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MODELLING AND ANALYSIS OF AN
HIV/AIDS MODEL WITH DIFFERENT

WINDOW PERIOD AND TREATMENT∗

Hai-Feng Huo1,†, Li-Na Gu1 and Hong Xiang1

Abstract A novel HIV/AIDS model with different window period and treat-
ment is proposed. Window period individuals and latent individuals are di-
vided into two types: treated and untreated in our model. The basic repro-
duction number R0 is obtained by using the next generation matrix. Stability
of the disease-free equilibrium and existence of the endemic equilibrium is
derived. Using the theory of central manifold, the generation of forward bi-
furcation is established. Existence of the optimal control pair is analyzed and
the mathematical expression of the optimal control is also given by the Pon-
tryagin maximum principle. The best-fit parameter values in our model are
identified by the MCMC algorithm on the basis of the AIDS data in Gansu
province of China from 2004 to 2019. We also estimate that the basic repro-
duction number R0 is 2.1985 (95%CI: (1.3535-3.0435)). Numerical simulation
and sensitivity analysis of several parameters are also presented. Our results
suggest that individuals who are in the stage of window period for AIDS should
receive treatment, and this plays a key role in the prevention and control of
HIV/AIDS.
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1. Introduction
AIDS is an infectious disease without effective treatment and high mortality, caus-
ing more than 32 million deaths so far. According to the report by the World Health
Organization on HIV/AIDS [3], an estimated 79% of people living with HIV were
aware of their status at the end of 2018. To determine whether a person is infected
with HIV, the current common test method is to go to the local health institutions
for HIV antibody detection in the blood. People develop antibodies to HIV within
28 days of infection in most cases [3]. During this time, people experience the
so-called “window” period − the time between the infection and first detection of
HIV [9]. Although HIV antibodies are not produced and may not show signs of HIV
infection, they may transmit HIV to others. A person develops some symptoms in
the weeks following a high-risk behavior, including high fever of 38 degrees or more
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(4 days or more) that does not respond to antibiotic treatment, persistent diarrhea
over several days, and viral rashes after or during fever. At this time, the patient
may have been infected with HIV. If this is confirmed, immediate antiretroviral
treatment should be provided. Current antiretroviral therapy (ART) has become
an important measure to control the epidemic since ART can decline the mortal-
ity rate [23] and thus improve their life quality of HIV-infected individuals. The
WHO [2] makes it clear that once HIV patients are on antiretroviral therapy, they
will not transmit the disease on to others.

Many mathematical models for HIV infection have been studied [12,22,30,32,34]
recently. May et al. [22] came up with the original model of AIDS. Xiao et al. [32]
formulated a baseline model to predict the HIV/AIDS epidemic and measure the
effect of mobility in mainland of China. Zhang et al. [34] studied on a HIV/AIDS
model with application to Yunnan province. Wang et al. [30] developed an HIV
latent infection model including both virus-to-cell infection and cell-to-cell trans-
mission. Huo, Guo and Xiang [12] introduced an age-structured HIV infection
model with logistic target-cell growth, in which testified Hopf bifurcation occurred
at the positive steady state when bifurcating parameter crossed some critical values.
Other mathematical models about HIV have been considered in [4, 11,26,35].

Medical treatment is one of the effective ways to control diseases, many authors
have studied HIV/AIDS or epidemic models with medical treatment [13–15,17,24,
25, 27, 33]. Yang et al. [33] introduced pulse HIV vaccination which gave feasibil-
ity for virus eradication and optimal vaccination schedule. Chen and Wang [13]
studied an HIV/AIDS epidemic model with treatment which constructed Lyapunov
function to prove the stability of equilibria. An HIV/AIDS epidemic model with
different latent stages and treatment is presented in [15]. Kgosimore et al. [17] con-
structed a model which included treatment for juveniles infected with HIV/AIDS
through vertical transmission and adults infected with HIV/AIDS.

The purpose of this paper is to extend the known models in order to describe the
individuals who are in the stage of window period for AIDS by introducing a new
compartment, furthermore the treatment of the individuals who are in the stage
of window period for AIDS are also considered. We derive the basic reproduction
number R0 by using the next generation matrix and study forward bifurcation.
We also study stability of the disease-free equilibrium and existence of the endemic
equilibrium, and further investigate optimal control strategies. The best-fit param-
eter values in our model are identified by the MCMC algorithm on the basis of the
AIDS data in Gansu province of China from 2004 to 2019. We also estimate that
the basic reproduction number R0 is 2.1985 (95%CI: (1.3535-3.0435)).

The structure of this paper is organized as follows. In Section 2, we introduce a
novel model of AIDS/HIV with different window period and treatment. In Section
3, we obtain the stability of the disease-free equilibrium and the existence of the
endemic equilibrium. We also study the basic reproduction number and forward
bifurcation. In Section 4, we further investigate the optimal control strategy by
Pontryagin’s Maximum Principle. In Section 5, we give a case study and numerical
results. Some discussions and conclusion are given in last section.

2. The model formulation
The whole population N(t) is divided into six compartments: S(t), W1(t), W2(t),
E1(t), E2(t), A(t). S(t) represents the number of susceptible individuals, W1(t)
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represents the number of untreated individuals who are in the stage of window
period for AIDS, and these individuals are infectious. W2(t) represents the number
of treated individuals who are in the stage of window period for AIDS, and these
individuals are not infectious. E1(t) represents the number of untreated individuals
in the latent compartment. E2(t) represents the number of treated individuals in
the latent compartment. A(t) represents the number of individuals with full-blown
AIDS. The total number of population at time t is given by

N(t) = S(t) +W1(t) +W2(t) + E1(t) + E2(t) +A(t).

These parameters are described in Table 1. The transfer dynamic of those com-
partments in the model is shown in the following figure (Figure 1).

Table 1. The parameters description of the HIV/AIDS model.

Parameter Description(Units)
Λ The constant recruitment rate of the population (year−1)

p The part of S being infected with W1 and entering W1 (none)

q The part of S being infected with E1 and entering W1 (none)

β1 Transmission coefficient from W1 (year−1)

β2 Transmission coefficient from E1 (year−1)

δ1 Progression coefficient from W1 to E1 (year−1)

δ2 Progression coefficient from W2 to E2 (year−1)

ε1 Treatment rate to W2 for W1 (year−1)

ε2 Treatment rate to E2 for E1 (year−1)

γ1 Progression rate from E1 to A (year−1)

γ2 Progression rate from E2 to A (year−1)

α The mortality rate due to disease (year−1)

µ The natural mortality rate (year−1)

Figure 1. Transfer diagram for the dynamics of HIV/AIDS.
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This diagram results in the following system of ordinary differential equations:

dS
dt = Λ− β1SW1 − β2SE1 − µS,

dW1

dt = pβ1SW1 + qβ2SE1 − ε1W1 − δ1W1 − µW1,

dW2

dt = (1− p)β1SW1 + (1− q)β2SE1 + ε1W1 − δ2W2 − µW2,

dE1

dt = δ1W1 − ε2E1 − γ1E1 − µE1,

dE2

dt = δ2W2 + ε2E1 − γ2E2 − µE2,

dA
dt = γ1E1 + γ2E2 − αA− µA.

(2.1)

For simplicity, we let b1 = ε1 + δ1 + µ, b2 = δ2 + µ, b3 = ε2 + γ1 + µ, b4 =
γ2 + µ, b5 = α+ µ. Then the system (2.1) becomes

dS
dt = Λ− β1SW1 − β2SE1 − µS,

dW1

dt = pβ1SW1 + qβ2SE1 − b1W1,

dW2

dt = (1− p)β1SW1 + (1− q)β2SE1 + ε1W1 − b2W2,

dE1

dt = δ1W1 − b3E1,

dE2

dt = δ2W2 + ε2E1 − b4E2,

dA
dt = γ1E1 + γ2E2 − b5A.

(2.2)

Lemma 2.1. If S(0) ≥ 0,W1(0) ≥ 0,W2(0) ≥ 0, E1(0) ≥ 0, E2(0) ≥ 0, A(0) ≥ 0,
the solutions S(t),W1(t),W2(t), E1(t), E2(t), A(t) of system (2.2) are positive for
all t > 0.

Proof. For the given initial conditions, it can easily testify that the solutions of
the system (2.2) are positive; if not, we suppose a contradiction: that there exists
a first time t1 such that

S(t1)=0, S
′
(t1)<0,W1(t)≥0,W2(t)≥0, E1(t)≥0, E2(t)≥0, A(t)≥0, 0≤ t≤ t1,

or there exists a t2,

W1(t2)=0,W
′

1(t2)<0, S(t)≥0,W2(t)≥0, E1(t)≥0, E2(t)≥0, A(t)≥0, 0≤ t≤ t2,

or there exists a t3,

W2(t3)=0,W
′

2(t3)<0, S(t)≥0,W1(t)≥0, E1(t)≥0, E2(t)≥0, A(t)≥0, 0≤ t≤ t3,

or there exists a t4,

E1(t4)=0, E
′

1(t4)<0, S(t)≥0,W1(t)≥0,W2(t)≥0, E2(t)≥0, A(t)≥0, 0≤ t≤ t4,
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or there exists a t5,

E2(t5)=0, E
′

2(t5)<0, S(t)≥0,W1(t)≥0,W2(t)≥0, E1(t)≥0, A(t)≥0, 0≤ t≤ t5,

or there exists a t6,

A(t6)=0, A
′
(t6)<0, S(t)≥0,W1(t)≥0,W2(t)≥0, E1(t)≥0, E2(t)geq0, 0≤ t≤ t6.

For the first case, we have
S

′
(t1) = Λ > 0,

which is contradiction implying that S(t) ≥ 0, t ≥ 0. For the second case, we have

W
′

1(t2) = qβ2S(t2)E1(t2) ≥ 0,

which is contradiction implying that W1(t) ≥ 0, t ≥ 0. Similarly, it can be proven
that W2(t) ≥ 0, E1(t) ≥ 0, E2(t) ≥ 0, A(t) ≥ 0 for all t ≥ 0.

Therefore, the solutions S(t),W1(t),W2(t), E1(t), E2(t), A(t) of system (2.2) are
still positive for all t > 0. This completes the proof.

Lemma 2.2. Define

Ω = {(S,W1,W2, E1, E2, A) ∈ R6
+ : 0 ≤ S,W1,W2, E1, E2, A ≤ N(t) =

Λ

µ
} (2.3)

The solutions of model (2.1) or (2.2) are bounded and the set Ω is a positive invariant
set.

Proof. Adding the six equations of system (2.1) or (2.2), we have

dN
dt =

dS
dt +

dW1

dt +
dW2

dt +
dE1

dt +
dE2

dt +
dA
dt = Λ− αA− µN ≤ Λ− µN.

That means
0 ≤ N(t) ≤ Λ

µ
+N(0)e−µt,

where N(0) represents the initial values of the total population. Then 0 ≤ lim
t→∞

sup

N(t) ≤ Λ
µ . So, we get a positive invariant set of system (2.1) or (2.2) which is

Ω = {(S,W1,W2, E1, E2, A) ∈ R6
+ : 0 ≤ S,W1,W2, E1, E2, A ≤ N =

Λ

µ
}.

This completes the proof.
Thus we consider dynamics of system (2.2) on the set Ω in this paper.

3. Analysis of the model
3.1. Disease-free equilibrium and the basic reproductive num-

ber
Obviously, the system (2.2) always has a disease-free equilibrium which is given by:

P0 = (
Λ

µ
, 0, 0, 0, 0, 0).
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In this part, the basic reproduction number will be obtained through the method
of the next generation matrix in [29]. System (2.2) can be written as

dx
dt = F(x)− V(x),

where x = (W1,W2, E1, E2, A, S)T ,

F(x)=



pβ1SW1+qβ2SE1

(1−p)β1SW1+(1−q)β2SE1

0

0

0

0


,V(x)=



b1W1

b2W2 − ε1W1

b3E1 − δ1W1

b4E2 − ε2E1 − δ2W2

b5A− γ1E1 − γ2E2

β1SW1 + β2SE1 + µS − Λ


.

(3.1)
The Jacobian matrices of F(x) and V(x) at the disease-free equilibrium P0 are

DF(P0) =

F5×5 0

0 0

 , and DV(P0) =

 V5×5 0

β1
Λ
µ 0 β2

Λ
µ 0 0 µ

 , (3.2)

where

F =



pβ1
Λ
µ 0 qβ2

Λ
µ 0 0

(1− p)β1
Λ
µ 0 (1− q)β2

Λ
µ 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, and V =



b1 0 0 0 0

−ε b2 0 0 0

−δ1 0 b3 0 0

0 −δ2 −ε2 b4 0

0 0 −γ1 −γ2 b5


. (3.3)

Therefore, the basic reproduction number R0 is

R0 = ρ(FV −1) =
Λ(pβ1b3 + qβ2δ1)

µb1b3
, (3.4)

where b1 = ε1 + δ1 + µ, b3 = ε2 + γ1 + µ. We all know that the ability of a virus
to spread in the early stages of an epidemic is measured by the basic reproductive
number R0, which refers to the average number of secondary cases produced by a
case during its infection period. Further, using the Theorem 2 of [29], we can get
the local stability of the disease-free equilibrium.

Theorem 3.1. The disease-free equilibrium P0 is locally asymptotically stable for
R0 < 1 and is unstable for R0 > 1.

3.2. Global stability of disease-free equilibrium
Theorem 3.2. The disease-free equilibrium P0 is globally asymptotically stable for
R0 < 1.
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Proof. We prove the global stability of the disease-free equilibrium by comparison
theorem. System (2.2) can be re-written as

Ẇ1

Ẇ2

Ė1

Ė2

Ȧ


= (F − V )



W1

W2

E1

E2

A


− (1− µ

Λ
S)



pβ1
Λ
µ 0 qβ2

Λ
µ 0 0

(1− p)β1
Λ
µ 0 (1− q)β2

Λ
µ 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0





W1

W2

E1

E2

A


,

(3.5)
where F and V are the same as that in the next generation matrix. Since S≤ Λ

µ for
all t≥ 0 in Ω, then 

Ẇ1

Ẇ2

Ė1

Ė2

Ȧ


= (F − V )



W1

W2

E1

E2

A


.

Where F−V is cooperative, that is, its off-diagonal elements are non-negative. From
the Theorem 3.1, the system (2.2) is stable when R0 < 1. Thus, (W1,W2, E1, E2, A)
→ (0, 0, 0, 0, 0) as t → ∞. By the comparison theorem [19, 28], it’s easy to see
(W1,W2, E1, E2, A)→(0, 0, 0, 0, 0) and S→ Λ

µ as t→∞. Then (S,W1,W2, E1, E2, A)
→ P0 as t → ∞. Therefore, P0 is globally asymptotically stable for R0 < 1. This
completes the proof.

3.3. Endemic equilibrium
3.3.1. Existence of endemic equilibrium

If R0 > 1, system has a unique endemic equilibrium P ∗(S∗,W ∗
1 ,W

∗
2 , E

∗
1 , E

∗
2 , A

∗),
where

S∗ =
Λ

µR0
,

W ∗
1 =

µb3(R0 − 1)

b3β1 + β2δ1
,

W ∗
2 =

(R0 − 1)

b2
[
Λ

R0
+

µb3(ε1 − b1)

β1b3 + β2δ1
],

E∗
1 =

µδ1(R0 − 1)

b3β1 + β2δ1
,

E∗
2 =

1

b4
[
µδ1ε2(R0 − 1)

b3β1 + β2δ1
+ δ2W

∗
2 ],

A∗ =
1

b4b5
[
µδ1(R0 − 1)(b4γ1 + γ2ε2)

b3β1 + β2δ1
+ γ2δ2W

∗
2 ].
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3.3.2. Stability of the endemic equilibrium for a special case

Theorem 3.3. If β2 = 0 and R0 > 1, the endemic equilibrium P ∗ is locally
asymptotically stable.

Proof. For the endemic equilibrium P ∗, the matrix at P ∗ can be written as

−β1W
∗
1 − β2E

∗
1 − µ −β1S

∗ 0 −β2S
∗ 0 0

pβ1W
∗
1 + qβ2E

∗
1 pβ1S

∗ − b1 0 qβ2S
∗ 0 0

(1− p)β1W
∗
1 + (1− q)β2E

∗
1 (1− p)β1S

∗ + ε1 −b2 (1− q)β2S
∗ 0 0

0 δ1 0 −b3 0 0

0 0 δ2 ε2 −b4 0

0 0 0 γ1 γ2 −b5


.

(3.6)
Where b1 = ε1 + δ1 + µ, b2 = δ2 + µ, b3 = ε2 + γ1 + µ, b4 = γ2 + µ, b5 = α + µ. So,
when β2 = 0, the characteristic equation can be written as

(λ+ b5)(λ+ b4)(λ+ b3)(λ+ b2)

∣∣∣∣∣∣λ+ β1W
∗
1 + µ β1S

∗

−pβ1W
∗
1 λ− pβ1S

∗ + b1

∣∣∣∣∣∣ = 0. (3.7)

Thus, the four eigenvalues of the Eq.(3.7) are λ1 = −b2, λ2 = −b3, λ3 = −b4,
λ4 = −b5, and the other eigenvalues are decided by the equation

(λ+ β1W
∗
1 + µ)(λ− pβ1S

∗ + b1) + pβ2
1S

∗W ∗
1 = 0. (3.8)

So, the Eq.(3.8) can be written as

λ2 + a1λ+ a2 = 0,

where

a1 = b1 − pβ1S
∗ + β1W

∗
1 + µ,

a2 = b1(β1W
∗
1 + µ)− µpβ1S

∗.

When β2 = 0, R0 = Λpβ1

µb1
, and S∗ = Λ

µR0
. Therefore, b1−pβ1S

∗ = 0, µb1−µpβ1S
∗ =

0. Then, we can get
a1 > 0, a1a2 > 0.

According to the Routh-Hurwitz [18], all the characteristic equation are negative
and the endemic equilibrium P ∗(S∗,W ∗

1 ,W
∗
2 , E

∗
1 , E

∗
2 , A

∗) is locally asymptotically
stable.

It is difficult to prove the global stability of endemic equilibrium theoretically.
We can only give some numerical simulation to illustrate and extend our results.
The parameter values are Λ = 319179, p = 0.37802, q = 0.31761, β1 = 1.0607 ×
10−06, β2 = 4.8333 × 10−08, δ1 = 365/18, δ2 = 365/15, ε1 = 24.721, ε2 =
0.18694, γ1 = 1/11, γ2 = 1/15, α = 0.318, µ = 1/73. We know that R0 = 0.7602 <
1. Then the disease free equilibrium P0 of system (2.1) is globally asymptotically
stable by theorem 3.2(Figure 2).
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Figure 2. Disease free equilibrium P0 is globally asymptotically stable.

Next, we study the local stability of the endemic equilibrium P ∗ numerically.
We select the parameter values as following. Λ = 319179, p = 0.87802, q =
0.61761, β1 = 1.5607 × 10−06, β2 = 0, δ1 = 365/18, δ2 = 365/15, ε1 = 5, ε2 =
0.08694, γ1 = 1/11, γ2 = 1/15, α = 0.318, µ = 1/73. So, R0 = 2.0926 > 1. (Figure
3) show that the endemic equilibrium P ∗ of system (2.1) is locally asymptotically
stable.
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Figure 3. Endemic equilibrium P ∗ is locally asymptotically stable.

3.4. Forward Bifurcation Analysis

In this section, the occurrence of a forward bifurcation is studied by the central
manifold theory [7].

Theorem 3.4. When R0 = 1, the system (2.2) appears a forward bifurcation.

Proof. By the central manifold theory described in [7]. Let x1 = S, x2 = W1,
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x3 = W2, x4 = E1, x5 = E2, x6 = A. Then the system (2.2) becomes

dS
dt = Λ− β1SW1 − β2SE1 − µS := f1,

dW1

dt = pβ1SW1 + qβ2SE1 − ε1W1 − δ1W1 − µW1 := f2,

dW2

dt = (1− p)β1SW1 + (1− q)β2SE1 + ε1W1 − δ2W2 − µW2 := f3,

dE1

dt = δ1W1 − ε2E1 − γ1E1 − µE1 := f4,

dE2

dt = δ2W2 + ε2E1 − γ2E2 − µE2 := f5,

dA
dt = γ1E1 + γ2E2 − αA− µA := f6.

(3.9)

Therefore, the disease-free equilibrium P0 is

P0 = (
Λ

µ
, 0, 0, 0, 0, 0).

The Jacobian matrix J(P0) of the system (3.9) in the disease-free equilibrium is

J(P0) =



−µ −β1
Λ
µ 0 −β2

Λ
µ 0 0

0 pβ1
Λ
µ − b1 0 qβ2

Λ
µ 0 0

0 (1− p)β1
Λ
µ + ε1 −(µ+ δ2) (1− q)β2

Λ
µ 0 0

0 δ1 0 −b3 0 0

0 0 δ2 ε2 −(µ+ γ2) 0

0 0 0 γ1 γ2 −(µ+ α)


.

We choose β1 as bifurcation parameter, when R0 = 1 corresponding to β1 = β∗
1 =

µb1
Λp − qβ2δ1

pb3
. Therefore, we have

J(P0) =



−µ −( b1
p
− Λqβ2δ1

µpb3
) 0 −β2

Λ
µ

0 0

0 −Λqβ2δ1
µ

0 qβ2
Λ
µ

0 0

0 (1−p)b1
p

− Λ(1−p)qβ2δ1
µpb3

+ ε1 −(µ+ δ2) (1− q)β2
Λ

µb3
0 0

0 δ1 0 −b3 0 0

0 0 δ2 ε2 −(µ+ γ2) 0

0 0 0 γ1 γ2 −(µ+ α)


.

It is obviously that 0 is a simple eigenvalue of J(P0). So, the right eigenvector
corresponding to the 0 eigenvalue is V = (v1, v2, v3, v4, v5, v6)

T , the left eigenvector
corresponding to the 0 eigenvalue is U = (u1, u2, u3, u4, u5, u6), and it needs to
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satisfy UV = 1. So, the right eigenvector is

V =



Λβ2δ1(q−p)−µb1b3
µ2p

b3

µb3[(1−p)b1+ε1p]+Λβ2δ1(p−q)
µpb2

δ1

µb3δ2[(1−p)b1+ε1p]+Λβ2δ1δ2(p−q)
µpb2b4

+ ε2δ1
b4

µb3δ2γ2[(1−p)b1+ε1p]+Λβ2δ1δ2γ2(p−q)
µpb2b4b5

+ b5γ1δ1+ε2δ1γ2

b4b5


,

the left eigenvector is

U =
(
0,

µb3
µb23 + Λqβ2δ1

, 0,
Λqβ2

µb23 + Λqβ2δ1
, 0, 0

)
.

In viewpoint of Theorem 4.1 [7], we know that

a =

6∑
k,i,j=1

ukvivj
∂2fk(P0)

∂xi∂xj
, b =

6∑
k,i=1

ukvi
∂2fk(P0)

∂xi∂β1
.

Therefore, we have

a =u2v1v2
∂2f2(P0)

∂x1∂x2
+ u2v1v4

∂2f2(P0)

∂x1∂x4
+ u2v2v1

∂2f2(P0)

∂x2∂x1
+ u2v4v1

∂2f2(P0)

∂x4∂x1

=2u2

(
v1v2

∂2f2(P0)

∂x1∂x2
+ v1v4

∂2f2(P0)

∂x1∂x4

)
=

2µb3
µb23 + Λqβ2δ1

(
Λβ2δ1(q − p)

µ2p
− b1b3

µp
)[pb3(

µb1
Λp

− qβ2δ1
pb3

) + qβ2δ1]

=
2µb3

µb23 + Λqβ2δ1
(
−Λpβ2δ1 − Λpb3δ1

µ2p
)
µb1b3
Λ

< 0.

b =u2v2
∂2f2(P0)

∂x2∂β1
=

Λpb23
µb23 + Λqβ2δ1

> 0.

We find that the coefficient a is always negative and b is always positive. According
to Theorem 4.1 of [7], the system (2.2) at R0 = 1 appears a forward bifurcation.
This completes the proof.

The forward bifurcation diagram of system (2.2) is shown in Figure 4.
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Figure 4. Illustration of forward bifurcation when one parameter β1 in R0 is varied.

4. The optimal control problems
4.1. The existence of optimal control
In the previous part, we mainly study the dynamical behavior in the system (2.1).
In this section, we use two control variables u1(t) and u2(t) to reduce the number
of HIV/AIDS(W1(t) and E1(t)). The control u1(t) represents efforts intended to
keep the susceptible from contacting with the HIV/AIDS(W1(t)), for example, the
media report and educational programs are included. The control u2(t) represents
the effort to encourage HIV/AIDS (E1(t)) through proper treatment, such as tak-
ing medicine or looking for other medical help. The optimal control problems to
minimize the objective function is given by

J(u1, u2) =

∫ tf

0

[W1(t) + E1(t) +
1

2
c1u

2
1(t) +

1

2
c2u

2
2(t)]dt. (4.1)

In order to obtain the optimal control strategy, the following optimal model is
established

dS
dt = Λ− (1− u1(t))β1SW1 − (1− u2(t))β2SE1 − µS,

dW1

dt = (1− u1(t))pβ1SW1 + (1− u2(t))qβ2SE1 − ε1W1 − δ1W1 − µW1,

dW2

dt = (1− u1(t))(1− p)β1SW1 + (1− u2(t))(1− q)β2SE1

+ ε1W1 − δ2W2 − µW2,

dE1

dt = δ1W1 − ε2E1 − γ1E1 − µE1,

dE2

dt = δ2W2 + ε2E1 − γ2E2 − µE2,

dA
dt = γ1E1 + γ2E2 − αA− µA.

(4.2)

with initial conditions

S(0) ≥ 0,W1(0) ≥ 0,W2(0) ≥ 0, E1(0) ≥ 0, E2(0) ≥ 0, A(0) ≥ 0,
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where U = {(u1, u2)|ui(t) is a Lebesgue measurable and 0 ≤ ui(t) ≤ 1, for all t ∈
[0, tf ]} and tf is the final time. The constant ci ≥ 0, i = 1, 2 are relative weight
coefficients that balance the cost and the number of AIDS.

Next, the existence of the optimal control pair in the system (2.1) is studied by
using the results of Fleming and Rishel [10].

Theorem 4.1. Under the initial conditions, the system (4.2) exists an optimal
control pair (u∗

1, u
∗
2) ∈ U, t ∈ [0, tf ]} such that

J(u∗
1, u

∗
2) = min

u1(t),u2(t)∈U
J(u1, u2).

Proof. To prove the existence of optimal control, the following conditions must
be satisfied:
(1) The control and related state variables are non-negative values.
(2) The control set U is convex and closed.
(3) The right-hand of the state system (4.2) is bounded and it is a linear function
of the control and the state variable.
(4) The integrand of the objective function on U is convex.
(5) There exist constants b1, b2 > 0 and α > 1 such that the integrant of the
objective functional

L(t, u1, u2) = W1(t) + E1(t) +
1

2
c1u

2
1(t) +

1

2
c2u

2
2(t)

satisfies
L(t, u1, u2) ≥ b1[u

2
1(t) + u2

2(t)]
α
2 − b2.

Obviously the conditions (1), (2) and (4) are satisfied. As for condition (3), we have
already proved that six state variable are bounded, therefore

dS
dt ≤ Λ,

dW1

dt ≤ (1− u1(t))pβ1SW1 + (1− u2(t))qβ2SE1,

dW2

dt ≤ (1− u1(t))(1− p)β1SW1 + (1− u2(t))(1− q)β2SE1 + ε1W1,

dE2

dt ≤ δ2W2 + ε2E1,
dE1

dt ≤ δ1W1,
dA
dt ≤ γ1E1 + γ2E2.

For the condition (5), there exist b1 = min{ c1
2 ,

c2
2 }, b2 ∈ R+ and α = 2, such that

L(t, u1, u2) ≥ b1[u
2
1(t) + u2

2(t)]
α
2 − b2,

which completes the existence of an optimal control.

4.2. Characterization of optimal controls
According to the Pontryagin¡¯s Maximum Principle in [8], the necessary condi-
tions for the existence of optimal control of the system (2.1) are obtained. Now,
we will formulate the Hamiltonian from the governing dynamics and the objective
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functional to get the optimality conditions. So, we have

H = W1(t) + E1(t) +
1

2
c1u

2
1(t) +

1

2
c2u

2
2(t)

+ λS [Λ− (1− u1(t))β1SW1 − (1− u2(t))β2SE1 − µS],

+ λW1
[(1− u1(t))pβ1SW1 + (1− u2(t))qβ2SE1 − ε1W1 − δ1W1 − µW1]

+ λW2
[(1−u1(t))(1−p)β1SW1+(1−u2(t))(1−q)β2SE1+ε1W1−δ2W2−µW2]

+ λE1
[δ1W1 − ε2E1 − γ1E1 − µE1]

+ λE2
[δ2W2 + ε2E1 − γ2E2 − µE2]

+ λA[γ1E1 + γ2E2 − αA− µA].

(4.3)

Where λS , λW1
, λW2

, λE1
, λE2

, λA are the associated adjoints for the states
S, W1, W2, E1, E2, A. The system of adjoint equations is found by taking the
proper partial derivatives of the Hamiltonian with respect to the associated state
and control variables.

Theorem 4.2. There is an optimal control pairs (u∗
1, u∗

2) and solutions S(t)∗,
W ∗

1 (t), W
∗
2 (t), E

∗
1 (t), E

∗
2 (t), A

∗(t) of the corresponding state system (4.2) that min-
imizes the objective functional J(u∗

1, u∗
2) over U. Then there exist adjoint variables

λS , λW1
, λW2

, λE1
, λE2

, λA, satisfying

− dλi

dt =
∂H

∂i
(4.4)

and with the terminal conditions

λi(tf ) = 0, where i = S, W1, W2, E1, E2, A. (4.5)

The optimality conditions is given by

∂H

∂uj
= 0, j = 1, 2. (4.6)

Further, the control (u∗
1, u∗

2) can be obtained from the following equations:

u∗
1 = min{1, max{0, [−λS + pλW1 + (1− p)λW2 ]β1S

∗W ∗
1

c1
}},

u∗
2 = min{1, max{0, [−λS + qλW1 + (1− q)λW2 ]β2S

∗E∗
1

c2
}}.

(4.7)

Proof. By differentiating the Hamiltonian, we obtain the adjoint system can be
written as:

− dλS

dt =
∂H

∂S
, λS(tf ) = 0, −dλW1

dt =
∂H

∂W1
, λW1

(tf ) = 0,

− dλW2

dt =
∂H

∂W2
, λW2(tf ) = 0, −dλE1

dt =
∂H

∂E1
, λE1(tf ) = 0,

− dλE2

dt =
∂H

∂E2
, λE2

(tf ) = 0, −dλA

dt =
∂H

∂A
, λA(tf ) = 0,

(4.8)
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the state adjoint system is given by

dλS

dt = [λS − pλW1
− (1− p)λW2

](1− u1(t))β1W
∗
1 + [λS − qλW1

− (1− q)λW2
]

× (1− u2(t))β2E
∗
1 + µλS ,

dλW1

dt = −1 + [λS − pλW1
− (1− p)λW2

](1− u1(t))β1S
∗ + (λW1

− λW2
)ε1

+ (λW1
− λE1

)δ1 + µλW1
,

dλW2

dt = (λW2
− λE2

)δ2 + µλW2
,

dλE1

dt = −1 + [λS − qλW1
− (1− q)λW2

](1− u2(t))β2S
∗ + (λE1

− λE2
)ε2

+ (λE1
− λA)γ1 + µλE1

,

dλE2

dt = (λE2
− λA)γ2 + µλE2

,

dλA

dt = αλA + µλA.

Further, by differentiating the Hamiltonian with respect to the controls, we have
the following optimality conditions:

∂H

∂u1
= c1u

∗
1(t) + β1S

∗W ∗
1 λS − pβ1S

∗W ∗
1 λW1

− (1− p)β1S
∗W ∗

1 λW2
= 0,

∂H

∂u2
= c2u

∗
2(t) + β2S

∗E∗
1λS − qβ2S

∗E∗
1λW1

− (1− q)β2S
∗E∗

1λW2
= 0.

For the u∗
1 and u∗

2, we have

u∗
1 =

[−λS + pλW1 + (1− p)λW2 ]β1S
∗W ∗

1

c1
,

u∗
2 =

[−λS + qλW1
+ (1− q)λW2

]β2S
∗E∗

1

c2
.

The completes the proof.

5. A case study
5.1. Numerical results
Numerical experiments are carried out using MATLAB in this section. We estimate
the parameters of our model on the basis of the AIDS data in Gansu province of
China from 2004 to 2019 by carrying out the Markov Chain Monte Carlo (MCMC)
procedure. The actual infection is shown in Figure 5. In order to calculate the basic
reproduction number R0 of HIV/AIDS in Gansu Province and predict changes in the
next few years, it is essential to estimate the unknown parameters of the model (2.1).
The population size of the Gansu Province at the end of 2003 is 25.3719 million.
According to the relevant data of the Gansu Provincal Bureau of Statistics (2019),
we can get the birth rate in Gansu Province at the end of 2003 is 12.58 per thousand.
Therefore, we have the yearly birth population of Gansu Province is about 319179
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by calculation. We know that the average life expectancy of the population of
Gansu Province is 73. So, we conclude that the yearly natural mortality rate of the
population in Gansu Province is approximately µ = 1/73. We get the mortality
rate due to HIV is 0.318 year−1 [32]. We know that the incubation period of
HIV/AIDS is 10 − 15 years [3]. So, we assume that the average progress time of
latent individuals without treatment (1/γ1) is 11 years and with treatment (1/γ2)
is 15 years, then the yearly progress rate γ1 is 1/11 and γ2 is 1/15. We know that
the window period for HIV/AIDS is 14 − 21 days [3]. Therefore, we assume that
the average progress time of “window” period individuals without treatment (1/δ1)
is 18 days and with treatment (1/δ2) is 15 days, then the yearly progress rate δ1 is
365/18 and δ2 is 365/15. We choose a set of values of parameters in Table 2.

Table 2. The parameters description of the HIV/AIDS model.

Parameters Mean value Std 95% CI Reference
Λ 319179 - - [1]
δ1 365/18 - - Estimate
δ2 365/15 - - Estimate
γ1 1/11 - - Estimate
γ2 1/15 - - Estimate
α 0.318 - - [32]
µ 1/73 - - [16]
p 0.57802 0.2431 [0.1015, 1] MCMC
q 0.61761 0.21623 [0.1938, 1] MCMC
β1 1.0607×10−06 8.5234×10−07 [0, 0.2731×10−05] MCMC
β2 4.8333×10−08 1.3772×10−08 [0.2134×10−07, 0.7533×10−07] MCMC
ε1 21.721 13.4 [0, 47.9850] MCMC
ε2 0.08694 0.081435 [0, 0.2466] MCMC

According to the Table 2, infection rate of untreated window individuals to
susceptible persons is β1 = 1.0607×10−06. Infection rate of untreated latent indi-
viduals to susceptible individuals is β2 = 4.8333×10−08. We know that β1 is more
than β2. This suggests that people with HIV in the window period may be more
infectious than those with HIV in the latent. This is consistent with the results of
in [6, 31].

We give the number of samples and the frequency distribution of R0 by us-
ing Markov Chain Monte Carlo (MCMC) procedure. From Figure 6(b), we can
clearly know that the basic reproductive number R0 satisfies the normal distribu-
tion. Hence, we can obtain the confidence interval and mean value of R0. The basic
reproduction number R0 is estimated to be R0 = 2.1985 (95%CI: (1.3535-3.0435)),
as shown in Figure 6. This means that AIDS should be taken seriously in Gansu
Province.
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Figure 5. The actual number of people infected in Gansu Province from 2004 to 2019.
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Figure 6. (a) The number of Markov chain samples of R0. The curve represents the size of the
R0 value. (b) The frequency distribution of R0. The red curve is the probability density function
curve of R0.

5.2. Uncertainty and Sensitivity analysis

We study uncertainty and sensitivity analysis by using a Latin hypercube sampling
(LHS) method and evaluating the partial rank correlation coefficients (PRCCs)
[5, 21] in this section.

Figure 7 shows that the parameters have the positive influence on basic re-
production number R0 are the proportion of susceptible individuals infected by
untreated window period individuals (p), the proportion of susceptible individuals
infected by untreated latent individuals (q), the transmission coefficient from the
window period individuals without treatment (β1) and the transmission coefficient
from the latent individuals without treatment (β2). Lowering these parameters can
effectively reduce the number of infections. While parameters have a negative ef-
fect on basic reproduction number R0 are the treatment rate in untreated window
period individuals (ε1) and the treatment rate in untreated latent individuals (ε2).
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Figure 7. The Partial Rank Coefficients (PRCCs) of R0 in system (2.1).
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Figure 8. The variation trend between four parameters and the basic regeneration number R0.

According to the Figure 7, we already know the effect of the parameters q, β2,
ε1, ε2 on the base number of reproduction R0. However, Figure 8 demonstrates
that the changing trend of single parameter and R0 more clearly and intuitively.
In each subgraph, we change only one parameter and the other parameters are
shown in Table 2. It can be seen from Figure 8(a) that R0 is less than 1 only when
q < 0.44255, which means that the disease can be controlled only when the number
of infected people is less than 44255 per 100000 people. Figure 8(b) reveals that
the transmission rate of the patients with latent period must be controlled within
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3.4635e−08. This can effectively reduce the spread of the disease. In Figure 8(c)
and (d), with the gradual increase of ε1 and ε2, we can see that R0 is gradually
decreasing. Especially, the treatment rate in window period is more than 200 times
of that in latent period at R0 = 1, which indicates that it is necessary to increase the
treatment of infected individuals in window period in order to control the disease.

Figure 9 shows that the effects of several parameters over time on infected in-
dividuals. Obviously, there is a strong negative correlation between the treatment
rate of individuals in the untreated window individuals (ε1) and the infected indi-
viduals. This suggests that the Chinese Center for Disease Control and Prevention
should increase the treatment of diseases as early as possible to reduce the number
of infected people. This plays a key role in the prevention and control of disease.
The change of parameter ε2 over time from the initial insignificant correlation to a
moderate negative correlation indicates that the public health departments should
take some measures (for example, strengthen the publicity of AIDS knowledge) to
control treatment rate among untreated latent individuals. The parameters p and
β1 have a strong positive correlation throughout the period. So we know that when
p and β1 are smaller, the number of people infected by untreated window-period
individuals is smaller. Similarly, the parameters q and β2 have a strong positive
effect on infected individuals.
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Figure 9. The sensitivity of several parameters changes on infected individuals.

Figure 10 shows that infected individuals (i.e., A(t)) is sensitive to parameters
p (p−value = 1.4866×10−157), q (p−value = 0), β1 (p−value = 5.0138×10−260),
β2 (p− value = 4.9901× 10−288), ε1 (p− value = 0) and ε2 (p− value = 1.0006×
10−60).

5.3. Optimal control analysis
We will study the optimal solution of the our model by using the numerical method
[20] in this section.

For this simulation, the initial values of system (2.1) is assumed to be S(0) =
20000000, W1(0) = 10, W2(0) = 10, E1(0) = 100, E2(0) = 100 and A(0) = 11.
We also select the parameter values are as follow, Λ = 319179, p = 0.57802, q =
0.61761, β1 = 1.0607×10−06, β2 = 4.8333×10−08, δ1 = 365/18, δ2 = 365/15, ε1 =
21.721, ε2 = 0.08694, γ1 = 1/11, γ2 = 1/15, α = 0.318, µ = 1/73. The period
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Figure 10. P values of each parameter in the 12th year.

of the control is 16 years. In order to reveals the effect of the control strategies
considered in our paper, we will give the graphes of evolution with time in different
compartment populations under different controls.

Figure 11 shows that the number of people in different compartments when we
select the weights on objective function are c1 = 100; c2 = 1000 and the different
values of u1, u2. It can be seen from Figure 11(a) that different optimal control
strategies have little effect on the susceptibles. Figure 11(b)-(f) show that the
system with control is obviously better than the system without control. When
u1 = 0, u2 = 0, the number of people in different compartment is always the highest.
However, when u1 = 0.5, u2 = 0, the number of people decreased significantly. But,
single control u2, middle control and optimal control have almost the same effect
and they are better than single control u1, while u1 is better than no control.

Figure 12 shows that the influence of different weights in the objective function
on u1 and u2. We change the weights in the objective function from c1 = 100, c2 =
1000 to c1 = 1000, c2 = 100. In Figure 12(a), when we choose c1 = 100, and
c2 = 1000, the simulation shows that the control u1 decreases rapidly from 1 to 0.78,
then continues to decline slowly and finally tends to 0. The control u2 reaches a peak
value of about 0.54 at the time about 0.3 years, and then gradually decreases with
the increase of time. In Figure 12(b), when we choose c1 = 1000, and c2 = 100, the
control u1 decreases sharply from about 0.47 to 0 and is relatively stable approaching
to 0. The control u2 remains unchanging at about 1 and lasts for about 6.5 years.
Then it gradually decreases with the increase of time and finally reaches 0.
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Figure 11. Number of people in different compartment when we select the weights on objective
function are c1 = 100; c2 = 1000 and under different optimal control strategies, that is, (1) without
u1 = 0, u2 = 0;(2) single control u1 = 0.5, u2 = 0; (3) single control u1 = 0, u2 = 0.5; (4) middle
control u1 = u2 = 0.5; (5) optimal control u1 = u∗

1, u2 = u∗
2.
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Figure 12. The impact of different weight coefficients on optimal control u1, u2: (a)c1 = 100, c2 =
1000; (b)c1 = 1000, c2 = 100.

6. Discussion and conclusion
We formulate a novel HIV/AIDS model with different window periods and treat-
ment. The basic reproduction number R0 is obtained by using the next generation
matrix. Stability of the disease-free equilibrium and existence of the endemic equi-
librium is derived. We also study the emergence of forward branches by the theory
of central manifold. Using the Pontryagin¡¯s maximum principle, we get the exis-
tence of the optimal control pair and the mathematical expression of the optimal
control. The best-fit parameter values in our model are identified by the MCMC
algorithm on the basis of the AIDS data in Gansu province of China from 2004 to
2019. We also estimate that the basic reproduction number R0 is 2.1985 (95%CI:
(1.3535-3.0435)). Some numerical simulations and sensitivity analysis are carried
out to illustrate our main results. Our results show that treatment for individuals
who are in the stage of window period for AIDS is necessary and meaningful for the
control of HIV/AIDS.
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