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ASYMPTOTIC SPREADING IN A
COMPETITION SYSTEM WITH NONLOCAL

DISPERSAL∗
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Abstract This paper is concerned with the long time behavior of a com-
petition system with nonlocal dispersal. When the initial conditions of both
unknown functions satisfy proper decay behavior, we obtain the rough spread-
ing speed of one unknown function and show the upper and lower bounds of
spreading speed of another unknown function. Moreover, a numerical exam-
ple is given to illustrate our analytic results. Our conclusions imply that both
the linear part and nonlinear part in reaction terms may affect the spreading
speeds. Moreover, in such a competitive system with constant coefficients, we
may observe the propagation terraces in some component.
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1. Introduction
Competition phenomena are universal in real world, and many competition models
were proposed in population dynamics, see some examples in Cantrell and Cosner [6]
and Murray [19, 20]. When both spatial and temporal variables are involved in
some competition models, their traveling wave solutions have been widely studied
to model the competition-coexistence process, competition-exclusion process [7,14,
20, 22–24]. Moreover, the corresponding initial value problems were also applied
to explore the invasion process between the aboriginal and the invader [24], two
competition invaders [11,17].

In population dynamics, besides the Fick diffusion formulated by Laplacian oper-
ator [19, Section 11.1], there are also some other diffusion recipes to model different
questions. For example, the following nonlocal dispersal operator has been utilized
to model the long range effect and random walk of individuals [19,20]

ut(t, x) =

∫
RN

J(x− y)[u(t, y)− u(t, x)]dy, x ∈ RN , t > 0, N ∈ N,
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in which J is a probability function formulating spatial dispersal of individuals and
u is the unknown function. In particular, such a diffusion mode was also utilized in
many models arising from other fields [4, 10]. Recently, the nonlocal dispersal has
been considered in competition system of two species [2, 3, 9, 12,15,21,25,26]

∂u1(t, x)

∂t
= d1[J1 ∗ u1](t, x) + r1u1(t, x)[1− u1(t, x)− a1u2(t, x)],

∂u2(t, x)

∂t
= d2[J2 ∗ u2](t, x) + r2u2(t, x)[1− a2u1(t, x)− u2(t, x)],

(1.1)

in which u1, u2 are unknown functions denoting population densities in population
dynamics, x ∈ R, t > 0, all the parameters are positive and

[Ji ∗ ui](t, x) =
∫
R
Ji(x− y)[ui(t, y)− ui(t, x)]dy, i = 1, 2, t > 0, x ∈ R

with probability functions J1, J2. When the propagation dynamics is concerned,
different traveling wave solutions of (1.1) have been studied in Bao et al. [2, 3],
Fang and Zhao [9], Pan [21], Yu and Yuan [25], Zhang and Zhao [26]. Here, a
traveling wave solution of (1.1) is a special entire solution (u1(t, x), u2(t, x)) =
(ϕ(x+ct), ψ(x+ct)) satisfying proper boundary conditions, where (ϕ, ψ) is the wave
profile that propagates through the one-dimensional spatial domain at a constant
velocity c ∈ R.

Although the traveling wave solutions could formulate some important evolution
processes in population dynamics [14, 20, 22], they are special solutions that could
not formulate many phenomena. For example, when the coinvasion-coexistence
process is described by traveling wave solutions [21, 25], two species have the same
invasion speed. In the corresponding initial value problem of nonlocal dispersal
system (1.1), do two competitive species have different invasion speeds if two species
are invaders? For the classical diffusion-competition systems, the question has been
studied in [11, 17]. To further formulate the invasion process of two competitive
species in nonlocal dispersal model (1.1), we investigate the following initial value
problem

∂u1(t, x)

∂t
= d1[J1 ∗ u1](t, x) + r1u1(t, x)[1− u1(t, x)− a1u2(t, x)],

∂u2(t, x)

∂t
= d2[J2 ∗ u2](t, x) + r2u2(t, x)[1− a2u1(t, x)− u2(t, x)],

u1(0, x) = u1(x), u2(0, x) = u2(x), x ∈ R, t > 0,

(1.2)

in which u1(x), u2(x) are initial conditions that satisfy proper decay behavior clar-
ified later, and the probability functions satisfy the following assumptions:

(J) Ji is nonnegative, even, Lebesgue integrable such that
∫
R Ji(y)dy = 1, and for

some λ > 0,
∫
R Ji(y)e

λydy <∞, i = 1, 2.

When the invasion process of two competitors is involved similar to that in
[11,17], it is difficult to directly apply the propagation theory of monotone semiflows
[9,16,18,24]. In this paper, based on comparison principle appealing to competitive
systems, we try to construct some auxiliary equations and functions to estimate the
long time behavior of both unknown functions. Our results can show the nontrivial
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effect of a1, a2 that reflects the interspecific competition, and two competitors may
have distinct spreading speeds. Moreover, we also give some numerical examples to
illustrate our conclusions.

The rest of this paper is organized as follows. In Section 2, we present some
results on existence, invariance of initial value problem. The main conclusions are
proved by estimating the spreading speeds of two species in Section 3. We then give
some numerical simulations in Section 4.

2. Preliminaries
Let X be the Banach space of uniformly continuous and bounded functions from
R to R equipped with supremum norm, and u ∈ X+ implies that u ∈ X,u(x) ≥
0, x ∈ R. Moreover, if a < b, then

X[a,b] = {u : u ∈ X and a ≤ u(x) ≤ b, x ∈ R}.

Consider the following initial value problem
∂u(t, x)

∂t
= d[J ∗ u](t, x) + u(t, x) [r − u(t, x)] , x ∈ R, t > 0,

u(0, x) = χ(x) ∈ X+, x ∈ R,
(2.1)

where J satisfies (J), d > 0 and r > 0 are constants. Evidently, (2.1) satisfies
comparison principle even if r is replaced by a function. Also define

c′ = inf
λ>0

d
[∫

R J(y)e
λydy − 1

]
+ r

λ
, (2.2)

then c′ is bounded. By Jin and Zhao [13], we have the following conclusion.

Lemma 2.1. Assume that χ(x) ∈ X[0,r]. Then (2.1) admits a solution u(t, ·) ∈
X[0,r] for all t > 0. If χ(x) has nonempty support, then for any c < c′, we have

lim inf
t→∞

inf
|x|<ct

u(t, x) = lim sup
t→∞

sup
|x|<ct

u(t, x) = r.

If χ(x) has compact support, then

lim
t→∞

sup
|x|>ct

u(t, x) = 0 for any given c > c′.

Remark 2.1. If χ(x) has nonempty compact support in Lemma 2.1, then c′ is the
spreading speed of u(t, x) (see [1]).

Due to the competitive nonlinearity, we introduce the following definition of
upper and lower solutions and show the comparison principle of (1.2).

Definition 2.1. Assume that u1(t, x), u2(t, x), u1(t, x), u2(t, x) are nonnegative and
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continuous in x ∈ R, t ≥ 0. If they satisfy

∂u1(t, x)

∂t
≥ d1[J1 ∗ u1](t, x) + r1u1(t, x)[1− u1(t, x)− a1u2(t, x)],

∂u2(t, x)

∂t
≥ d2[J2 ∗ u2](t, x) + r2u2(t, x)[1− a2u1(t, x)− u2(t, x)],

∂u1(t, x)

∂t
≤ d1[J1 ∗ u1](t, x) + r1u1(t, x)[1− u1(t, x)− a1u2(t, x)],

∂u2(t, x)

∂t
≤ d2[J2 ∗ u2](t, x) + r2u2(t, x)[1− a2u1(t, x)− u2(t, x)],

(u1(0, x), u2(0, x)) ≤ (u1(x), u2(x)) ≤ (u1(0, x), u2(0, x))

(2.3)

for t ≥ 0, x ∈ R, then (u1(t, x), u2(t, x)), (u1(t, x), u2(t, x)) are a pair of upper and
lower solutions of (1.2).

Lemma 2.2. Assume that (u1(t, x), u2(t, x)), (u1(t, x), u2(t, x)), t ⩾ 0, x ∈ R are a
pair of upper and lower solutions of (1.2). Then the following conclusions hold.

(i) (u1(t, x), u2(t, x)) ⩾ (u1(t, x), u2(t, x)), t ≥ 0, x ∈ R.
(ii) (1.2) admits a unique solution satisfying

(u1(t, x), u2(t, x)) ⩾ (u1(t, x), u2(t, x)) ⩾ (u1(t, x), u2(t, x)), t > 0, x ∈ R.

3. Main Results
To state our main conclusion, we first introduce some notations. Define

Θi(λ, c) = di

(∫
R
Ji(y)e

λydy − 1

)
− cλ+ ri, i = 1, 2,

and

c∗i = inf
λ>0

di
[∫

R Ji(y)e
λydy − 1

]
+ ri

λ
, i = 1, 2.

Lemma 3.1. c∗1 > 0, c∗2 > 0 satisfy the following facts.

(B1) If c < c∗i , then for any λ > 0 such that
∫
R Ji(y)e

λydy <∞, Θi(λ, c) > 0, i =
1, 2.

(B2) If c = c∗i , then there exists λi > 0 such that Θi(λi, c) = 0, i = 1, 2, and for
any λ > 0 such that

∫
R Ji(y)e

λydy <∞, Θi(λ, c) ≥ 0, i = 1, 2.

In this section, we estimate the long time behavior of (1.2) when

u1(x), u2(x) ∈ X[0,1]

such that
0 < sup

x∈R

[
ui(x)e

λi|x|
]
<∞, i = 1, 2. (3.1)

Firstly, the global existence of solutions to (1.2) is evident since (1, 1), (0, 0) are a
pair of upper and lower solutions of (1.2), which was also investigated in [2, 15].
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Lemma 3.2. (1.2) admits a unique solution satisfying

(0, 0) ≤ (u1(t, x), u2(t, x)) ≤ (1, 1), t > 0, x ∈ R.

Moreover, we have

u1(t, x) > 0, u2(t, x) > 0, t > 0, x ∈ R.

By these thresholds, we formulate the outer expansion of both species as follows.

Theorem 3.1. For any given ϵ > 0, we have

lim
t→+∞

sup
|x|>(c∗1+ϵ)t

u1(x, t) = lim
t→+∞

sup
|x|>(c∗2+ϵ)t

u2(x, t) = 0.

Proof. By Lemma 2.1, we see that
∂u1(t, x)

∂t
≤ d1[J1 ∗ u1](t, x) + r1u1(t, x)[1− u1(t, x)], x ∈ R, t > 0,

and
∂u2(t, x)

∂t
≤ d2[J2 ∗ u2](t, x) + r2u2(t, x)[1− u2(t, x)], x ∈ R, t > 0,

then Lemma 2.1 implies what we wanted. In particular, we can verify that

ui(t, x) ≤ min{1, eλi(±x+c∗i t+t0)}, t ≥ 0, x ∈ R, i = 1, 2,

in which t0 > 0 such that

ui(0, x) ≤ min{1, eλi(±x+t0)}, x ∈ R, i = 1, 2.

The proof is complete.
Further define constant

c1 = inf
λ>0

d1
[∫

R J1(y)e
λydy − 1

]
+ r1(1− a1)

λ
.

We can present the inner expansion of u1 as follows.

Theorem 3.2. Assume that c1 > c∗2. For any given small ϵ > 0, we have

lim inf
t→+∞

inf
|x|<(c1−ϵ)t

u1(x, t) ⩾ 1− a1

and
lim inf
t→+∞

inf
|x|<(c∗1−ϵ)t

u1(x, t) > 0.

Proof. We show the result if

2ϵ < c1 − c∗2.

By Lemma 2.1, we have
∂u1(t, x)

∂t
≥ d1[J1 ∗ u1](t, x) + r1u1(1− a1 − u1(t, x))

for any (t, x) ∈ (0,+∞)× R, then

lim inf
t→+∞

inf
|x|<(c1−ϵ)t

u1(t, x) ⩾ 1− a1.

By Theorem 3.1, for any ϵ′ > 0, there exists T1 > 0 such that t ⩾ T1 implies
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(i) sup|x|≥(c∗2+ϵ)t u2(t, x) < ϵ′

(ii) sup|x|<(c1−ϵ)t (u2(t, x)/u1(t, x)) ≤ 2/(1− a1).

So we obtain
∂u1(t, x)

∂t
≥d1[J1∗u1](t, x)+r1u1(t, x)

(
1−a1ϵ′−

(
2

1−a1
+1

)
u1(t, x)

)
, x∈R, t≥T1.

Note that u1(T1, x) > 0, x ∈ R, Lemma 2.1 implies

lim inf
t→+∞

inf
|x|<(c−ϵ/2)t

u1(t, x) ≥
1− a1ϵ

′

2
1−a1

+ 1

with
c = inf

λ>0

d1
[∫

R J1(y)e
λydy − 1

]
+ r1(1− a1ϵ

′)

λ
.

Let ϵ′ > 0 be small, then c > c∗1 − ϵ/2 such that

lim inf
t→+∞

inf
|x|<(c∗1−ϵ)t

u1(t, x) > 0

holds. The proof is complete.
Theorems 3.1 and 3.2 imply that the interspecific competition does not change

some threshold of propagation dynamics under proper conditions. We now show
the effect of interspecific competition by investigating the property of u2. Let

c∗3 = inf
λ>0

d2
[∫

R J2(y)e
λydy − 1

]
+ r2(1− a2(1− a1))

λ

=
d2

[∫
R J2(y)e

λ3ydy − 1
]
+ r2(1− a2(1− a1))

λ3

and

c∗4 = inf
λ>0

d2
[∫

R J2(y)e
λydy − 1

]
+ r2(1− a2)

λ
.

Corollary 3.1. Assume that
∫
R J2(y)e

λydy is twice differentiable in λ > 0 if∫
R J2(y)e

λydy <∞ and a2(1− a1) > 0. Then λ2 > λ3.

Proof. By the definitions of c∗2, c∗3, we have

d2

∫
R
J2(y)ye

λ2ydy = c∗2, d2

∫
R
J2(y)ye

λ3ydy = c∗3.

By the smoothness, we see that d2
∫
R J2(y)ye

λydy is strictly increasing in λ, then
c∗2 > c∗3 implies that λ2 > λ3. The proof is complete.

Theorem 3.3. Assume that a2 > 0, c1 > c∗2. Then for any ϵ > 0, we have

lim inf
t→+∞

inf
|x|<(c∗4−ϵ)t

u2(t, x) ≥ 1− a2.

Moreover, if λ2 > λ3 such that

(λ2c
∗
2 − λ3c

∗
3)/(λ2 − λ3) < c1,

then for any ϵ > 0, lim sup
t→+∞

sup
|x|>(c∗3+ϵ)t

u2(t, x) = 0.
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Proof. Note that

∂u2(t, x)

∂t
≥ d2[J2 ∗ u2](t, x) + r2u2(t, x)[1− a2 − u2(t, x)], x ∈ R, t > 0,

then
lim inf
t→+∞

inf
|x|<(c∗4−ϵ)t

u2(t, x) ≥ 1− a2

is evident by Lemma 2.1.
We regard u1 as a given function, and estimate u2 by the known properties of

u1 (that is, we regard the equation of u2 as a nonautonomous equation). Now, we
construct a proper upper solution of u2 to show the conclusion. Let ε > 0 be small
such that

c∗3 + ϵ = inf
λ>0

d2
(∫

R J2(y)e
λydy − 1

)
+ r2(1− a2(1− a1 − ε))

λ

=
d2

(∫
R J2(y)e

λ′
3ydy − 1

)
+ r2(1− a2(1− a1 − ε))

λ′3
.

Then λ′3 → λ3 as ε, ϵ→ 0. Without loss of generality, we assume that ε, ϵ > 0 such
that λ2 > λ′3 and (λ2c

∗
2 − λ′3(c

∗
3 + ϵ))/(λ2 − λ′3) < c1.

Fix T1 > 0 such that

inf
|x|<(c1−ϵ)t

u1(t, x) ⩾ 1− a1 − ε, t > T1.

We now define

u2(t, x) = min
{
eλ2(±x+c∗2t)+T , eλ

′
3(±x+(c∗3+ϵ)t)+T , 1

}
,

then we obtain an upper solution of u2 if T is large. We now verify the upper
solution. Firstly, we consider the initial condition. Since λ2 > λ′3, we have

u2(t, x) = min
{
eλ2(−x+c∗2t)+T , eλ2(x+c∗2t)+T , 1

}
if |x| is large, so the initial condition is true by fixing initial time T > 0, which is
evident from the proof of Theorem 3.1. When u2(t, x) = eλ2(±x+c∗2t)+T or u2 = 1,
the verification is evident by Theorem 3.1. When u2(t, x) = eλ

′
3(±x+(c∗3+ϵ)t)+T , then

λ′3(−|x|+ (c∗3 + ϵ)t) < λ2(−|x|+ c∗2t)

or
|x| < λ2c

∗
2 − λ′3(c

∗
3 + ϵ)

λ2 − λ′3
t < c1t

implies |x| < (c1 − ϵ)t, so the inequality is true by the definitions of c∗3, λ′3 and the
property of u1(t, x) ≥ 1 − a1 − ε. We complete the proof by Lemma 2.1 and the
positivity of semigroup generated by u2,t = d2[J2 ∗ u2](t, x).

Remark 3.1. In Theorem 3.3, we show the effect of interspecific competition when
c1 > c∗2. It is a pity that we can not show further properties on the spreading speed
of u2 if it exists.
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4. Numerical Simulation
In this section, we give a numerical example to illustrate our results. Let u(t, x) be
a given function, we define

Lt
u(α) = inf{x : u(t, x) = α with any given t}, α ∈ R,

Lt
u(α) = sup{x < 0 : u(t, x) = α with any given t}, α ∈ R.

Evidently, they are level sets of u(t, x) and for proper α ∈ R, the movement speed
of Lt

u(α) could reflect the spreading speed of u. We consider the following initial
value problem

∂u1(t, x)

∂t
= 2[J ∗ u1](t, x) + 3u1(t, x)[1− u1(t, x)− au2(t, x)],

∂u2(t, x)

∂t
= [J ∗ u2](t, x) + u2(t, x)[1− bu1(t, x)− u2(t, x)],

u1(0, x) = u2(0, x) = cosx, x ∈ [−π/2, π/2],
u1(0, x) = u2(0, x) = 0, |x| > π/2,

(4.1)

in which (a, b) = (0, 0) or (a, b) = (0.1, 0.4) and

[J ∗ ui](t, x) =
1

2

∫ 1

−1

[ui(t, y)− ui(t, x)]dy, i = 1, 2.

If (a, b) = (0, 0), then (4.1) becomes two independent equations and the spreading
speeds of u1, u2 can be obtained by Lemma 2.1. That is, when the interspecific
competition vanishes, then u1 admits the rough spreading speed determined by the
following minimal value (see the left of Figure 1)

inf

{
c :

∫ 1

−1

eλydy − cλ+ 1 = 0 admits positive real root
}

≈ 2.296,

and u2 spreads at (see the right of Figure 1)

inf

{
c :

1

2

∫ 1

−1

eλydy − cλ = 0 admits positive real root
}

≈ 0.905.
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Figure 1. Simulation of eigenvalue equations.

Now, we show the spatial-temporal evolutionary of u1, u2 when a = b = 0 in
Figure 2, from which we see that each species has almost constant spreading speed.
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To further estimate the spreading speeds, we also show some level sets in Figure 3
and Table 1, from which we see that their spreading speeds are close to thresholds
determined by Lemma 2.1.

Figure 2. Spatial-temporal plots of u1, u2 if a = b = 0.
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Figure 3. Level sets of u1, u2 if a = b = 0.

Table 1. Approximate level sets of u1, u2 if a = b = 0.
Time 60 80 100 Average moving speed for t ∈ [60, 100]

Lt
u1
(0.1) -133.5861 -179.0399 -224.3937 2.270

Lt
u2
(0.1) -54.8296 -73.0311 -91.2826 0.911

We now consider the effect of interspecific competition when (a, b) = (0.1, 0.4),
which is shown in Figure 4.

Figure 4. Spatial-temporal plots of u1, u2 if a = 0.1, b = 0.4.
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We now estimate the invasion speed. According to our results in Section 3, u1
admits the rough spreading speed that is close to 2.296, and the expansion speed of
u2 is not larger than 0.703 (see the left of Figure 5) and is not less than 0.678 (see
the right of Figure 5), which are estimated by

inf

{
c :

1

2

∫ 1

−1

eλydy − cλ− 0.36 = 0 admits positive real root
}

≈ 0.703,

inf

{
c :

1

2

∫ 1

−1

eλydy − cλ− 0.40 = 0 admits positive real root
}

≈ 0.678.

Moreover, Figure 4 shows the role of interspecific comparing with Figure 2. To
further estimate these speeds, we also present the level sets in Figure 6 and Table 2,
from which we find the asymptotic spreading speeds that are close to our estimation.
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Figure 5. Simulation of eigenvalue equations.

Table 2. Approximate level sets of u1, u2 if a = 0.1, b = 0.4.
Time 60 80 100 Average moving speed for t ∈ [60, 100]

Lt
u1
(0.1) -133.8862 -178.9399 -224.1937 2.258

Lt
u1
(0.9) -40.7284 -54.0795 -67.6306 0.673

Lt
u2
(0.1) -41.1784 -54.7296 -68.1807 0.675
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Figure 6. Level sets of u1, u2 if a = 0.1, b = 0.4.

Before ending this paper, we make the following remark.



Asymptotic spreading in a competition system 1961

Remark 4.1. From Figure 4, we observed that there are some different moving
speeds of different level sets, which implies the existence of propagation terraces
[8]. In this paper, we obtained some upper and lower bounds of moving speeds of
propagation terraces, which implies that two functions may have different spreading
speeds and one speed equals to the minimal wave speed in [21, 25]. To further
estimate the different moving speeds of different terraces equals to show the precise
spreading speeds of two competitive species, which needs further investigation.
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