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Abstract In this paper, a fractional discontinuous Sturm-Liouville type boun-
dary-value problem with eigenparameter-dependent boundary conditions and
with two fractional transmission conditions is investigated. Using operator
theory, a new inner product is defined by combining the parameters in the
boundary and transmission conditions, then the boundary value transmission
problem is transferred to an operator in a new Hilbert space such that the
eigenvalues and eigenfunctions of the main problem coincide with those of
this operator. Moreover, the fundamental solutions are constructed, and then
the characteristic function whose zeros are the eigenvalues of the problem is
established.
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1. Introduction
It is well known that the Sturm-Liouville type boundary-value problems play a
significant role in many areas of science, engineering and mathematics, especially
about the eigenvalues and eigenfunctions of the Sturm-Liouville boundary-value
problem. The Sturmian theory was founded 170 years ago, and there have been
a lot of researches and works related to it. The research on the nature of the
regular Sturm-Liouville problem is relatively complete [16, 17, 24]. In the classic
Sturm-Liouville theory, it is required that the solution and its quasi-derivative are
absolutely continuous, but in many practical applications, this perfect situation
is difficult to be satisfied. For example, the heat conduction problem of plates
formed by overlapping materials with different characteristics, the basic solution
of the problem on a single plate can be derived from the classical heat conduction
equation, and the structure of the solution on the entire laminated plate leads us
to consider the continuity of the solutions at each junction. Therefore, scholars
focus to investigate the discontinuity of the solution or the various derivatives of
the solution of the differential equation. Generally speaking, the eigenparameter
only appears in the differential equation, however, a large number of applications in
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the mathematical physics, engineering etc. require that the eigenparameter appears
not only in the differential equation, but also in the boundary conditions. Specific
research and various applications on such issues can be found in the literature
[1–3,8, 12–14,18].

Fractional calculus is a well known topic since it was initiated in 17th cen-
tury, and there are a lot of related literatures. Among them, Podlubny [19] and
Kilbass [9] introduced the history of fractional calculus. There are many differ-
ent types of definitions of fractional derivatives and integrals. The great widely
used is Riemann-Liouville fractional derivatives and integrals, another derivative
is the Caputo fractional derivative, introduced by Caputo in 1967. West [22] and
Magin [15] showed that in many applications solutions based on fractional-order
derivatives model are more accurate than those based on integer-order derivatives
model. Baleanu and Uǧurlu [6] construct a regular dissipative fractional operator
associated with a fractional boundary value problem and extend considerably the
possibility to extract new features from the dynamics of complex systems involving
non-local effects.

In recent years, more and more researchers pay attention to fractional Sturm-
Liouville type boundary value problem and study the numerical problems, eigen-
values and eigenfunctions of fractional Sturm-Liouville operators, see for exam-
ple [4, 7, 10, 11, 20, 21, 25]. In [21], the author used different fractional operators
to solve common Sturm-Liouville problem, and studied the eigenvalues and eigen-
functions related to those operators respectively. Zayernouri and Karniadakis [25]
considered the eigenvalues of two types of fractional Sturm-Liouville problems on
compact interval. Akdogan and Yakar [23] investigated a class of discontinuous
Sturm-Liouville problem with fractional derivatives and constructed the correspond-
ing fundamental solutions. Akdogan, Yakar and Demirici [5] considered a frac-
tional discontinuous Sturm-Liouville problem which boundary conditions are dif-
ferent with [23], they defined an operator A associated the problem in Hilbert space
L2(−1, 1), and established the characteristic function of the discontinuous fractional
Sturm-Liouville problem.

In this paper, we generalized the results of [5,23] to a class of discontinuous frac-
tional Sturm-Liouville problems with eigen-parameter contained in the boundary
conditions. Using operator theories and analytical skills, we transfer the consid-
ered boundary value problem to a symmetric fractional Sturm-Liouville operator
by introducing a new Hilbert space associated with the parameters in the bound-
ary and transmission conditions. Note that the operator we defined in this paper
is different from the previous papers. We prove the symmetry of the operator,
and investigate the properties of its eigenvalues and eigenfunctions. Finally, the
characteristic function of the problem is established.

The paper is organized as follows: In Section 2, some basic theoretical knowledge
about Riemann-Liouville and Caputo fractional calculus are given. In Section 3,
we investigate the discontinuous fractional Sturm-Liouville problems with eigenpa-
rameter dependent boundary conditions. In Section 4, we define fractional Sturm-
Liouville operator associated with the boundary value transmission problem and
construct the fundamental solutions, then we establish the characteristic function
whose zeros are the eigenvalues of the problem.
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2. Preliminaries
In this section, we shall recall some basic definitions and properties of fractional
calculus which are necessary for the development of the paper. In addition, we shall
introduce some lemmas and give their proofs if needed.

Definition 2.1 (c.f. [9]). (Left and right Riemann-Liouville (R-L) fractional inte-
grals)

Let [a, b] ⊂ R, Re(α) > 0 and f ∈ L1[a, b]. Then the left and right Riemann-
Liouville fractional integrals Iαa+ and Iαb− of order α ∈ C are given by

Iαa+f(x) =
1

Γ(α)

∫ x

a

f(t)dt

(x− t)1−α
, x ∈ (a, b],

Iαb−f(x) =
1

Γ(α)

∫ b

x

f(t)dt

(t− x)1−α
, x ∈ [a, b),

respectively.

Definition 2.2 (c.f. [9]). (Left and right Riemann-Liouville (R-L) fractional deriva-
tives)

Let [a, b] ⊂ R, Re(α) ∈ (0, 1) and f ∈ L1[a, b]. Then the left and right Riemann-
Liouville fractional derivatives of order α ∈ C of function f are defined as

Dα
a+f(x) := DI1−α

a+ f(x), x ∈ (a, b],

Dα
b−f(x) := −DI1−α

b− f(x), x ∈ [a, b),

respectively, where D = d
dx is the usual differential operator.

Definition 2.3 (c.f. [9]). (Left and right Caputo fractional derivatives)
Let [a, b] ⊂ R, Re(α) ∈ (0, 1) and f ∈ L1[a, b]. Then the left and right Caputo

fractional derivatives of order α ∈ C are
cDα

a+f(x) := I1−α
a+ Df(x), x ∈ (a, b],

cDα
b−f(x) := −I1−α

b− Df(x), x ∈ [a, b),

respectively, where D = d
dx is the usual differential operator.

Lemma 2.1 (c.f. [9]).
Dα

a+Iαa+f(x) = f(x),

Dα
b−I

α
b−f(x) = f(x).

and

Iαa+Dα
a+f(x) = f(x)− (x− a)α−1

Γ(α)
I1−α
a+ f(a),

Iαb−D
α
b−f(x) = f(x)− (b− x)α−1

Γ(α)
I1−α
a+ f(b),

where α ∈ (0, 1).
According to the above equations, we can see that R-L derivative is the left

inverse of the R-L integral, but not the right inverse.
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Lemma 2.2 (c.f. [9]).
cDα

a+Iαa+f(x) = f(x),
cDα

b−I
α
b−f(x) = f(x).

and
Iαa+

cDα
a+f(x) = f(x)− f(a),

Iαb−
cDα

b−f(x) = f(x)− f(b),

where α ∈ (0, 1).

Now, we state the following lemmas which will be used in the later sections.

Lemma 2.3 (c.f. [5]). Assume that 0 < α < 1, f ∈ AC[a, b] and g ∈ Lp(a, b)(1 ≤
p ≤ ∞). Then the following equation holds:∫ b

a

f(x)Dα
a+g(x)dx =

∫ b

a

g(x)cDα
b−f(x)dx+ f(x)I1−α

a+ g(x)|x=b
x=a.

Lemma 2.4 (c.f. [23]). Let f ∈ L2(a, b) and α ∈ (0, 1), then:

(i) Iαa+
cDα

b−f(x) = Mg(x) + (−1)α(f(x)− f(b)),
(ii) Iαa+

cDα
b−f(x) = (−1)α−1Iαa+Nf (x) + (−1)α(f(x)− f(a)).

where Mg(x) =
1

Γ(α)

∫ b

a
(x− t)α−1g(t)dt, Nf (x) =

1
Γ(1−α)

∫ b

a
(x− t)−αf ′(t)dt,

g(x) =c Dα
b−f(x).

Lemma 2.5 (c.f. [9]). The fractional integral operators Iαa+ and Iαb− with Re(α) > 0
are bounded in Lp(a, b)(1 ≤ p ≤ ∞) :

∥Iαa+f∥p ≤ k∥f∥p , ∥Iαb−f∥p ≤ k∥f∥p (k =
(b− a)Re(α)

Re(α)|Γ(α)|
). (2.1)

Lemma 2.6 (c.f. [9]). Let Re(α) ≥ 0 , then the Caputo fractional differential
operators cDα

a+ and cDα
b− are bounded from the space Cn[a, b] to the space Ca[a, b]

and Cb[a, b],

∥cDα
a+y∥Ca

≤ kα∥y∥Cn , ∥cDα
b−y∥Cb

≤ kα∥y∥Cn(kα =
(b− a)n−Re(α)

Γ(n− α)[n−Re(α) + 1]
),

(2.2)
where Cn[a, b], Ca[a, b] and Cb[a, b] defined by (1.1.25) and (1.1.26) in [9].

For more details, we refer to [9].

3. Fractional Sturm-Liouville problems with eigen-
dependent boundary and transmission conditions

In this section, we consider the following fractional Sturm-Liouville differential ex-
pression £α as follows

£α =

{
cDα

0−p(x)D
α
−1+ + q(x), x ∈ [−1, 0),

cDα
1−p(x)D

α
0+ + q(x), x ∈ (0, 1].
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Then we shall consider the following fractional Sturm-Liouville problem on I , where
I = [−1, 0) ∪ (0, 1],

£αu+ λu = 0, (3.1)
with boundary conditions:

L1(u) :=r1I
1−α
−1+u(−1)− r2p1D

α
−1+u(−1)

− λ(r′1I
1−α
−1+u(−1)− r′2p1D

α
−1+u(−1)) = 0,

(3.2)

L2(u) := I1−α
0+ u(1)− βp2D

α
0+u(1) = 0 (3.3)

and transmission conditions:

L3(u) := h1I
1−α
−1+u(0−)− I1−α

0+ u(0+) = 0, (3.4)

L4(u) := Dα
−1+u(0−)− h2D

α
0+u(0+) = 0, (3.5)

where 1
2 ≤ α ≤ 1, λ ∈ C and λ is eigenparameter.

ρ = r′1r2 − r1r
′
2 > 0; θ =

h1

h2
> 0.

p(x) =

{
p1, x ∈ [−1, 0),

p2, x ∈ (0, 1].

q(x) is real-valued and continuous in both [-1,0) and (0,1], h1, h2 ̸= 0, and h1, h2

are real numbers, p1, p2 are all positive real numbers.

4. The operator Formulation of fractional Sturm-
Liouville problem

We define the following inner product in the Hilbert space L2(I) by

⟨f, g⟩1 =
θ

p1

∫ 0

−1

f(x)g(x)dx+
1

p2

∫ 1

0

f(x)g(x)dx (4.1)

for arbitrary f, g ∈ L2(I). Obviously, H1 = (L2(I), ⟨·, ·⟩1) is a Hilbert space. We
define the following inner product in the Hilbert space H := H1 ⊕ C as

⟨F,G⟩ = ⟨f, g⟩1 +
θ

ρ
f1g1. (4.2)

for F = (f(x), f1), G = (g(x), g1) ∈ H,f(x), g(x) ∈ H1, f1, g1 ∈ C.
In the Hilbert space H, consider the operator A which is defined by

A : D(A) → H,

where the domain D(A) is defined as follows

D(A) = {(f(x), f1) ∈ H|f(x), Dα
−1+f(x),

c Dα
1−f(x) ∈ AC([−1, 0) ∪ (0, 1];

f(0±), Dα
−1+f(0±), I1−α

−1+f(0±)all have finite limits;
Lif = 0, i = 2, 3, 4;

f1 = r′1I
1−α
−1+f(−1)− r′2p1D

α
−1+}
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AF = A(f(x), f1) = (£αf, r1I
1−α
−1+f(−1)− r2p1D

α
−1+f(−1)),

for
F = (f(x), r′1I

1−α
−1+f(−1)− r′2p1D

α
−1+f(−1)).

For simplicity, let

N(f) = r1I
1−α
−1+f(−1)− r2p1D

α
−1+f(−1),

N ′(f) = r′1I
1−α
−1+f(−1)− r′2p1D

α
−1+f(−1).

Now, we can rewrite the considered problem (3.1)-(3.5) in operator form

Au = λu. (4.3)

Obviously, the following lemma holds.

Lemma 4.1. (i) The eigenvalues of boundary value problem (3.1)-(3.5) coincide
with those of operator A.

(ii) The eigenfunctions of boundary value problem (3.1)-(3.5) are the first compo-
nent of corresponding eigen element of operator A.

Theorem 4.1. The operator A is symmetric.

Proof. For any F,G ∈ D(A), F = (f(x), N ′(f)), G = (g(x), N ′(g)).

< AF,G >=< £αf, g >1 +
θ

ρ
N(f)N ′(g).

< £αf, g >1=
θ

p1

∫ 0

−1

(cDα
0−p1D

α
−1+f(x))g(x)dx+

θ

p1

∫ 0

−1

q(x)f(x)g(x)dx

+
1

p2

∫ 1

0

(cDα
1−p2D

α
0+f(x))g(x)dx+

1

p2

∫ 1

0

q(x)f(x)g(x)dx.

By Lemma 2.3, we get

< £αf, g >1=θ(

∫ 0

−1

f(x)cDα
0−D

α
−1+g(x)dx+Dα

−1+g(x)I
1−α
−1+f(x)|

0
−1

−Dα
−1+f(x)I

1−α
−1+g(x)|

0
−1)

+

∫ 1

0

f(x)cDα
1−D

α
0+g(x)dx+Dα

0+g(x)I
1−α
0+ f(x)|10

−Dα
0+f(x)I

1−α
0+ g(x)|10

+
θ

p1

∫ 0

−1

q(x)f(x)g(x)dx+
1

p2

∫ 1

0

q(x)f(x)g(x)dx.

Hence, we have

< AF,G >= < F,AG > +θW1(f, g, 0−)− θW1(f, g,−1) +W2(f, g, 1),

−W2(f, g, 0+) +
θ

ρ
N(f)N ′(g)− θ

ρ
N ′(f)N(g),

where
W1(f, g, x) = I1−α

−1+f(x)D
α
−1+g(x)− I1−α

−1+g(x)D
α
−1+f(x),

W2(f, g, x) = I1−α
0+ f(x)Dα

0+g(x)− I1−α
0+ g(x)Dα

0+f(x).
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By transmission conditions (3.4) and (3.5), we get

W1(f, g, 0−) = I1−α
−1+f(0−)Dα

−1+g(0−)− I1−α
−1+g(0−)Dα

−1+f(0−)

=
h2

h1
[I1−α

0+ f(0+)Dα
0+g(0+)− I1−α

0+ g(0+)Dα
0+f(0+)]

=
1

θ
W2(f, g, 0+).

By (3.3), we get

W2(f, g, 1) = 0,

θ

ρ
N(f)N ′(g)− θ

ρ
N ′(f)N(g) = θW1(f, g,−1).

Therefore,
< AF,G >=< F,AG >,

which implies A is symmetric.

Corollary 4.1. All eigenvalues of boundary value problem (3.1)-(3.5) are all real-
valued.

Now we can assume that all eigenfunctions of problem (3.1)-(3.5) are real-valued.

Corollary 4.2 (Orthogonality). Let λ1 and λ2 be two different eigenvalues of the
problem (3.1)-(3.5), then the corresponding eigenfunctions f(x), g(x) of this problem
satisfy the following equation

θ

p1

∫ 0

−1

f(x)g(x)dx+
1

p2

∫ 1

0

f(x)g(x)dx

+
θ

ρ
(r′1I

1−α
−1+f(−1)− r′2p1D

α
−1+f(−1))(r′1I

1−α
−1+g(−1)− r′2p1D

α
−1+g(−1)) = 0.

Corollary 4.2 implies that the eigenfunctions of the operator A corresponding
to different eigenvalues are orthogonal under the inner product (4.2) in the Hilbert
space H.

Lemma 4.2. The equivalent integral form of equation (3.1) with fractional condi-
tions (3.4)-(3.5) is given as

u(x) = u0(x) +
1

p2Γ(2α)

∫ x

0

[Nu(t) + (−1)1−α(x− t)2α−1(λ+ q(t))u(t)]dt, (4.4)

where u0(x) =
xα−1

Γ(α) (h1I
1−α
−1+u(0−)) + Iα0+(

1
h2
Dα

−1+u(0−)).

Proof. Let us consider the equation (3.1) : £αu+ λu = 0,
cDα

1−p2D
α
0+u(x) + (λ+ q(x))u(x) = 0, x ∈ (0, 1].

Using fractional integral operator Iα0+ acting on above equation, we obtain

Iα0+
cDα

1−p2D
α
0+u(x) + Iα0+(λ+ q(x))u(x) = 0, x ∈ (0, 1]. (4.5)

Then by Lemma 2.4, we have

Iα0+
cDα

1−p2D
α
0+u(x) = (−1)α−1Iα0+Nu(x) + (−1)α(p2D

α
0+u(x)− p2D

α
0+u(0)).
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Then equation (4.5) becomes

p2D
α
0+u(x) = Iα0+Nu(x) + p2D

α
0+u(0) + (−1)1−αIα0+(λ+ q(x))u(x). (4.6)

Applying Iα0+ on both sides of (4.6), we get

p2I
α
0+D

α
0+u(x) = Iα0+I

α
0+Nu(x) + p2I

α
0+D

α
0+u(0) + (−1)1−αIα0+I

α
0+(λ+ q(x))u(x).

(4.7)
By Lemma 2.1 and transmission conditions (3.4), (3.5). Then equation (4.7) be-
comes

p2[u(x)−
xα−1

Γ(α)
(h1I

1−α
−1+u(0−))] =I2α0+Nu(x) + p2I

α
0+(

1

h2
Dα

−1+u(0−))

+ (−1)1−αI2α0+ (λ+ q(x))u(x).

Then we reach

u(x) = u0(x) +
1

p2
I2α0+ [Nu(x) + (−1)1−α(λ+ q(x))u(x)].

Next, we use the conclusion of Lemma 4.2 to construct um(x, λ), and then discuss
the successive approximations.

um(x, λ) = u0(x, λ) +

∫ x

0
(x− t)2α−1[Num−1

(t) + (−1)1−α(λ+ q(t))um−1(t)]dt

p2Γ(2α)
.

(4.8)
If α = 1, the above problem becomes classical Sturm-Liouville problem.

Lemma 4.3. Let Q := maxx∈(0,1] |q(x)|, PR := max|λ|≤R P (λ) and P (λ) :=
maxx∈(0,1] |u0(x, λ)|.

Then, for any m, the following estimate

∥um(x, λ)− um−1(x, λ)∥ ≤ PR{
|λ|+ 2kα +Q

p2Γ(2α+ 1)
}m (4.9)

holds, where kα := 1
(2−α)Γ(1−α) .

Proof. The proof of this lemma can be referred to [16].
For the following initial value problem

cDα
0−p1D

α
−1+u(x) + (q(x) + λ)u(x) = 0, x ∈ [−1, 0);

I1−α
−1+u(−1) = (r2 − λr′2)p1,

Dα
−1+u(−1) = r1 − λr′1.

(4.10)

If we use a similar way in Lemma 4.2, we can get a corresponding integral
equation of the problem (4.10) as follows:

u(x) = u0(x) +
1

p1
I2α−1+ [Nu(x) + (−1)1−α(q(x) + λ)u(x)], (4.11)

where u0(x) =
(x+1)α−1

Γ(α) p1(r2 − λr′2) +
(x+1)α

Γ(α+1) (r1 − λr′1).
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Lemma 4.4. The initial value problem (4.10) has an unique solution on [−1, 0)
provided that 1

p1Γ(2α+1) (|λ|+ 2kα +Q) < 1.

Proof. We shall use the idea of contraction mapping to prove this lemma. From
above discussion, we know

u(x) = u0(x) +
1

p1
I2α−1+ [Nu(x) + (−1)1−α(q(x) + λ)u(x)],

where u0(x) =
(x+1)α−1

Γ(α) p1(r2 − λr′2) +
(x+1)α

Γ(α+1) (r1 − λr′1). We construct the integral
equation as

ϕ = Tϕ,

and action law of operator T :

Tf = u0 +
1

p1
I2α−1+ [Nf + (−1)1−α(q(x) + λ)f ],

then we obtain

∥Tf − Tg∥ = ∥ 1

p1
I2α−1+ [(Nf −Ng) + (−1)1−α(q(x) + λ)(f − g)]∥.

By Lemma 2.5,

∥Tf − Tg∥ ≤ 1

p1Γ(2α+ 1)
∥(Nf −Ng) + (−1)1−α(q(x) + λ)(f − g)∥

≤ 1

p1Γ(2α+ 1)
∥(Nf −Ng)∥+ ∥(q(x) + λ)(f − g)∥.

According to Lemma 2.4 and Lemma 2.6, we have

Nf −Ng =c Dα
0−(f(x)− g(x)) + (−1)α−1 cDα

−1+(f(x)− g(x))

≤ 2kα∥(f − g)∥. kα =
1

(2− α)Γ(1− α)
.

Therefore,
∥Tf − Tg∥ ≤ 1

p1Γ(2α+ 1)
(|λ|+ 2kα +Q)∥(f − g)∥.

If 1
p1Γ(2α+1) (|λ|+2kα+Q) < 1, we get the mapping T is a contraction on the space

⟨C[−1, 0), ∥ · ∥⟩ by contraction mapping principle. Consequently,

ϕ = Tϕ

has an unique solution.
For any λ ∈ C, let ϕ1,λ(x) := ϕ1(x, λ) be the solution of equation (3.1) on

interval [−1, 0), and satisfies initial conditions:{
I1−α
−1+u(−1) = (r2 − λr′2)p1,

Dα
−1+u(−1) = (r1 − λr′1),

(4.12)

ϕ1(x, λ) is an entire function of λ for each x ∈ [−1, 0). By considering Lemma 4.4,
the equation (3.1) with initial conditions (4.12) has a unique solution ϕ1(x, λ).
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Let ϕ2,λ(x) := ϕ2(x, λ) be the solution of equation (3.1) on interval (0, 1], and
satify {

I1−α
0+ ϕ2(0+) = h1I

1−α
−1+ϕ1(0−, λ),

Dα
0+ϕ2(0+) = 1

h2
Dα

−1+ϕ1(0−, λ),
(4.13)

ϕ2(x, λ) also is an entire function of λ for each x ∈ (0, 1].

Remark 4.1. For the following initial value problem
cDα

0−p1D
α
−1+u(x) + (q(x) + λ)u(x) = 0, x ∈ [−1, 0),

I1−α
0+ u(0+) = h1I

1−α
−1+u(0−),

Dα
0+u(0+) = 1

h2
Dα

−1+u(0−),

(4.14)

By using similar way in Lemma 4.2 and Lemma 4.4, we can get the intitial value
problem (4.14) has an unique solution ϕ2(x, λ) on (0,1] provided that 1

p2Γ(2α+1) (|λ|+
2kα +Q) < 1, in what follows, we will always assume that this condition holds.

Obviously, the function ϕ(x, λ) defined on [−1, 0) ∪ (0, 1] by

ϕ(x, λ) =

{
ϕ1(x, λ), x ∈ [−1, 0),

ϕ2(x, λ), x ∈ (0, 1],

is such a solution of equation (3.1) on the whole of [−1, 0) ∪ (0, 1], which satisfies
the boundary conditions (3.2), and both transmission conditions (3.4) and (3.5).

Similarly, we see that the problem (3.1) with initial conditions:{
I1−α
0+ u(1) = βp2,

Dα
0+u(1) = 1,

(4.15)

has an unique solution χ2(x, λ), which is an entire function of the parameter λ for
each fixed x ∈ (0, 1]. As the same as above discussion, we can define the solution
χ1(x, λ) of equation (3.1) by initial conditions:{

I1−α
−1+u(0−) = 1

h1
I1−α
0+ χ2(0+, λ),

Dα
−1+u(0−) = h2D

α
0+χ2(0+, λ),

(4.16)

χ1(x, λ) is an entire function of the parameter λ for each fixed x ∈ [−1, 0). Hence,
the function χ(x, λ) defined on [−1, 0) ∪ (0, 1] by

χ(x, λ) =

{
χ1(x, λ), x ∈ [−1, 0),

χ2(x, λ), x ∈ (0, 1],

is such a solution of equation (3.1) on [−1, 0) ∪ (0, 1], and χ(x, λ) satisfies the
boundary conditions (3.3), and both transmission conditions (3.4) and (3.5).

Let us consider fractional Wronskians

ω1(λ) = W1(ϕ1(x, λ), χ1(x, λ), ) =

∣∣∣∣∣∣ I
1−α
−1+ϕ1(x, λ) I1−α

−1+χ1(x, λ)

Dα
−1+ϕ1(x, λ) D

α
−1+χ1(x, λ)

∣∣∣∣∣∣ ,
ω2(λ) = W2(ϕ2(x, λ), χ2(x, λ), ) =

∣∣∣∣∣∣ I
1−α
0+ ϕ2(x, λ) I

1−α
0+ χ2(x, λ)

Dα
0+ϕ2(x, λ) Dα

0+χ2(x, λ)

∣∣∣∣∣∣ ,
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ω1(λ) and ω2(λ) are entire functions, and independent of x. According to (3.4) and
(3.5), we have

ω1(λ) = I1−α
−1+ϕ1(x, λ)D

α
−1+χ1(x, λ)− I1−α

−1+χ1(x, λ)D
α
−1+ϕ1(x, λ)

= I1−α
−1+ϕ1(0, λ)D

α
−1+χ1(0, λ)− I1−α

−1+χ1(0, λ)D
α
−1+ϕ1(0, λ)

=
1

h1
I1−α
0+ ϕ2(0, λ)h2D

α
0+χ2(0, λ)−

1

h1
I1−α
0+ χ2(0, λ)h2D

α
0+ϕ2(0, λ)

=
1

θ
[I1−α

0+ ϕ2(0, λ)D
α
0+χ2(0, λ)− I1−α

0+ χ2(0, λ)D
α
0+ϕ2(0, λ)]

=
1

θ
ω2(λ).

For convenience, let ω(λ) := ω1(λ) =
h2

h1
ω2(λ).

Lemma 4.5. For any λ ∈ C , the fractional Wronskian WF satisfies the following
relation:

WF (x, λ) = −h2
1

h2
ω3(λ), (4.17)

where

WF (x, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

L1(ϕ1) L1(χ1) L1(ϕ2) L1(χ2)

L2(ϕ1) L2(χ1) L2(ϕ2) L2(χ2)

L3(ϕ1) L3(χ1) L3(ϕ2) L3(χ2)

L4(ϕ1) L4(χ1) L4(ϕ2) L4(χ2)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. Applying the definitions of the functions ϕi, χi (i = 1, 2), we get

WF (x, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 −ω1(λ) 0 0

0 0 ω2(λ) 0

h1I
1−α
−1+ϕ1(0−, λ) h1I

1−α
−1+χ1(0−, λ) I1−α

0+ ϕ2(0+, λ) I1−α
0+ χ2(0+, λ)

Dα
−1+ϕ1(0−, λ) Dα

−1+χ1(0−, λ) h2D
α
0+ϕ2(0+, λ) h2D

α
0+χ2(0+, λ)

∣∣∣∣∣∣∣∣∣∣∣∣
= −ω1(λ)ω2(λ)

∣∣∣∣∣∣h1I
1−α
−1+ϕ1(0−, λ) I1−α

0+ χ2(0+, λ)

Dα
−1+ϕ1(0−, λ) h2D

α
0+χ2(0+, λ)

∣∣∣∣∣∣
= −ω1(λ)ω2(λ)

∣∣∣∣∣∣h1I
1−α
−1+ϕ1(0−, λ) h1I

1−α
−1+χ1(0−, λ)

Dα
−1+ϕ1(0−, λ) Dα

−1+χ1(0−, λ)

∣∣∣∣∣∣
= −h1ω

2
1(λ)ω2(λ)

= −h1ω
2
1(λ)

h1

h2
ω1(λ)

= −h2
1

h2
ω3(λ).

Corollary 4.3. The zeros of the WF consist of the zeros of the ω(λ).
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Lemma 4.6. Let u0(x) be an any eigenfunction corresponding to eigenvalue λ0 ,
then the function u0(x) may be represented in the form:

u0(x) =

{
c1ϕ1(x, λ0) + c2χ1(x, λ0), x ∈ [−1, 0),

c3ϕ2(x, λ0) + c4χ2(x, λ0), x ∈ (0, 1],

where at least one of the constants ci (i = 1, 2, 3, 4) is not zero.

Theorem 4.2. The eigenvalues of the fractional boundary value problem (3.1)-(3.5)
are coincide with the roots of the characteristic function ω(λ).

Proof. ⇐ : Let λ0 be a zero of ω(λ), i.e. ω(λ0) = 0, then, W (ϕ1(x, λ0), χ1(x, λ0)) =
0. We see that ϕ1(x, λ0) and χ1(x, λ0) are linearly dependent, that is, there exists
k1 ̸= 0 such that

χ1(x, λ0) = k1ϕ1(x, λ0).

By (4.12), we have

r1I
1−α
−1+χ1(−1, λ0)− r2p1D

α
−1+χ1(−1, λ0)

− λ[r′1I
1−α
−1+χ1(−1, λ0)− r′2p1)D

α
−1+χ1(−1, λ0)]

=k1[(r1 − λr′1)(r2 − λr′2)p1 − (r2 − λr′2)p1(r1 − λr′1)]

=0.

Consequently, the function χ(x, λ0) satisfies the fractional boundary condition (3.3).
From above discussion, we know that χ(x, λ0) satisfies (3.3)-(3.5). Hence, χ(x, λ0)

is an eigenfunction of the problem (3.1)-(3.5) corresponding to the eigenvalue λ0.
⇒ : Let λ0 be an eigenvalue of the problem (3.1)-(3.5), u0(x) be the corresponding
eigenfunction. Let us suppose that ω(λ0) ̸= 0, then ϕ1 and χ1, ϕ2 and χ2 are
linearly independent, respectively. Consequently, we can let

u0(x) =

{
c1ϕ1(x, λ0) + c2χ1(x, λ0), x ∈ [−1, 0),

c3ϕ2(x, λ0) + c4χ2(x, λ0), x ∈ (0, 1],

where at least one of the constants ci, (i = 1, 2, 3, 4) is not zero. By the definition
of u0(x) and transmission condition (3.4), we obtain

I1−α
0+ u0(0+) = c3I

1−α
0+ ϕ2(0, λ0) + c4I

1−α
0+ χ2(0, λ0)

= h1[c3I
1−α
−1+ϕ1(0, λ0) + c4I

1−α
−1+χ1(0, λ0)].

I1−α
0+ u0(0+) = h1I

1−α
−1+u0(0−)

= h1[c1I
1−α
−1+ϕ1(0, λ0) + c2I

1−α
−1+χ1(0, λ0)].

Then, we get

h1(c3 − c1)I
1−α
−1+ϕ1(0, λ0) + h1(c4 − c2)I

1−α
−1+χ1(0, λ0) = 0.

Applying the similar way of above, we also get

1

h2
(c3 − c1)D

α
−1+ϕ1(0, λ0) +

1

h2
(c4 − c2)D

α
−1+χ1(0, λ0) = 0.
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Then, we find∣∣∣∣∣∣h1 0

0 1
h2

∣∣∣∣∣∣
∣∣∣∣∣∣ (c3 − c1)I

1−α
−1+ϕ1(0, λ0) + (c4 − c2)I

1−α
−1+χ1(0, λ0)

(c3 − c1)D
α
−1+ϕ1(0, λ0) + (c4 − c2)D

α
−1+χ1(0, λ0)

∣∣∣∣∣∣ = 0.

Consequence, c3 = c1, c4 = c2.
By the boundary conditions (3.2)-(3.3) and (4.12), (4.16), we obtain{

L1u0(x) := (r1 − λr′1)I
1−α
−1+u0(−1)− (r2 − λr′2)p1D

α
−1+u0(−1) = 0,

L2u0(x) := I1−α
0+ u0(1)− βp2D

α
0+u0(1) = 0,

L1u0(x) =c1L1(ϕ1(x, λ0)) + c2L1(χ1(x, λ0))

=c1[(r1 − λr′1)I
1−α
−1+ϕ1(−1, λ0)− (r2 − λr′2)p1D

α
−1+ϕ1(−1, λ0)]

+ c2[(r1 − λr′1)I
1−α
−1+χ1(−1, λ0)− (r2 − λr′2)p1D

α
−1+χ1(−1, λ0)]

=− c2ω1(λ0)

=0.

Due to ω1(λ0) ̸= 0 , so, c2 = c4 = 0. In a similar way, we get

L2u0(x) =c3L2(ϕ2(x, λ0)) + c4L2(χ2(x, λ0))

=c3(I
1−α
0+ ϕ2(1, λ0)− βp2D

α
0+ϕ2(1, λ0))

+ c4(I
1−α
0+ χ2(1, λ0)− βp2D

α
0+χ2(1, λ0))

=c3ω2(λ0)

=0.

Due to ω2(λ0) ̸= 0, so, c1 = c3 = 0. So, we obtain c1 = c2 = c3 = c4 = 0. This
conclusion contradicts the assumption, i.e. assumption fails. As a result, ω(λ0) = 0,
which completes the proof.

5. Conclusions
In this paper, we use the Riemann-Liouville fractional and Caputo fractional op-
erator to research a class of discontinuous Sturm-Liouville type boundary-value
problem, and the boundary conditions of this problem contain an eigen-parameter.
We studied the eigenvalues and eigenfunctions of fractional Sturm-Liouville problem
and proved that fractional operator A is symmetric, as well as the eigenfunctions
corresponding to different eigenvalues of the problem are orthogonal and the eigen-
values are real. We give the expression of fractional Wronskian WF and obtain that
the zeros of the WF consist of the zeros of wλ. This conclusion provides a basis
for getting the asymptotic formula of eigenvalues of fractional S-L problems in the
forthcoming work.
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