̃ = (µ+α)Ĩ

βẼ
and the first equation of model (4.1), we

obtain βẼ + µ = βθS0

(µ+α)γ × Ẽµγ

θĨ
. Therefore, we further obtain

(βẼ + µ)
γK(Ẽ)

F (Ẽ)
= γµ

βθS0

(µ+ α)γ
K(Ẽ) = γµ

βθS0

(µ+ α)γ
× γ(µ+ α)µ

βθA
= γµ

and

γ(µ+ α)[
K(Ẽ)

F (Ẽ)
− 1] = −γ(µ+ α)

ẼG′(Ẽ)

G(Ẽ)

= −γ(µ+ α)
γ(µ+α)Ẽ

θA

γ(µ+α)Ẽ
θA + γ(µ+α)µ

βθA

= −γ(µ+ α)
βẼ

βẼ + µ
.

Using assumption (B), we have µ2 − βẼα ≥ 0. Thus,

(βẼ + µ)
γK(Ẽ)

F (Ẽ)
+ γ(µ+ α)[

K(Ẽ)

F (Ẽ)
− 1] =

γ(µ2 − βẼα)

βẼ + µ
≥ 0. (4.13)

By (4.13), we further have

j1(W̃ ) =D1D2l
4 +D1D3l

4 +D1l
2 γK(Ẽ)

F (Ẽ)
+D1l

2(µ+ α) +D2l
2(βẼ + µ)

+D3l
2(βẼ + µ) + (βẼ + µ)(µ+ α) +D2D3l

4 +D2l
2 γK(Ẽ)

F (Ẽ)

+ (µ+ α)D3l
2 + γ(µ+ α)[

K(Ẽ)

F (Ẽ)
− 1] + (βẼ + µ)

γK(Ẽ)

F (Ẽ)
> 0.

By simplifying, we obtain

j0(W̃ ) =D1D2D3l
6 +D1D2l

4 γK(Ẽ)

F (Ẽ)
+D1D3l

4(µ+ α) +D2D3l
4(βẼ + µ)

+D2l
2(βẼ + µ)

γK(Ẽ)

F (Ẽ)
+ (µ+ α)(βẼ + µ)D3l

2

+D1l
2γ(µ+ α)[

K(Ẽ)

F (Ẽ)
− 1] + (βẼ + µ)γ(µ+ α)

K(Ẽ)

F (Ẽ)
− µγ(µ+ α).
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From βẼ + µ = βθS0

(µ+α)γµF (Ẽ), F (Ẽ) = G(Ẽ) and F ′(Ẽ) = G′(Ẽ), we obtain

(βẼ + µ)γ(µ+ α)
K(Ẽ)

F (Ẽ)
− µγ(µ+ α)

=γµ(µ+ α){ βθS0

(µ+ α)γ
[G(Ẽ)− ẼG′(Ẽ)]− 1}

=γµ(µ+ α){ βθS0

(µ+ α)γ
× γ(µ+ α)µ

βθA
− 1} = 0.

Thus, by D1 = D2 in assumption (B) we further obtain

j0(W̃ ) =D1D2D3l
6 +D1D2l

4 γK(Ẽ)

F (Ẽ)
+D1D3l

4(µ+ α) +D1l
2γ(µ+ α)[

K(Ẽ)

F (Ẽ)
− 1]

+D2D3l
4(βẼ + µ) +D2l

2(βẼ + µ)
γK(Ẽ)

F (Ẽ)
+ (µ+ α)(βẼ + µ)D3l

2

=D2
1D3l

6 +D2
1l

4 γK(Ẽ)

F (Ẽ)
+D1D3l

4(µ+ α) +D2D3l
4(βẼ + µ)

+ (µ+ α)(βẼ + µ)D3l
2 +D1l

2{γ(µ+ α)[
K(Ẽ)

F (Ẽ)
− 1] + (βẼ + µ)

γK(Ẽ)

F (Ẽ)
}.

By (4.13), we have j0(W̃ ) > 0.

Next, we prove j2(W̃ )j1(W̃ )− j0(W̃ ) > 0. By calculating, we obtain

j2(W̃ )j1(W̃ )− j0(W̃ )

=D1l
2[D1D2l

4 +D1D3l
4 +D1l

2 γK(Ẽ)

F (Ẽ)
+D1l

2(µ+ α) +D2l
2(βẼ + µ)

+D3l
2(βẼ + µ) + (βẼ + µ)

γK(Ẽ)

F (Ẽ)
+ (βẼ + µ)(µ+ α) +D2D3l

4

+D2l
2 γK(Ẽ)

F (Ẽ)
+ (µ+ α)D3l

2] +D2l
2[D1D2l

4 +D1D3l
4 +D1l

2(µ+ α)

+D2l
2(βẼ + µ) + (βẼ + µ)(µ+ α) +D2D3l

4 +D2l
2 γK(Ẽ)

F (Ẽ)

+ (µ+ α)D3l
2 +Bc] +D3l

2[D1D3l
4 +D1l

2 γK(Ẽ)

F (Ẽ)
+D2l

2(βẼ + µ)

+D3l
2(βẼ + µ) + (βẼ + µ)(µ+ α) +D2D3l

4 +D2l
2 γK(Ẽ)

F (Ẽ)

+ (µ+ α)D3l
2 +Bc] + (

γK(Ẽ)

F (Ẽ)
+ µ+ α)[D1D2l

4 +D1D3l
4

+D1l
2 γK(Ẽ)

F (Ẽ)
+D1l

2(µ+ α) +D2l
2(βẼ + µ) +D3l

2(βẼ + µ)

+ (βẼ + µ)(µ+ α) +D2D3l
4 +D2l

2 γK(Ẽ)

F (Ẽ)
+ (µ+ α)D3l

2 +Bc]



1916 N. Wang, L. Zhang & Z. Teng

+ (βẼ + µ)[D1D2l
4 +D1D3l

4 +D1l
2 γK(Ẽ)

F (Ẽ)
+D1l

2(µ+ α)

+D2l
2(βẼ + µ) +D3l

2(βẼ + µ) + (βẼ + µ)(µ+ α) +D2D3l
4 +Bc],

where Bc = γ(µ + α)[K(Ẽ)

F (Ẽ)
− 1] + (βẼ + µ)γK(Ẽ)

F (Ẽ)
. From (4.13) again, we further

obtain j2(W̃ )j1(W̃ ) − j0(W̃ ) > 0. Based on the above discussion, all roots of
equation (4.11) have negative real parts by the Routh-Hurwitz criterion. Therefore,
equilibrium W̃ is locally asymptotically stable. This completes the proof.

Remark 4.2. For Theorem 4.2, we only establish the local asymptotic stability
of endemic equilibrium W̃ for nested slow model (4.1) when Rc > 1. Comparing
conclusion (ii) of Theorem 3.2, for the nested slow model, we propose an open
problem, that is, whether endemic equilibrium W̃ of model (4.1) also is globally
asymptotically stable when Rc > 1.

Theorem 4.3. Assume that condition (d) in Lemma 4.2 holds, then positive equi-
librium W̃1 = (S̃1, Ĩ1, Ẽ1) of model (4.1) is unstable.

Proof. From (4.8), the characteristic equation of model (4.1) at equilibrium W̃1 =

(S̃1, Ĩ1, Ẽ1) can be established as follows

δ3 + j2(W̃1)δ
2 + j1(W̃1)δ + j0(W̃1) = 0, (4.14)

where

j2(W̃1) =(D1 +D2 +D3)l
2 +

γK(Ẽ1)

F (Ẽ1)
+ µ+ α+ βẼ1 + µ > 0,

j1(W̃1) =(D1l
2 + βẼ1 + µ)(D2l

2 + µ+ α+D3l
2 +

γK(Ẽ1)

F (Ẽ1)
)

+ (D2l
2 + µ+ α)(D3l

2 +
γK(Ẽ1)

F (Ẽ1)
)− βθS̃1F (Ẽ1),

j0(W̃1) =(D1l
2 + βẼ1 + µ)[(D2l

2 + µ+ α)(D3l
2 +

γK(Ẽ1)

F (Ẽ1)
)− βθS̃F (Ẽ1)]

+ βẼ1βθS̃1F (Ẽ1).

By βθS̃1F (Ẽ1) = γ(µ+ α), we have

j1(W̃1) =D1D2l
4 +D1D3l

4 +D1l
2 γK(Ẽ1)

F (Ẽ1)
+D1l

2(µ+ α) +D2l
2(βẼ1 + µ)

+D3l
2(βẼ1 + µ) + (βẼ1 + µ)

γK(Ẽ1)

F (Ẽ1)
+ (βẼ1 + µ)(µ+ α) +D2D3l

4

+D2l
2 γK(Ẽ1)

F (Ẽ1)
+ (µ+ α)D3l

2 + γ(µ+ α)[
K(Ẽ1)

F (Ẽ1)
− 1]

and

j0(W̃1) =D1D2D3l
6 +D1D2l

4 γK(Ẽ1)

F (Ẽ1)
+D1D3l

4(µ+ α) +D2D3l
4(βẼ1 + µ)
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+D2l
2(βẼ1 + µ)

γK(Ẽ1)

F (Ẽ1)
+ (µ+ α)(βẼ1 + µ)D3l

2 + βẼ1γ(µ+ α)

+D1l
2γ(µ+ α)[

K(Ẽ1)

F (Ẽ1)
− 1] + (βẼ1 + µ)γ(µ+ α)[

K(Ẽ1)

F (Ẽ1)
− 1].

Consider the term βẼ1γ(µ + α) + (βẼ1 + µ)γ(µ + α)[K(Ẽ1)

F (Ẽ1)
− 1] in j0(W̃1). By

H ′(Ẽ1) > 0 and H(Ẽ1) = 0, we get F ′(Ẽ1) > G′(Ẽ1) > 0 and F (Ẽ1) = G(Ẽ1),
then

γ(µ+ α)[
K(Ẽ1)

F (Ẽ1)
− 1] = −γ(µ+ α)

Ẽ1F
′(Ẽ1)

F (Ẽ1)
< −γ(µ+ α)

Ẽ1G
′(Ẽ1)

G(Ẽ1)

= −γ(µ+ α)
γ(µ+α)Ẽ1

θA

γ(µ+α)Ẽ1

θA + γ(µ+α)µ
βθA

= −γ(µ+ α)
βẼ1

βẼ1 + µ
.

Thus,

βẼ1γ(µ+ α) + (βẼ1 + µ)γ(µ+ α)[
K(Ẽ1)

F (Ẽ1)
− 1]

<βẼ1γ(µ+ α) + (βẼ1 + µ)[−γ(µ+ α)
βẼ1

βẼ1 + µ
] = 0.

It is clear that there is an integer number l2 ≥ 0 such that if l ≤ l2 then j0(W̃1) < 0.
Thus, when l ≤ l2, equation (4.14) has a positive root, which indicates that W̃1 is
unstable. This completes the proof.

Theorem 4.4. Assume that (C) and condition (d) in Lemma 4.2 hold, then positive
equilibrium W̃2 = (S̃2, Ĩ2, Ẽ2) of model (4.1) is locally asymptotically stable.

Proof. From (4.8), the characteristic equation of model (4.1) at equilibrium W̃2 =

(S̃2, Ĩ2, Ẽ2) can be established as follows

δ3 + j2(W̃2)δ
2 + j1(W̃2)δ + j0(W̃2) = 0, (4.15)

where

j2(W̃2) =(D1 +D2 +D3)l
2 +

γK(Ẽ2)

F (Ẽ2)
+ µ+ α+ βẼ2 + µ > 0,

j1(W̃2) =(D1l
2 + βẼ2 + µ)(D2l

2 + µ+ α+D3l
2 +

γK(Ẽ2)

F (Ẽ2)
)

+ (D2l
2 + µ+ α)(D3l

2 +
γK(Ẽ2)

F (Ẽ2)
)− βθS̃F (Ẽ2),

j0(W̃2) =(D1l
2 + βẼ2 + µ)[(D2l

2 + µ+ α)(D3l
2 +

γK(Ẽ2)

F (Ẽ2)
)− βθS̃F (Ẽ2)]

+ βẼ2βθS̃F (Ẽ2).
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According to (4.7) and the second equation of model (4.1), we obtain S̃2 = (µ+α)γ

βθF (Ẽ2)
.

From the expressions of j1(W̃2) and j0(W̃2), we further obtain

j1(W̃2) =D1D2l
4 +D1D3l

4 +D1l
2 γK(Ẽ2)

F (Ẽ2)
+D1l

2(µ+ α) +D2l
2(βẼ2 + µ)

+D3l
2(βẼ2 + µ) + (βẼ2 + µ)

γK(Ẽ2)

F (Ẽ2)
+ (βẼ2 + µ)(µ+ α) +D2D3l

4

+D2l
2 γK(Ẽ2)

F (Ẽ2)
+ (µ+ α)D3l

2 + γ(µ+ α)[
K(Ẽ2)

F (Ẽ2)
− 1],

j0(W̃2) =D1D2D3l
6 +D1D2l

4 γK(Ẽ2)

F (Ẽ2)
+D1D3l

4(µ+ α) +D2D3l
4(βẼ2 + µ)

+D2l
2(βẼ2 + µ)

γK(Ẽ2)

F (Ẽ2)
+ (µ+ α)(βẼ2 + µ)D3l

2 + βẼ2γ(µ+ α)

+D1l
2γ(µ+ α)[

K(Ẽ2)

F (Ẽ2)
− 1] + (βẼ2 + µ)γ(µ+ α)[

K(Ẽ2)

F (Ẽ2)
− 1].

Using assumption (C) and the definition of K(E), we have K(Ẽ2) = F (Ẽ2) −
Ẽ2F

′(Ẽ2) ≥ F (Ẽ2). Therefore, we obtain

K(Ẽ2)

F (Ẽ2)
− 1 ≥ 0. (4.16)

Furthermore, we also obtain j1(W̃2) > 0 and j0(W̃2) > 0.

Next, we prove j2(W̃2)j1(W̃2)− j0(W̃2) > 0. By calculating, we obtain

j2(W̃2)j1(W̃2)− j0(W̃2)

=D1l
2[D1D2l

4 +D1D3l
4 +D1l

2 γK(Ẽ2)

F (Ẽ2)
+D1l

2(µ+ α) +D2l
2(βẼ2 + µ)

+D3l
2(βẼ2 + µ) + (βẼ2 + µ)

γK(Ẽ2)

F (Ẽ2)
+ (βẼ2 + µ)(µ+ α) +D2D3l

4

+D2l
2 γK(Ẽ2)

F (Ẽ2)
+ (µ+ α)D3l

2] +D2l
2[D1D2l

4 +D1D3l
4 +D1l

2(µ+ α)

+D2l
2(βẼ2 + µ) + (βẼ2 + µ)(µ+ α) +D2D3l

4 +D2l
2 γK(Ẽ2)

F (Ẽ2)
+ (µ+ α)D3l

2

+ (βẼ2 + µ)
γK(Ẽ2)

F (Ẽ2)
+ Cc] +D3l

2[D1D3l
4 +D1l

2 γK(Ẽ2)

F (Ẽ2)
+D2l

2(βẼ2 + µ)

+D3l
2(βẼ2 + µ) + (βẼ2 + µ)(µ+ α) +D2D3l

4 +D2l
2 γK(Ẽ2)

F (Ẽ2)
+ (µ+ α)D3l

2

+ (βẼ2 + µ)
γK(Ẽ2)

F (Ẽ2)
+ Cc] +

γK(Ẽ2)

F (Ẽ2)
[D1D2l

4 +D1D3l
4 +D1l

2 γK(Ẽ2)

F (Ẽ2)

+D1l
2(µ+ α) +D2l

2(βẼ2 + µ) +D3l
2(βẼ2 + µ) +D2D3l

4 +D2l
2 γK(Ẽ2)

F (Ẽ2)
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+ (µ+ α)D3l
2 + (βẼ2 + µ)

γK(Ẽ2)

F (Ẽ2)
+ Cc] + (µ+ α)[D1D2l

4 +D1D3l
4

+D1l
2 γK(Ẽ2)

F (Ẽ2)
+D1l

2(µ+ α) +D2l
2(βẼ2 + µ) +D3l

2(βẼ2 + µ)

+ (βẼ2 + µ)(µ+ α) +D2D3l
4 +D2l

2 γK(Ẽ2)

F (Ẽ2)
+ (µ+ α)D3l

2

+ (βẼ2 + µ)
γK(Ẽ2)

F (Ẽ2)
+ Cc] + (βẼ2 + µ)[D1D2l

4 +D1D3l
4 +D1l

2 γK(Ẽ2)

F (Ẽ2)

+D1l
2(µ+ α) +D2l

2(βẼ2 + µ) +D3l
2(βẼ2 + µ)

+ (βẼ2 + µ)(µ+ α) +D2D3l
4 + (βẼ2 + µ)

γK(Ẽ2)

F (Ẽ2)
+ Cc],

where Cc = γ(µ+α)[K(Ẽ2)

F (Ẽ2)
−1]. From (4.16) again, we further obtain j2(W̃2)j1(W̃2)−

j0(W̃2) > 0. Based on the above discussion, all roots of equation (4.15) have nega-
tive real parts by the Routh-Hurwitz criterion. Therefore, equilibrium W̃2 is locally
asymptotically stable. This completes the proof.

Remark 4.3. Theorems 4.3 and 4.4 show that when Rc < 1, HM > 0 and the
additional assumption (C) holds then nested slow model (4.1) occurs the backward
bifurcation at disease-free equilibrium W0.

5. Numerical examples
In this section, we give some numerical examples to verify the theoretical results
obtained Theorem 4.2 and Theorem 4.4. In nested models (1.3)-(1.4), for the con-
venience of numerical simulations, we take the function g(E) = aE with a = 4×105

in the following examples. In addition, we choose the spatial domain is Ω = [0, π]
and the parameters D3 = 0.003, A = 4, θ = 1 × 10−10, Λ = 6000, k = 1 × 10−6,
m = 0.3 and d = 0.2. The parameters D1, D2, β, γ, α, µ, c and p are chosen as
free parameters.

Example 5.1. We select the surplus parameters D1 = 0.004, D2 = 0.005, β =
0.0006, γ = 0.02, α = 0.0004, µ = 0.0004, c = 54 and p = 1516.97438. Further-
more, the initial values of solution (S(t, x), I(t, x), E(t, x)) in Figure 1 are chosen
by (4500, 1000, 0.05), (12000, 1600, 0.35) and (8000, 3500, 0.7), respectively.

By calculating we have Rw = 1.1237 > 1 and Rc = 1.3915 > 1. Model (4.1) has
unique endemic equilibrium W̃ = (S̃, Ĩ, Ẽ) = (7155.3, 1430.1, 0.2663). We further
have F ′(Ẽ) = F ′(0.2663) = −49953 < 0. Hence, assumption (A) is satisfied. The
numerical simulations given in Figure 1 elucidate that unique endemic equilibrium
W̃ is locally asymptotically stable. Thus, conclusion (i) of Theorem 4.2 is verified.

Example 5.2. We select the surplus parameters D1 = 0.004, D2 = 0.005, β =
0.008, γ = 0.02, α = 0.0004, µ = 0.001, c = 69.5 and p = 1800.58. In addi-
tion, the initial values of solution (S(t, x), I(t, x), E(t, x)) in Figure 2 are chosen by
(1300, 1200, 0.1), (1800, 1500, 0.25) and (2700, 2400, 0.4), respectively.
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(a) (b) (c)

Figure 1. Dynamical behaviors of S(t, x) (Fig. (a)), I(t, x) (Fig. (b)) and E(t, x) (Fig. (c)). The
numerical simulations indicate that the solutions finally converge to the equilibrium W̃ .

By calculating we have Rw = 1.0363 > 1 and Rc = 1.2447 > 1. Model
(4.1) has unique endemic equilibrium W̃ = (S̃, Ĩ, Ẽ) = (1641, 1685, 0.1797). Since
F ′(Ẽ) = F ′(0.1797) = 92.613 > 0, assumption (A) is not satisfied. The numerical
simulations given in Figure 2 illustrate that unique endemic equilibrium W̃ is locally
asymptotically stable even if assumption (A) is not true. Therefore, F ′(Ẽ) ≤ 0 may
be a purely mathematical condition used in the proof of Theorem 4.2.

(a) (b) (c)

Figure 2. Dynamical behaviors of S(t, x) (Fig. (a)), I(t, x) (Fig. (b)) and E(t, x) (Fig. (c)). The
numerical simulations indicate that the solutions finally converge to the equilibrium W̃ .

Example 5.3. We select the surplus parameters D1 = 0.004, D2 = 0.005, β =
0.0006, γ = 0.015, α = 0.0004, µ = 0.0004, c = 52 and p = 1387.8609. Further-
more, the initial values of solution (S(t, x), I(t, x), E(t, x)) in Figure 3 are chosen
by (5500, 1000, 0.15), (9000, 1600, 0.34) and (12000, 3000, 0.6), respectively.

By calculating we have Rw = 1.0676 > 1 and Rc = 1. Model (4.1) has the
unique endemic equilibrium W̃ = (S̃, Ĩ, Ẽ) = (7117.5, 1446, 0.2707). Moreover,
we also have HM = 3112.0544 > 0 and F ′(Ẽ) = F ′(0.2707) = −37795 < 0.
Therefore, assumption (A) is satisfied. The numerical simulations given in Figure
3 elucidate that unique endemic equilibrium W̃ is locally asymptotically stable.
Hence, conclusion (i) of Theorem 4.2 is also verified.

Example 5.4. We select the surplus parameters D1 = 0.004, D2 = 0.004, β =
0.00015, γ = 0.004, α = 0.0004, µ = 0.0004, c = 56 and p = 1456.80959. More-
over, the initial values of solution (S(t, x), I(t, x), E(t, x)) in Figure 4 are chosen by
(5500, 300, 0.21), (8500, 600, 0.32) and (12000, 1000, 0.55), respectively.

By calculating we have Rw = 1.0406 > 1 and Rc = 0.5706 < 1. Model (4.1) has
unique endemic equilibrium W̃ = (S̃, Ĩ, Ẽ) = (9155.8, 423.6287, 0.2471). We further
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(a) (b) (c)

Figure 3. Dynamical behaviors of S(t, x) (Fig. (a)), I(t, x) (Fig. (b)) and E(t, x) (Fig. (c)). The
numerical simulations indicate that the solutions finally converge to the equilibrium W̃ .

have HM = H(0.2471) = 0 and µ2

βα = 0.2667 > 0.2471. Therefore, assumption
(B) is satisfied. The numerical simulations given in Figure 4 illustrate that unique
endemic equilibrium W̃ is locally asymptotically stable. Hence, conclusion (ii) of
Theorem 4.2 is verified.

(a) (b) (c)

Figure 4. Dynamical behaviors of S(t, x) (Fig. (a)), I(t, x) (Fig. (b)) and E(t, x) (Fig. (c)). The
numerical simulations indicate that the solutions finally converge to the equilibrium W̃ .

Example 5.5. We select the surplus parameters D1 = 0.004, D2 = 0.004, β =
0.0006,γ = 0.02, α = 0.0002, µ = 0.0004, c = 60 and p = 1594.29488. In addi-
tion, the initial values of solution (S(t, x), I(t, x), E(t, x)) in Figure 5 are chosen by
(5500, 1500, 0.25), (8000, 2500, 0.5) and (9000, 3000, 0.7), respectively.

By calculating we have Rw = 1.0629 > 1 and Rc = 0.9429 < 1. Model (4.1) has
unique endemic equilibrium W̃ = (S̃, Ĩ, Ẽ) = (6469.9, 2353.7, 0.3637). Moreover, we
also have HM = H(0.3637) = 0 and µ2

βα = 0.0133 < 0.3637. Thus, assumption (B)
is not satisfied. The numerical simulations given in Figure 5 elucidate that unique
endemic equilibrium W̃ is also locally asymptotically stable even if assumption
(B) is not true. Therefore, D1 = D2 and Ẽ ≤ µ2

βα may be purely mathematical
conditions used in the proof of Theorem 4.2.

Example 5.6. We select the surplus parameters D1 = 0.004, D2 = 0.005, β =
0.002,γ = 0.015, α = 0.0001, µ = 0.0015, c = 56.5 and p = 1430. Besides, the initial
values of solution (S(t, x), I(t, x), E(t, x)) in Figure 6 are chosen by (800, 100, 0.1),
(1600, 900, 0.65) and (2500, 1700, 0.9), respectively.

By calculating we have Rw = 1.0124 > 1 and Rc = 0.0826 < 1. Model (4.1)
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(a) (b) (c)

Figure 5. Dynamical behaviors of S(t, x) (Fig. (a)), I(t, x) (Fig. (b)) and E(t, x) (Fig. (c)). The
numerical simulations indicate that the solutions finally converge to the equilibrium W̃ .

has two positive equilibrium W̃1 = (S̃1, Ĩ1, Ẽ1) = (2660.7, 0.00001, 0.0016781) and
W̃2 = (S̃2, Ĩ2, Ẽ2) = (1291.5, 1289.2, 0.7986). We further have HM = 13550.41 > 0

and F ′(Ẽ2) = F ′(0.7986) = −43305.45 < 0, then assumption (C) is satisfied. The
numerical simulations given in Figure 6 illustrate that equilibrium W̃2 is locally
asymptotically stable. Therefore, Theorem 4.4 is verified.

(a) (b) (c)

Figure 6. Dynamical behaviors of S(t, x) (Fig. (a)), I(t, x) (Fig. (b)) and E(t, x) (Fig. (c)). The
numerical simulations indicate that the solutions finally converge to the equilibrium W̃2.

Example 5.7. We select the surplus parameters D1 = 0.004, D2 = 0.005, β =
0.0006,γ = 0.015, α = 0.0001, µ = 0.0015, c = 60 and p = 1510. Besides, the initial
values of solution (S(t, x), I(t, x), E(t, x)) in Figure 7 are chosen by (1500, 250, 0.25),
(2400, 390, 0.5) and (4000, 600, 0.7), respectively.

By calculating we have Rw = 1.0067 > 1 and Rc = 0.0133 < 1. Model (4.1) has
two positive endemic equilibrium W̃1 = (S̃1, Ĩ1, Ẽ1) = (2520.9, 0.000035, 0.144528)

and W̃2 = (S̃2, Ĩ2, Ẽ2) = (2250.6, 390.0916, 0.4622). We further have HM = 1812.43

> 0 and F ′(Ẽ2) = F ′(0.4622) = 10.7235 > 0, then assumption (C) is not satisfied.
The numerical simulations given in Figure 7 illustrate that equilibrium W̃2 is locally
asymptotically stable even if assumption (C) is not true. Therefore, F ′(Ẽ2) ≤ 0
may be a purely mathematical condition used in the proof of Theorem 4.4.

6. Conclusions
In this article, we investigate a reaction-diffusion model for nested within-host and
between-host dynamics in an environmentally-driven infectious disease. The model
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(a) (b) (c)

Figure 7. Dynamical behaviors of S(t, x) (Fig. (a)), I(t, x) (Fig. (b)) and E(t, x) (Fig. (c)). The
numerical simulations indicate that the solutions finally converge to the equilibrium W̃2.

is composed of a hybrid model of ordinary and partial differential equations which
is divided into a within-host fast time model of ordinary differential equations and a
between-host slow time reaction-diffusion model by using the singular perturbation
theory in [5].

For within-host fast time model (1.4), the dynamical behavior has been investi-
gated in [11–13]. We only summarize the main results.

For isolated between-host slow time model (1.3), we first obtain the positivity
and ultimately boundedness of solutions, the basic reproduction number Rb and
the existence of equilibrium. Next, the global stability of equilibrium is obtained
by using the Lyapunov function method. That is, if Rb ≤ 1, then disease-free equi-
librium is globally asymptotically stable, and if Rb > 1, then endemic equilibrium
is globally asymptotically stable.

For nested between-host slow time model (4.1), we first obtain the existence
of positive equilibrium with the help of basic reproduction number Rc and HM .
Particularly, model (4.1) have a unique endemic equilibrium W̃ when Rc > 1, and
two positive equilibrium W̃1 = (S̃1, Ĩ1, Ẽ1) and W̃2 = (S̃2, Ĩ2, Ẽ2) with Ẽ1 < Ẽ2

when Rc < 1 and HM > 0. This shows that model (4.1) can undergo a backward
bifurcation at Rc = 1. We further establish a series of criteria for the stability of
equilibrium. Namely, disease-free equilibrium W0 is locally asymptotically stable if
Rc < 1, unique endemic equilibrium W̃ is locally asymptotically stable if Rc > 1
and F ′(Ẽ) ≤ 0 or Rc = 1, HM > 0 and F ′(Ẽ) ≤ 0 or Rc < 1, HM = 0, D1 = D2

and Ẽ ≤ µ2

βα , positive equilibrium W̃1 = (S̃1, Ĩ1, Ẽ1) is unstable if Rc < 1 and
HM > 0, and positive equilibrium W̃2 is locally asymptotically stable if Rc < 1,
HM > 0 and F ′(Ẽ2) ≤ 0.

Generally, we just want the local stability of the equilibrium of model (4.1) to be
only related to Rc. Therefore, some open problems can be further investigated. For
example, whether we can obtain the local asymptotic stability of the equilibrium
of model (4.1), even if assumptions (A), (B) and (C) are not true, as well as when
Rc > 1 whether we can obtain the global asymptotic stability of unique endemic
equilibrium of model (4.1). These problems are very challenging and will be solved
in the future.

The main content of this paper is to study the dynamic behavior of model
(1.3)-(1.4). Compared with model (1.1) of ordinary differential equations, the char-
acteristic of partial differential equation model (1.3) is to include the mobility of
the population in space. Therefore, models (1.3)-(1.4) are more practical and the
conclusions of models (1.3)-(1.4) can provide more effective guidance for disease
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control and prevention.
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