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GROUND STATE SIGN–CHANGING
SOLUTIONS FOR FRACTIONAL KIRCHHOFF

TYPE EQUATIONS IN R3

Guofeng Che1,† and Haibo Chen2

Abstract In this paper, we investigate the existence of ground state sign–
changing solutions for the following fractional Kirchhoff equation(

a+ b

∫
R3

| (−△)
α
2 u|2dx

)
(−△)αu+ V (x)u = K(x)f(u) in R3,

where α ∈ (0, 1), a, b are positive parameters, V (x), K(x) are nonnegative
continuous functions and f is a continuous function with quasicritical growth.
By establishing a new inequality, we prove the above system possesses a ground
state sign–changing solutions ub with precisely two nodal domains, and its
energy is strictly larger than twice that of the ground state solutions of Nehari–
type. Moreover, we obtain the convergence property of ub as the parameter
b → 0. Our conditions weaken the usual increasing condition on f(t)/|t|3.

Keywords Fractional Kirchhoff equations, ground state energy sign–changing
solutions, non–Nehari manifold method, variational methods.
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1. Introduction
In this paper, we consider the following fractional Kirchhoff equation:(

a+ b

∫
R3

|(−4)
α
2 u|2dx

)
(−4)

α
u+ V (x)u = K(x)f(u) in R3, (1.1)

where α ∈ (0, 1), a, b are positive parameters and V (x), K(x) are nonnegative
continuous functions.

Eq.(1.1) is a nonlocal problem because of the appearance of the terms (−4)αu
and

∫
R3 |(−4)αu|2dx, which provoke some mathematical difficulties. This also

makes the study of Eq.(1.1) particularly interesting.
When α = 1, Eq.(1.1) reduces to the well–known Kirchhoff equation:

−
(
a+ b

∫
R3

|∇u|2dx
)
4u+ V (x)u = K(x)f(u) in R3, (1.2)
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which was related to the stationary analogue of the following equation

ρ
∂2u

∂2t
−

(
P0

h
+

E

2L

∫ L

0

|∂u
∂x

|2dx

)
∂2u

∂2x
= 0, (1.3)

where L is the length of the string, h is the area of cross-section, E is the Young
modulus of the material, ρ is the mass density and P0 is the initial tension. Eq.(1.3)
was presented by Kirchhoff [25] as an extension of the classical D’Alembert wave
equation for free vibrations of clastic strings. Recently, many mathematicians have
devoted to the study of Eq.(1.2), especially on the existence of positive solutions,
ground state solutions, sign–changing solutions, multiple solutions and bound state
solutions, see [13–15, 18, 20, 21, 30, 35–37, 45, 46] and the references therein. For
instance, by using the Nehari manifold and the concentration compactness principle,
Lü [30] established the existence of ground state solutions for Eq.(1.2) with Vλ(x) =
1+λg(x) and f(x, u) =

(
1

|x|α ∗ |u|p
)
|u|p−2u. Moreover, the concentration behaviors

of these solutions were obtained as λ → ∞. By introducing a new constraint of the
Nehari manifold, Sun and Wu [37] obtained multiple positive solutions for Eq.(1.2)
when f(x, u) = f(x)|u|p−2u, 2 < p < 4, and V (x) satisfies the steep potential well
condition.

When b = 0, Eq.(1.1) reduces to the following fractional Schrödinger equation:

a(−∆)αu+ V (x)u = K(x)f(u) in R3, (1.4)

which was proposed by Laskin [27] in fractional quantum mechanics as a result of
extending the Feynman integrals from the brownian like to the Lévy like quantum
mechanicals paths. In the past several decades, with the aid of variational methods,
the existence and multiplicity of nontrivial solutions for the fractional Schrödinger
equation have been extensively investigated in the literature, see [4, 6, 9, 16, 17,
22, 24, 26, 31, 32, 40] and the references therein. In [4], when V (x),K(x) and f
satisfy some suitable conditions, Ambrosio et al. studied the existence of a sign–
changing solution for Eq.(1.4) with a = 1, R3 being replaced by RN , N > 2α.
Moreover, the existence of infinitely many weak solutions is obtained when f is
odd. In [31], using the Mountain Pass Theorem, Secchi proved that Eq.(1.4) had at
least a nontrivial solution when f has subcritical growth and satisfies the famous
Ambrosetti–Rabinowitz condition. By virtue of the harmonic extension techniques
of Caffarelli and Silvestre [12], Teng and He [40] proved the existence of ground
state solutions by using the concentration–compactness principle and methods of
Brezis and Nirenberg.

To the best of our knowledge, there are few papers in the literature that consid-
ered Eq.(1.1). In [7], Ambrosio and Isernia studied the following fractional Kirchhoff
equation: (

a+ b

∫
RN

|(−4)
α
2 u|2dx

)
(−4)αu+ V (x)u = f(u) in RN , (1.5)

where f is an odd subcritical nonlinearity satisfying the well–known Berestycki–
Lions assumptions [11]. By minimax arguments, the authors obtained a multiplic-
ity result in the radial space Hα

rad(RN ) when the parameter b is sufficiently small.
In [5], by using penalization techniques and Ljusternik–Schnirelmann theory, Am-
brosio and Isernia studied the existence and multiplicity of positive solutions for
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a class of more general fractional Kirchhoff equation. Furthermore, the relation
between the number of positive solutions with the topology of the set where the po-
tential attains its minimum was also obtained by them. Recently, when f satisfied
the Berestycki–Lions type conditions of critical type [47], Liu et al. [28] obtained
the existence of positive ground state solutions for Eq.(1.5) by using the mono-
tonicity trick and the profile decomposition. Moreover, the nonlinearity does not
satisfy the Ambrosetti–Rabinowitz type condition or monotonicity assumptions.
In [34], By using the Moser iteration scheme, Su and Chen considered the exis-
tence, nonexistence and multiplicity of nontrivial solution for Eq.(1.5) with critical
Hardy–Littlewood–Sobolev critical exponent. By using the Nehari manifold tech-
nique, Isernia [23] obtained the existence of the least energy solution for Eq.(1.5).
Moreover, the multiplicity result was also obtained by the author.

Inspired by the above works, more precisely by [28], our goal is to deal with
Eq.(1.1) and study the existence of ground state sign–changing solutions for Eq.(1.1)
without the variant Nehari–type condition. Moreover, we prove that the energy of
any sign–changing solutions for Eq.(1.1) is strictly larger than twice that of the
ground state solutions for Eq.(1.1) and obtain the convergence of the least sign–
changing solutions for Eq.(1.1) as b → 0.

We denote the fractional Sobolev space Hα(R3) with the product

(u, v) =

∫
R3

(
a(−4)

α
2 u(−4)

α
2 v + uv

)
dx

and the norm

||u|| =
(∫

R3

(
a|(−∆)

α
2 u|2 + u2

)
dx

) 1
2

.

Let Dα,2(R3) be the completion of C∞
0 (R3) with respect to the Gagliardo norm

||u||Dα,2 =

(∫
R3

|(−∆)
α
2 u|2dx

) 1
2

.

In this paper, we consider the space

E =

Hα
r (R3) = {u ∈ Hα(R3) : u(x) = u(|x|)}, if V (x) is a constant,{
u ∈ Dα,2(R3)|

∫
R3 V (x)u2dx < +∞

}
if V (x) is not a constant,

with the norm

‖u‖ =

(∫
R3

(a|(−∆)
α
2 u|2 + V (x)u2)dx

) 1
2

.

To avoid involving too much details for checking the compactness, for V (x) not
being a constant, similar to the arguments of [19,42], we may assume that:
(V ) V ∈ C(R3,R+) such that E ⊂ Hα(R3) and the embedding E → Lr(R3), r ∈
(2, 2∗α) is compact.

Define the energy functional Jb : E → R by

Jb(u) =
1

2
||u||2 + b

4

(∫
R3

|(−∆)
α
2 u|2dx

)2

−
∫
R3

K(x)F (u)dx. (1.6)
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Then Jb is well defined on E and Jb ∈ C1(E,R). Furthermore, for any u, v ∈ E,
we have

〈J ′
b(u), v〉 =

∫
R3

(
a(−∆)

α
2 u(−∆)

α
2 v + V (x)uv

)
dx−

∫
R3

K(x)f(u)vdx

+ b

∫
R3

|(−∆)
α
2 u|2dx

∫
R3

(−∆)
α
2 u(−∆)

α
2 vdx.

(1.7)

Hence, if u ∈ E is a critical point of Jb, then u is a solution of Eq.(1.1). Moreover,
if u ∈ E is a solution of Eq.(1.1) with u± 6= 0, then u is a sign–changing solution of
Eq.(1.1), where

u+(x) := max
{
u(x), 0

}
and u−(x) := min

{
u(x), 0

}
.

Here, a solution is called a ground state (or least energy) sign–changing solution
if it possesses the least energy among all sign–changing solutions. By a simple
calculation, (1.6) and (1.7) imply that

Jb(u) = Jb(u
+) + Jb(u

−) +
b

2

∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx, (1.8)

〈J ′
b(u), u

+〉 = 〈J ′
b(u

+), u+〉+ b

∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx, (1.9)

〈J ′
b(u), u

−〉 = 〈J ′
b(u

−), u−〉+ b

∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx. (1.10)

When b = 0, Eq.(1.1) does not depend on the nonlocal term
∫
R3 |(−4)

α
2 u|2dx

any more, i.e., it reduces to Eq.(1.4), which corresponds to the energy functional
J0 : E → R by

J0(u) =
1

2
||u||2 −

∫
R3

K(x)F (u)dx. (1.11)

Analogously, J0 is well defined and J0 ∈ C1(E,R). Furthermore

〈J ′
0(u), v〉 = a

∫
R3

(−∆)
α
2 u(−∆)

α
2 vdx−

∫
R3

K(x)f(u)vdx. (1.12)

From (1.8)-(1.10), it is easy to see that there are some essential differences in study-
ing the sign-changing solutions for Eq.(1.1) between b > 0 and b = 0, the existence
of sign–changing solutions for Eq.(1.4) has been extensively studied, for instance,
see [29,41,43] and the references therein. However, the methods of looking for sign-
changing solutions heavily rely on the decompositions of (1.8)-(1.10) with b = 0,
which seems to be not applicable to Eq.(1.1). Motivated by the above works, we
will consider the following minimization problems:

mb = inf
Mb

Jb(u) and m0 = inf
M0

J0(u), (1.13)

where
Mb =

{
u ∈ E : u± 6= 0, 〈J ′

b(u), u
+〉 = 〈J ′

b(u), u
−〉 = 0

}
, (1.14)

and
M0 =

{
u ∈ E : u± 6= 0, 〈J ′

0(u), u
+〉 = 〈J ′

0(u), u
−〉 = 0

}
, (1.15)
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whose minimizers are the sign–changing solutions for Eq.(1.1) and Eq.(1.4), respec-
tively.

In order to show the energy of any sign–changing solutions of Eq.(1.1) is larger
than twice that of the ground state solutions of Eq.(1.1) and obtain the convergence
of least energy sign–changing solution for Eq.(1.1) as b → 0. As usual, we first get
the ground state solutions of Nehari type to Eq.(1.1) and Eq.(1.4) by seeking the
minimizers of corresponding energy functionals Jb and J0 on the following Nehari
manifolds:

Nb :=
{
u ∈ E \ {0}, 〈J ′

b(u), u〉 = 0
}
, (1.16)

and
N0 :=

{
u ∈ E \ {0}, 〈J ′

0(u), u〉 = 0
}
. (1.17)

Furthermore, we suppose more general conditions involving the functions V (x) and
K(x), such that (V K) in [3, 8] can be seen as a particular case. Throughout this
paper, we say that (V,K) ∈ K if the following conditions hold:
(H1) V (x), K(x) > 0 for all x ∈ R3 and K ∈ C(R3,R) ∩ L∞(R3,R);
(H2) if {An} ⊂ R3 is a sequence of Borel sets such that the Lebesgue measure of
An is less than R, for all n and some R > 0, then

lim
r→∞

∫
An

∩
Bc

r(0)

K(x)dx = 0, uniformly in n ∈ N;

(H3)
K
V ∈ L∞(R3);

or
(H4) there exists p ∈ (2, 2∗α) such that

K(x)

V (x)
2∗α−p

2∗α−2

→ 0 as |x| → ∞.

This kind of conditions were firstly introduced by Alves and Souto [1] to get a
positive ground state solution of (1.4) with α = 1. Similar to Proposition 2.1 in [1],
we can prove the space X given by

X =

{
u ∈ Dα,2(R3) :

∫
R3

V (x)u2dx < ∞
}

with the norm

‖u‖ =

(∫
R3

(|(−4)
α
2 u|2 + V (x)u2)dx

) 1
2

is compactly embedded into the weighted Lebesgue space

Lr
K(R3) =

{
u : R3 → R : u is measurable and

∫
R3

K(x)|u|rdx < ∞
}

for some r ∈ (2, 2∗α). Moreover, we also have Mb 6= ∅.
To state our results, we introduce the following conditions:

(K) K(x) > 0 for all x ∈ R3 and K ∈ C(R3,R) ∩ L∞(R3,R);
(F1) lim

t→0

f(t)
t = 0;

(F2) f has a “quasicritical growth”, that is, lim
|t|→∞

f(t)

t2
∗
α−1 = 0;
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(F3) lim
|t|→∞

f(t)
t3 = ∞;

(F4) there exists a θ0 ∈ (0, 1) such that for any x ∈ R3, t > 0 and τ 6= 0,

K(x)

[
f(τ)

τ3
− f(tτ)

(tτ)3

]
sign(1− t) + θ0V (x)

|1− t2|
(tτ)2

≥ 0.

Now, we are ready to state our main results.

Theorem 1.1. Suppose that conditions (V ), (K) and (F1) − (F4) hold. Then
Eq.(1.1) has a sign–changing solution ub ∈ Mb such that Jb(ub) = inf

Mb

Jb(u) > 0,
which has precisely two nodal domains.

Theorem 1.2. Suppose that conditions (V ), (K) and (F1) − (F4) hold. Then
Eq.(1.1) has a sign–changing solution ū ∈ Nb such that Jb(ū) = inf

Nb

Jb(u) > 0.
Furthermore, mb > 2cb, where cb = inf

u∈Nb

Jb(u).

Theorem 1.3. Suppose that conditions (V ), (K) and (F1) − (F4) hold. Then
Eq.(1.4) has a sign–changing solution v0 ∈ M0 such that J0(v0) = inf

N0

J0 > 0,
which has precisely two nodal domains. Moreover, for any sequence {bn} with
bn → 0 as n → ∞, there exists a subsequence which we label in the same way such
that ubn → u0 in E, where u0 ∈ M0 is a sign–changing solution of Eq.(1.6) with
J0(u0) = inf

M0

J0(u).

Corollary 1.1. Suppose that (V,K) ∈ K and f verifies (F1)− (F4). Then all the
conclusions in Theorems 1.1, 1.2 and 1.3 hold in X.

Remark 1.1. It is worthy stressing that the condition (F4) is weaker than (F ′
4) as

follows:
(F ′

4) The map t 7→ f(t)
|t|3 is nondecreasing for all t ∈ R \ {0}.

In fact, it is not difficult to find some functions satisfying assumptions (F1)−(F4),
but not (F ′

4). For instance, let

f(t) =

 |t|3t, |t| ≤ ρ,

α|t|3t+ 1
3M t, |t| > ρ,

where M > 0, α, ρ > 0. We can easily verify that f satisfies (F1) − (F4), but not
(F ′

4).

Remark 1.2. By using Non–Nehari manifold method introduced in [38] to seek
ground state solutions for Eq.(1.1), we can prove the existence of a sign–changing
solution for Eq.(1.1) directly instead of using Proposition 3.1 in [10].

Remark 1.3. We also give an affirmative answer to an open question that the
energy of any sign–changing solutions of Eq.(1.1) is strictly larger than twice that
of the ground state solutions of Eq.(1.1).

Notation 1.1. Throughout this paper, C denotes various positive generic con-
stants, which may vary from line to line. 2∗α = 6

3−2α is the critical Sobolev expo-
nent. Also if we take a subsequence of a sequence {un}, we shall denote it again
{un}.
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The remainder of this paper is as follows. In Section 2, some preliminary lemmas
and corollaries are presented. In Section 3, we prove the existence of a ground state
sign–changing solution with precisely two nodal domains. In Section 4, we first
investigate the ground state solutions of Nehari type and then prove Theorem 1.2.
The proofs of Theorem 1.3 and Corlllary 1.1 are given in Sects. 5 and 6, respectively.

2. Variational setting and preliminaries

In this section, we give some preliminary lemmas and corollaries, which will play
crucial roles in proving our results.
Lemma 2.1. Assume conditions (V ), (K) and (F1)− (F4) hold. Then

Jb(u) ≥ Jb(su
+ + tu−) +

1− s4

4
〈J ′

b(u), u
+〉+ 1− t4

4
〈J ′

b(u), u
−〉

+
(1− θ0)(1− s2)2

4
‖u+‖2 + (1− θ0)(1− t2)2

4
‖u−‖2

+
b(s2 − t2)2

4

∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx,

(2.1)

for any u = u+ + u− ∈ E, s, t ≥ 0.

Proof. For any x ∈ R3, t ≥ 0, τ ∈ R, it follows from (F4) that

K(x)
[1− t4

4
τf(τ) + F (tτ)− F (τ)

]
+

θ0V (x)

4
(1− t2)2τ2

=

∫ 1

t

[f(τ)
τ3

− f(tτ)

(tτ)3
+

θ0V (x)(1− s2)

(sτ)2
]
s3τ4ds ≥ 0.

(2.2)

It follows from (1.6), (1.7) and (2.2) that

Jb(u)− Jb(su
+ + tu−)

=
1

2
(‖u‖2 − ‖su+ + tu−‖2) + b

4

( ∫
R3

|(−4)
α
2 u|2dx

)2
+

b

4

( ∫
R3

|(−4)
α
2 (su+ + tu−)|2dx

)2
−
∫
R3

K(x)[F (su+ + tu−)− F (u)]dx

=
1− s4

4

(
‖u+‖2 + b

( ∫
R3

|(−4)
α
2 u+|2dx

)2)
+

1− t4

4

(
‖u−‖2 + b

( ∫
R3

|(−4)
α
2 u−|2dx

)2)
+

(1− s2)2

4
‖u+‖2 + (1− t2)2

4
‖u−‖2

+
b(1− s2t2)

2

∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx

+

∫
R3

K(x)[F (su+) + F (tu−)− F (u+)− F (u−)]dx
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=
1− s4

4
〈J ′

b(u), u
+〉+ 1− t4

4
〈J ′

b(u), u
−〉+ (1− s2)2

4
‖u+‖2

+
(1− t2)2

4
‖u−‖2 + b(s2 − t2)2

4

∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx

+

∫
R3

K(x)[
1− s4

4
f(u+)u+ + F (su+)− F (u+)]dx

+

∫
R3

K(x)[
1− t4

4
f(u−)u− + F (tu−)− F (u−)]dx

≥ 1− s4

4
〈J ′

b(u), u
+〉+ 1− t4

4
〈J ′

b(u), u
−〉+ (1− θ0)(1− s2)2

4
‖u+‖2

+
(1− θ0)(1− t2)2

4
‖u−‖2 + b(s2 − t2)2

4

∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx

+

∫
R3

{
K(x)[

1− s4

4
f(u+)u+ + F (su+)− F (u+)] +

θ0V (x)

4
(1− s2)2|u+|2

}
dx

+

∫
R3

{
K(x)[

1− t4

4
f(u−)u− + F (su−)− F (u−)] +

θ0V (x)

4
(1− t2)2|u−|2

}
dx

≥ 1− s4

4
〈J ′

b(u), u
+〉+ 1− t4

4
〈J ′

b(u), u
−〉+ (1− θ0)(1− s2)2

4
‖u+‖2

+
(1− θ0)(1− t2)2

4
‖u−‖2 + b(s2 − t2)2

4

∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx,

for any s, t ≥ 0. This shows that (2.1) holds.

Corollary 2.1. Assume (V ), (K) and (F1) − (F4) hold. If u = u+ + u− ∈ Mb,
then

Jb(u) ≥ Jb(su
+ + tu−) +

(1− θ0)(1− s2)2

4
‖u+‖2 + (1− θ0)(1− t2)2

4
‖u−‖2

+
b(s2 − t2)2

4

∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx, ∀ s, t ≥ 0.

(2.3)

Corollary 2.2. Assume (V ), (K) and (F1) − (F4) hold. If u = u+ + u− ∈ Mb,
then

Jb(u) = max
s,t≥0

Jb(su
+ + tu−). (2.4)

Lemma 2.2. Assume (V ), (K) and (F1) − (F4) hold. If u = u+ + u− ∈ E
with u± 6= 0, then there exists a unique pair (su, tu) of positive numbers such that
suu

+ + tuu
− ∈ Mb.

Proof. For any u ∈ E with u± 6= 0, we first adopt the idea used in [2] to prove
the existence of (su, tu). Let

g1(s, t) = s2‖u+‖2 + bs4(

∫
R3

|(−4)
α
2 u+|2dx)2 −

∫
R3

K(x)f(su+)su+dx

+ bs2t2
∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx

(2.5)
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and

g2(s, t) = t2‖u−‖2 + bt4(

∫
R3

|(−4)
α
2 u−|2dx)2 −

∫
R3

K(x)f(tu−)tu−dx

+ bs2t2
∫
R3

|(−4)
α
2 u+|2dx

∫
R3

|(−4)
α
2 u−|2dx.

(2.6)

For any fixed t > 0, using (F1) and (F3), it is easy to verify that g1(0, t) = 0,
g1(s, t) > 0 for s > 0 small and g1(s, t) < 0 for s > 0 large. From the continuity of
g1(s, t) on s, there exists a st > 0 such that g1(st, t) = 0 for t ≥ 0. We claim that
st > 0 is unique for any t ≥ 0. In fact, for any fixed t0 ≥ 0, let s̃1, s̃2 > 0 such that

g1(s̃1, t0) = g2(s̃2, t0) = 0. (2.7)

Then it follows from (1.7), (2.5) and (2.7) that

〈J ′
b(s̃1u

+ + t0u
−), s̃1u

+〉 = 〈J ′
b(s̃2u

+ + t0u
−), s̃2u

+〉 = 0. (2.8)

Then it follows from (2.2) and (2.8) that

Jb(s̃1u
+ + t0u

−) ≥ Jb(s̃2u
+ + t0u

−) +
s̃41 − s̃42
4s̃41

〈J ′
b(s̃1u

+ + t0u
−), s̃1u

+〉

+
(1− θ0)(s̃

2
1 − s̃22)

2

4s̃21
‖u+‖2

= Jb(s̃2u
+ + t0u

−) +
(1− θ0)(s̃

2
1 − s̃22)

2

4s̃21
‖u+‖2

(2.9)

and

Jb(s̃2u
+ + t0u

−) ≥ Jb(s̃2u
+ + t0u

−) +
s̃42 − s̃41
4s̃42

〈J ′
b(s̃2u

+ + t0u
−), s̃2u

+〉

+
(1− θ0)(s̃

2
2 − s̃21)

2

4s̃22
‖u+‖2

= Jb(s̃2u
+ + t0u

−) +
(1− θ0)(s̃

2
2 − s̃21)

2

4s̃22
‖u+‖2.

(2.10)

(2.9) and (2.10) imply that s̃1 = s̃2. Hence, st = s̃(t) > 0 is unique for all t ≥ 0.
i.e., g1(s, t) = 0 defines an implicit function s = s̃(t) for all t ≥ 0. Since s0 = s̃(0)
and for every t ≥ 0, g1(s, t) > 0 for small s > 0 and g1(s, t) < 0 for large s > 0.
Then one has

g1(st, t) = 0, ∀ t ≥ 0; st > t for small t ≥ 0, st < t for large t ≥ 0. (2.11)

Similarly, g2(s, t) = 0 defines an implicit function t = ts = t̃(s) such that

g2(s, ts) = 0, ∀ s ≥ 0; ts > s for small s ≥ 0, ts < s for large s ≥ 0. (2.12)

(2.11) and (2.12) imply that the planar curves s = s̃(t) and t = t̃(s) intersect at
some point (su, tu) with su, tu > 0. Hence, suu+ + tuu

− ∈ Mb.
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Next, we prove the uniqueness. Choosing (s1, t1) and (s2, t2) such that siu
+ +

tiu
− ∈ Mb, i = 1, 2. Then it follows from Corollary 2.1 that

Jb(s̃1u
+ + t1u

−) ≥ Jb(s̃2u
+ + t2u

−) +
(1− θ0)(s̃

2
1 − s̃22)

2

4s̃21
‖u+‖2

+
(1− θ0)(t̃

2
1 − t̃22)

2

4t̃21
‖u−‖2

(2.13)

and

Jb(s̃2u
+ + t2u

−) ≥ Jb(s̃1u
+ + t1u

−) +
(1− θ0)(s̃

2
2 − s̃21)

2

4s̃22
‖u+‖2

+
(1− θ0)(t̃

2
1 − t̃22)

2

4t̃22
‖u−‖2.

(2.14)

Both (2.13) and (2.14) imply that (s1, t1) = (s2, t2). The proof is complete.

Lemma 2.3. Assume (V ), (K) and (F1)− (F4) hold. Then
inf
Mb

Jb(u) = mb = inf
u∈E,u± ̸=0

max
s,t≥0

Jb(su
+ + tu−).

Proof. Both Corollary 2.2 and Lemma 2.2 imply the above Lemma.

Lemma 2.4. Assume (V ), (K) and (F1)− (F4) hold. Then mb > 0 is achieved.

Proof. Similar as Lemma 2.7 in [39], it follows from (F1)− (F3) that there exists
a constant β > 0 such that ‖u±‖ > β for all u ∈ Mb. Let {un} ⊂ Mb be such that
Jb(un) → mb. Observe that (2.2) with t = 0 yields

K(x)[
1

4
f(τ)τ − F (τ)] +

θ0V (x)

4
τ2 ≥ 0, ∀ x ∈ R3, τ ∈ R. (2.15)

Then it follows from (1.6), (1.7) and (2.15) that for large n ∈ N , we derive

mb + 1 ≥ J ′
b(un)−

1

4
〈J ′

b(un), un〉

≥ 1− θ0
4

‖un‖2 +
∫
R3

{K(x)[
1

4
f(un)un − F (un)] +

θ0V (x)

4
|un|2}dx

≥ 1− θ0
4

‖un‖2,

(2.16)

which implies that {un} is bounded in E. Then there exists ub ∈ E such that
u±
n ⇀ u±

b in E. Thus, from (V ), (K), (F1) − (F4), (2.2) and Lemma A.1 in [44],
we obtain

0 < β ≤ ‖u±
n ‖2 + b

( ∫
R3

|(−4)
α
2 un|2dx

)2
=

∫
R3

K(x)f(un)undx =

∫
R3

K(x)f(u)udx+ o(1),

(2.17)

showing that u±
b 6= 0. Therefore, by (2.7), Fatou’s Lemma and the weak semicon-

tinuity of the norm, we derive

‖u±
b ‖

2 + b
( ∫

R3

|(−4)
α
2 ub|2dx

)2
= lim inf

n→∞

[
‖u±

n ‖2 + b
( ∫

R3

|(−4)
α
2 un|2dx

)2]
=

∫
R3

K(x)f(u)udx,

(2.18)
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showing that

〈J ′
b(ub), u

±
b 〉 ≤ 0. (2.19)

Then by (1.6), (1.7), (2.1), (2.15), (2.19), Fatou’s Lemma, the weak semicontinuity
and Lemma 2.3, we derive

mb = lim
n→∞

[
J ′
b(un)−

1

4
〈J ′

b(un), un〉
]

= lim
n→∞

{
1

4
‖un‖2 +

∫
R3

K(x)[
1

4
f(un)un − F (un)]dx

}
≥ 1

4
lim inf
n→∞

[
a

∫
R3

|(−∆)
α
2 un|2dx+ (1− θ0)

∫
R3

V (x)|un|2dx
]

+ lim
n→∞

∫
R3

{
K(x)

[1
4
f(un)un − F (un)]dx+

θ0
4
V (x)|un|2

}
dx

≥ 1

4
lim inf
n→∞

[
a

∫
R3

|(−∆)
α
2 ub|2dx+ (1− θ0)

∫
R3

V (x)|ub|2dx
]

+ lim
n→∞

∫
R3

{
K(x)

[1
4
f(ub)ub − F (ub)]dx+

θ0
4
V (x)|ub|2

}
dx

=
1

4
‖ub‖2 +

∫
R3

K(x)
[1
4
f(ub)ub − F (ub)]dx

= Jb(ub)−
1

4
〈J ′

b(ub), ub〉

≥ sup
s,t≥0

[
Jb(su

+
b + tu−

b ) +
1− s4

4
〈J ′

b(ub), u
+
b 〉+

1− t4

4
〈J ′

b(ub), u
−
b 〉
]

− 1

4
〈J ′

b(ub), ub〉

≥ sup
s,t≥0

Jb(su
+
b + tu−

b )

≥ mb,

(2.20)

which implies that

lim
n→∞

∫
R3

|(−∆)
α
2 un|2dx =

∫
R3

|(−∆)
α
2 ub|2dx, lim

n→∞

∫
R3

V (x)|un|2dx

=

∫
R3

V (x)|ub|2dx.
(2.21)

Hence, un → ub in E, then Jb(ub) = mb and ub ∈ Mb.

Lemma 2.5. Assume (V ), (K) and (F1)−(F4) hold. If u0 ∈ Mb and Jb(u0) = mb,
then u0 is a critical point of Jb.

Proof. Assume that u0 = u+
0 + u−

0 ∈ Mb, J ′
b(u0) 6= 0. Then there exist ω, δ > 0

such that

u ∈ E, ‖u− u0‖ ≤ 3δ ⇒ ‖J ′
b(u)‖ ≥ ω. (2.22)
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Then for all s, t ≥ 0, it follows from Corollary 2.1 that

Jb(su
+ + tu−) ≤ Jb(u)−

(1− θ0)(1− s2)2

4
‖u+‖2 − (1− θ0)(1− t2)2

4
‖u−‖2

= mb −
(1− θ0)(1− s2)2

4
‖u+‖2 − (1− θ0)(1− t2)2

4
‖u−‖2.

(2.23)
Let D = (0.5, 1.5)× (0.5, 1.5), Then by (2.23), we obtain

κ := max
∂D

Jb(su
+
0 + tu−

0 ) < mb. (2.24)

For ε := min {(mb − κ)/3, δω/8} and S := B(u0, δ), Lemma 2.3 in [44] yields a
deformation η ∈ C([0, 1]× E,E) such that

(i) η(1, u) = u if u 6∈ J−
b ([mb − 2ε,mb + 2ε]) ∩ S2δ.

(ii) η(1, Jmb+ε
b ∩B(u0, δ)) ⊂ Jmb−ε

b .
(iii)Jb(η(1, u)) ≤ Jb(u), ∀ u ∈ E.

From Corollary 2.2, Jb(su+
0 + tu−

0 ) ≤ Jb(u0) = mb for all s, t ≥ 0. Then it follows
from (ii) that

Jb(η(1, su
+
0 + tu−

0 )) ≤ mb − ε, ∀ s, t ≥ 0, |s− 1|2 + |t− 1|2 < δ2/‖u0‖2. (2.25)

On the other hand, by (iii) and (2.23), for any s, t ≥ 0, |s−1|2+|t−1|2 ≥ δ2/‖u0‖2,
there holds

Jb(η(1, su
+
0 + tu−

0 )) ≤ Jb(su
+
0 + tu−

0 )

= mb −
(1− θ0)(1− s2)2

4
‖u+‖2 − (1− θ0)(1− t2)2

4
‖u−‖2

≤ mb −
(1− θ0)δ

2

8‖u0‖2
min{‖u+

0 ‖2, ‖u
−
0 ‖2}.

(2.26)
Then it follows from (2.25) and (2.26) that

max
D̄

Jb(η(1, su
+
0 + tu−

0 )) < mb. (2.27)

Define g(s, t) := su+
0 +tu−

0 . By a similar argument as [33], we get η(1, g(D))∩Mb 6=
∅, which contradicts to the definition of mb. The proof is complete.

3. Sign–changing solutions

Proof of Theorem 1.1. It follows from Lemma 2.4 and Lemma 2.5 that there
exists a ub ∈ Mb such that Jb(ub) = mb and J ′

b(ub) = 0. Thus, ub is a sign–changing
solution of (1.1).

Next, we prove that ub has exactly two nodal domains. Let ub = u1 + u2 + u3,
where

u1 ≥ 0, u2 ≤ 0, Ω1 ∩ Ω2 = ∅, u1|Ω2∪Ω3
= u2|Ω1∪Ω3

= u3|Ω1∪Ω2
= 0, (3.1)

Ω1={x ∈ R3 : u1(x)>0}, Ω2={x ∈ R3 : u2(x)<0}, Ω3=R3 \ {(Ω1 ∪ Ω2)}, (3.2)

and Ω1,Ω2 are connected open subsets of R3.



Solutions for fractional Kirchhoff type equations 2029

Setting v = u1 + u2, we see that v+ = u1 and v− = u2, i.e. v± 6= 0. Then it
follows from (1.6), (1.7), (2.1), (2.15) and (3.1) that

mb = Jb(ub) = Jb(ub)−
1

4
〈J ′

b(ub), ub〉

= Jb(v) + Jb(u3) +
b

2

∫
R3

|(−4)
α
2 v|2dx

∫
R3

|(−4)
α
2 u3|2dx

− 1

4

[
〈J ′

b(v), v〉+ 〈J ′
b(u3), u3〉+ 2b

∫
R3

|(−4)
α
2 v|2dx

∫
R3

|(−4)
α
2 u3|2dx

]
≥ sup

s,t≥0

[
Jb(sv

+ + tv−) +
1− s4

4
〈J ′

b(v), v
+〉+ 1− t4

4
〈J ′

b(v), v
−〉
]

− 1

4
〈J ′

b(v), v〉+ Jb(u3)−
1

4
〈J ′

b(u3), u3〉

≥ sup
s,t≥0

[
Jb(sv

+ + tv−) +
b

4

∫
R3

|(−4)
α
2 v+|2dx

∫
R3

|(−4)
α
2 u3|2dx

+
b

4

∫
R3

|(−4)
α
2 v−|2dx

∫
R3

|(−4)
α
2 u3|2dx

]
+

1

4
‖u3‖2

+

∫
R3

K(x)
[1
4
f(u3)u3 − F (u3)

]
dx

≥ sup
s,t≥0

Jb(sv
+ + tv−) +

1− θ0
4

‖u3‖2

≥ mb +
1− θ0

4
‖u3‖2,

which implies that u3 = 0. Hence, ub has exactly two nodal domains. The proof is
complete. □

4. Ground state solutions of Nehari type

In this section, we will use Non–Nehari manifold’s method to seek the ground
state solutions of Nehari type for Eq.(1.1). First, we can prove the following lemmas
and corollaries as in Section 2.

Lemma 4.1. Assume (V ), (K) and (F1)− (F4) hold. Then

Jb(u) ≥ Jb(tu) +
1− t4

4
〈J ′

b(u), u〉+
(1− θ0)(1− t2)2

4
‖u‖2 (4.1)

for any u ∈ E, t ≥ 0.

Corollary 4.1. Assume (V ), (K) and (F1)− (F4) hold. Then for u ∈ Nb,

Jb(u) ≥ Jb(tu) +
(1− θ0)(1− t2)2

4
‖u‖2, ∀ u ∈ E, t ≥ 0. (4.2)

Corollary 4.2. Assume (V ), (K) and (F1)− (F4) hold. Then for u ∈ Nb,

Jb(u) = max
t≥0

Jb(tu). (4.3)
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Lemma 4.2. Assume (V ), (K) and (F1) − (F4) hold. If u ∈ E \ {0}, then there
exists a unique pair tu > 0 such that tuu ∈ Nb.

Lemma 4.3. Assume (V ), (K) and (F1)− (F4) hold. Then

inf
Nb

Jb(u) = cb = inf
u∈E,u± ̸=0

max
t≥0

Jb(tu).

Lemma 4.4. Assume (V ), (K) and (F1)− (F4) hold. Then there exist a constant
c∗ ∈ (0, cb] and a sequence {un} ⊂ E satisfying

Jb(un) → c∗, (1 + ‖un‖)‖J ′
b(un)‖ → 0. (4.4)

Proof. It follows from (2.1), (F1) and (F2) that there exist δ0 > 0 and ρ0 > 0
such that

Jb(u) ≥ ρ0, ‖u‖ = δ0. (4.5)

Choosing vk ∈ Nb such that

cb ≤ Jb(vk) < cb +
1

k
, k ∈ N. (4.6)

Since Jb(0) = 0 and Jb(tvk) < 0 for large t > 0, then it follows from Mountain Pass
lemma that there exists a sequence {uk,n}n∈N ⊂ E such that

Jb(uk,n) → ck, (1 + ‖uk,n‖)‖J ′
b(uk,n)‖ → 0, k ∈ N, (4.7)

where ck ∈ [ρ0, sup
t≥0

Jb(tvk)]. In view of Corollary 4.1, we derive

Jb(vk) ≥ Jb(tvk), ∀ t ≥ 0,

showing that Jb(vk) = sup
t≥0

Jb(tvk). Therefore, it follows from (4.5) and (4.7) that

Jb(uk,n) → ck ∈ [ρ0, cb +
1

k
], (1 + ‖uk,n‖)‖J ′

b(uk,n)‖ → 0, k ∈ N. (4.8)

Now, we can choose a sequence {nk} ⊂ N such that

Jb(uk,nk
) ∈ [ρ0, cb +

1

k
], (1 + ‖uk,nk

‖)‖J ′
b(uk,nk

)‖ <
1

k
, k ∈ N. (4.9)

Let uk = uk,nk
, k ∈ N. Then passing to a subsequence if necessary, we obtain

Jb(un) → c∗ ∈ [ρ0, cb], (1 + ‖un‖)‖J ′
b(un)‖ → 0.

The proof is complete.
Proof of Theorem 1.2. It follows from Lemma 4.4 that there exists a sequence
{un} ⊂ E satisfying (4.4), showing that

Jb(un) → c∗, 〈J ′
b(un), un〉 → 0. (4.10)

For large n ∈ N, it follows from (1.6), (1.7), (2.15) and (4.10) that

c∗ + 1 ≥ Jb(un)− 〈J ′
b(un, un〉 ≥

1− θ

4
‖un‖2,
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which implies that {un} is bounded in E. By a standard argument, we can prove
that there exists a u0 ∈ E \ {0} such that J ′

b(u0) = 0. This shows that u0 ∈ Nb is a
nontrivial solution of problem (1.1) and Jb(u0) ≥ cb. On the other hand, it follows
from (1.6), (1.7), (2.15), Fatou’s lemma and the weak semicontinuity of the norm
that

cb ≥ c∗ = lim
n→∞

[
J ′
b(un)−

1

4
〈J ′

b(un), un〉
]

= lim
n→∞

{
1

4
‖un‖2 +

∫
R3

K(x)[
1

4
f(un)un − F (un)]dx

}
≥ 1

4
lim inf
n→∞

[ ∫
R3

a|(−∆)
α
2 un|2dx+ (1− θ0)

∫
R3

V (x)|un|2dx
]

+ lim
n→∞

∫
R3

{
K(x)

[1
4
f(un)un − F (un)]dx+

θ0
4
V (x)|un|2

}
dx

≥ 1

4
lim inf
n→∞

[
a

∫
R3

|(−∆)
α
2 u0|2dx+ (1− θ0)

∫
R3

V (x)|u0|2dx
]

+ lim
n→∞

∫
R3

{
K(x)

[1
4
f(u0)u0 − F (u0)]dx+

θ0
4
V (x)|u0|2

}
dx

=
1

4
‖u0‖2 +

∫
R3

K(x)
[1
4
f(u0)u0 − F (u0)]dx

= Jb(u0)−
1

4
〈J ′

b(u0), u0〉

= Jb(u0),

which implies that Jb(u0) ≤ c∗, then Jb(u0) = cb = inf
Nb

Jb > 0.

It follows from Theorem 1.1 that there exists a ub ∈ Mb such that Jb(ub) = mb.
Then by (2.1), Lemma 2.1, Corollary 2.2 and Lemma 4.3, we obtain

mb = Jb(ub) = sup
s,t≥0

Jb(su
+
b + tu−

b )

= sup
s,t≥0

{
Jb(su

+
b ) + Jb(tu

−
b ) +

bs2t2

2

∫
R3

|(−4)
α
2 u+

b |
2dx

∫
R3

|(−4)
α
2 u−

b |
2dx

}
≥ sup

s≥0
Jb(su

+
b ) + sup

t≥0
Jb(tu

−
b ) ≥ 2cb.

The proof is complete. □

5. The convergence property
In this section, we give the proof of Theorem 1.3.

Proof of Theorem 1.3. In the arguments of Section 2, b = 0 is allowed. Hence,
it follows from the assumptions of Theorem 1.3 that there exists a v0 ∈ M0 such
that J ′

0(v0) = 0 and J0(v0) = m0 = inf
u∈M0

J0(u), i.e., Eq.(1.6) has the least energy
sign–changing solution, which changes sign only once.

Choosing ϕ0 ∈ C∞
0 (R3) such that ϕ±

0 6= 0. It follows from (H1) and (F1)− (F3)
that there exist γ1 > 0 and

γ2 ≥ max
{( ∫

R3

|(−4)
α
2 ϕ+

0 |2dx
)2
,
( ∫

R3

|(−4)
α
2 ϕ−

0 |2dx
)2}
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such that∫
R3

K(x)F (sϕ+
0 )dx ≥ γ2|s|4 − γ1,

∫
R3

K(x)F (sϕ−
0 )dx ≥ γ2|t|4 − γ1, (5.1)

for any s, t ∈ R. Then for any b ∈ [0, 1], it follows from (1.6), (1.13), (5.1) and
Lemma 2.2 that

Jb(ub) = mb ≤ max
s,t≥0

Jb(sϕ
+
0 + tϕ−

0 )

= max
s,t≥0

[
s2

2
‖ϕ+

0 ‖2 +
bs4

4

∫
R3

(
|(−4)

α
2 ϕ+

0 |2dx
)2 − ∫

R3

K(x)F (sϕ+
0 )dx

+
t2

2
‖ϕ−

0 ‖2 +
bt4

4

∫
R3

(
|(−4)

α
2 ϕ−

0 |2dx
)2 − ∫

R3

K(x)F (tϕ−
0 )dx

+
bs2t2

2

∫
R3

|(−4)
α
2 ϕ+

0 |2dx
∫
R3

|(−4)
α
2 ϕ−

0 |2dx
]

= max
s,t≥0

[
s2

2
‖ϕ+

0 ‖2 +
bs4

2

∫
R3

(
|(−4)

α
2 ϕ+

0 |2dx
)2

+ 2γ1 − γ2s
4

+
t2

2
‖ϕ−

0 ‖2 +
bt4

2

∫
R3

(
|(−4)

α
2 ϕ−

0 |2dx
)2 − γ2t

4

]
≤ max

s,t≥0

[
s2

2
‖ϕ+

0 ‖2 −
s4

2

∫
R3

(
|(−4)

α
2 ϕ+

0 |2dx
)2

+ 2γ1 +
t2

2
‖ϕ−

0 ‖2

− t4

2

∫
R3

(
|(−4)

α
2 ϕ−

0 |2dx
)2]

:= Λ0 ∈ (0,+∞).

(5.2)

For any sequence {bn} with bn → 0 as n → ∞. For large n ∈ N, it follows from
(1.6), (1.7), (2.15) and (5.2) that

Λ0 + 1 ≥ Jbn(ubn)−
1

4
〈J ′

bn(ubn), ubn〉 ≥
1− θ0

4
‖ubn‖2,

which implies that {ubn} is bounded in E due to θ0 ∈ (0, 1). Therefore, there exists
a subsequence of {bn}, still denoted by {bn} and ubn → u0 in E. By a standard
argument (see [33]), we can prove that u±

bn
→ u±

0 in E. Note that

〈J ′
0(u0), ϕ〉 =

∫
R3

(a(−4)
α
2 u0(−4)

α
2 ϕ+ V (x)u0ϕ)dx−

∫
R3

K(x)f(u0)ϕdx

= lim
n→∞

[ ∫
R3

a((−4)
α
2 ubn(−4)

α
2 ϕ+ V (x)ubnϕ)dx

+ bn(

∫
R3

(−∆)
α
2 ubndx)

2

∫
R3

(−∆)
α
2 ubn(−∆)

α
2 ϕdx

−
∫
R3

K(x)f(ubn)ϕdx

]
= lim

n→∞
〈J ′

bn(ubn), ϕ〉, ∀ ϕ ∈ C∞
0 (R3),

which implies that J ′
0(u0) = 0, and so u0 ∈ M0 and J0(u0) ≥ m0. Next, we show

that J0(u0) = m0. Let bn ∈ [0, 1]. Then it follows from (F3) that there exists a



Solutions for fractional Kirchhoff type equations 2033

number N0 > 0 such that

Jbn(sv
+
0 + tv−0 ) =

s2

2
‖v+0 ‖2 +

bns
4

4

∫
R3

(
|(−4)

α
2 v+0 |2dx

)2 − ∫
R3

K(x)F (sv+0 )dx

+
t2

2
‖v−0 ‖2 +

bnt
4

4

∫
R3

(
|(−4)

α
2 v−0 |2dx

)2 − ∫
R3

K(x)F (tv−0 )dx

+
bns

2t2

2

∫
R3

|(−4)
α
2 v+0 |2dx

∫
R3

|(−4)
α
2 v−0 |2dx

]
≤ s2

2
‖v+0 ‖2 +

s4

2

∫
R3

(
|(−4)

α
2 v+0 |2dx

)2 − ∫
R3

K(x)F (sv+0 )dx

+
t2

2
‖v−0 ‖2 +

t4

2

∫
R3

(
|(−4)

α
2 v−0 |2dx

)2 − ∫
R3

K(x)F (tv−0 )dx

< 0, ∀ s+ t ≥ N0.
(5.3)

In view of Lemma 2.2, there exists (sn, tn) such that snv
+
0 + tnv

−
0 ∈ Mbn , which,

together with (5.2), implies that 0 < sn, tn < N0. Therefore, it follows from (1.6),
(1.7), (1.11) and (2.1) that

m0 = J0(v0)

= Jbn(v0)−
bn
4
(

∫
R3

|(−4)
α
2 v0|2dx)2

≥ Jbn(snv
+
0 + tnv

−
0 ) +

1− s4n
4

〈J ′
bn(v0), v

+
0 〉+

1− t4n
4

〈J ′
bn(v0), v

−
0 〉

− bn
4
(

∫
R3

|(−4)
α
2 v0|2dx)2

≥ mbn − 1 +N4
0

4
|〈J ′

bn(v0), v
+
0 〉| −

1 +N4
0

4
|〈J ′

bn(v0), v
−
0 〉|

− bn
4
(

∫
R3

|(−4)
α
2 v0|2dx)2

= mbn − 1 +N4
0

4
|〈J ′

bn(v0), v
+
0 〉| −

1 +N4
0

4
|〈J ′

bn(v0), v
−
0 〉|

− bn
4
(

∫
R3

|(−4)
α
2 v0|2dx)2,

showing that
lim sup
n→∞

mbn ≤ m0. (5.4)

It follows from (1.4), (1.6) and (5.4) that

m0 = J0(u0) = lim sup
n→∞

Jbn(ubn) = lim sup
n→∞

mbn ≤ m0,

which implies that J0(u0) = m0. The proof is complete. □

6. Proof of Corollary 1.1

Similar to Proposition 2.1 in [1], we have the following Lemma.
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Lemma 6.1. Assume (V,K) ∈ K. If (H3) or (H4) holds, then the embedding
X ↪→ Lr

K(R3) is compact for 2 ≤ r < 2∗α.

Proof. The proof is analogous to Proposition 2.1 in [1], we omit it here.

Proof of Corollary 1.1. From Lemma 6.1 and the assumptions of Corollary 1.1,
we can easily verify that Jb satisfies the similar geometry structure as the case where
(V ) and (K) hold. Therefore, Corollary 1.1 follows by slightly modification of Sets.
2–5. □

Acknowledgements
The authors are grateful to the anonymous referees for their useful suggestions
which improve the contents of this article.

References
[1] C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlin-

ear Schrödinger equations with potential vanishing at infinity, J. Differential
Equations, 2013, 254, 1977–1991.

[2] C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for
a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys.,
2014, 65, 1153–1166.

[3] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear
Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc.,
2005, 7, 117–144.

[4] V. Ambrosio, G. M. Figueiredo, T. Isernia and G. Molica Bisci, Sign–changing
solutions for a class of zero mass nonlocal Schrödinger equations, Adv. Non-
linear Stud., 2019, 19, 113–132.

[5] V. Ambrosio and T. Isernia, Concentration phenomena for a fractional
Schrödinger-Kirchhoff type equation, Math. Meth. Appl. Sci., 2018, 41, 615–
645.

[6] V. Ambrosio and T. Isernia, Sign–changing solutions for a class of Schrödinger
equations with vanishing potentials, Atti Accad. Naz. Lincei Rend. Lincei Mat.
Appl., 2018, 29, 127–152.

[7] V. Ambrosion and T. Isernia, A multiplicity result for a fractional Kirchhoff
equation in RN with a general nonlinearity, Commum. Contemp. Math., 2018,
20, 1750054.

[8] A. Ambrosetti and Z. Wang, Nonlinear Schrödinger equations with vanishing
and decaying potentials, Differ. Integral Equ., 2005, 18, 1321–1332.

[9] G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian
in RN , J. Differential Equations, 2013, 255, 2340–2362.

[10] T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal
solutions to some variational problems, J. Anal. Math, 2005, 96, 1–18.

[11] H. Berestycki and P. Lions, Nonlinear scalar field equations. I. Existence of a
ground state state, Arch. Ration. Mech. Anal., 1983, 82, 313–345.



Solutions for fractional Kirchhoff type equations 2035

[12] L. Caffarelli and L. Silvestre, An extension problem related to the fractional
Laplacian, Commun. Part. Diff. Equat., 2007, 32, 1245–1260.

[13] D. Cassani, Z. Liu, C. Tarsi and J. Zhang, Multiplicity of sign–changing solu-
tions for Kirchhoff–type equations, Nonlinear Anal., 2019, 186, 145–161.

[14] G. Che and H. Chen, Existence and multiplicity of positive solutions for
Kirchhoff–Schrödinger–Poisson system with critical growth, Rev. Real Acad.
Cienc. Exactas F., 2020, 114, 78.

[15] G. Che and H. Chen, Existence and concentration result for Kirchhoff equations
with critical exponent and Hartree nonlinearity, J. Appl. Anal. Comput., 2020,
10, 2121–2144.

[16] G. Che, H. Chen, H. Shi and Z. Wang, Existence of nontrivial solutions for
fractional Schrödinger–Poisson system with sign–changing potentials, Math.
Meth. Appl. Sci., 2018, 41, 5050–5064.

[17] G. Che, H. Chen and T.F. Wu, Existence and multiplicity of positive solutions
for fractional Laplacian systems with nonlinear coupling, J. Math. Phys., 2019,
60, 081511.

[18] G. Che and T.F. Wu, Three positive solutions for Kirchhoff problems with steep
potential well and concave–convex nonlinearities, Appl. Math. Lett., 2021, 121,
107348.

[19] S. Chen and X. Tang, Ground state sign–changing solutions for a class of
Schrödinger–Poisson type problems in R3, Z. Angew. Math. Phys., 2016, 67,
1–18.

[20] Y. Deng, S. Peng and W. Shuai, Existence and asymptotic behavior of nodal
solutions for the Kirchhoff type problema in R3, J. Funct. Anal., 2015, 269,
3500–3527.
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