
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 11, Number 4, August 2021, 2052–2069 DOI:10.11948/20200314

ABUNDANT NEW NON-TRAVELING WAVE
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Abstract Seeking exact solutions of higher-dimensional nonlinear partial
differential equations has recently received tremendous attention in mathe-
matics and physics. In this paper, we investigate exact solutions of (3+1)-
dimensional Boiti-Leon-Manna-Pempinelli equation which describes nonlinear
wave propagation in incompressible fluid. Firstly, by means of extended ho-
moclinic test approach, we get eight kinds of non-traveling wave solutions
of (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Then, combin-
ing the improved tanh function method and new ansatz solutions, we obtain
abundant new exact non-traveling wave solutions of (3+1)-dimensional Boiti-
Leon-Manna-Pempinelli equation. These results include not only many results
obtained in other literatures, but also some new exact non-traveling wave so-
lutions. Moreover, the exact kink wave solutions, periodic solitary wave solu-
tions and singular solitary wave solutions are given when arbitrary functions
contained in these solutions are taken as some special functions.

Keywords Extended homoclinic test approach, improved tanh function met-
hod, generalized Riccati equation, exact solutions.
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1. Introduction
Many significant phenomena in physics and engineering are represented by nonlin-
ear partial differential equations (NLPDEs). Compared with the low-dimensional
systems, the higher-dimensional nonlinear partial differential systems have more
complex behaviors. The investigation of the explicit solutions for NLPDEs plays
an important role in the study of nonlinear phenomena. Recently, in order to ex-
plore exact solutions of NLPDEs and figure out these phenomena in nature, a mass
of methods have been established, for instance, bilinear method, Darboux trans-
formations, symmetry reductions, and so on. Using (G′/G)-expansion method, the
ansatz (positive quadratic and exponential functions) technique, the generalized uni-
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fied method and Lie symmetry technique, Refs. [5, 9, 13] obtained nonautonomous
complex wave solutions, exact solutions, double-wave solutions, non-traveling wave
solutions et al. for (2+1)-dimensional and (3+1)-dimensional nonlinear partial dif-
ferential equations.

As we known, traveling wave solution, which describes the evolution of physical
quantities, is a very special solution of partial differential equations. More solutions
of NLPDEs are non-traveling wave solutions. Seeking exact non-traveling wave so-
lutions of nonlinear partial differential equations has recently received tremendous
attention in mathematics and physics. Using (G′/G)-expansion method, Guo [1]
and Liu [6] studied non-traveling wave solutions of (2+1)-dimensional Painlevé in-
tegrable Burgers equation, (2+1)-dimensional breaking soliton equation and (3+1)-
dimensional generalized shallow water equation. Lin [3] got non-traveling wave
solutions for (2+1)-dimensional Burgers equation by means of the generalized di-
rect ansatz method and different test functions. Shang [11, 15] have studied the
non-traveling wave solutions of (3+1)-dimensional potential-YTSF equation and
Calogero equation by combining the extended homoclinic test approach with the
method of separation of variables. Sheng [17] and Zhang [21] obtained exact non-
traveling wave solutions of (2+1)-dimensional KD equation and (3+1)-dimensional
KP equation with the aid of symbolic computation. Therefore, it is meaningful to
consider the non-traveling wave solutions of higher-dimensional nonlinear partial
differential equations.

As one of the most important higher-dimensional NLPDEs, the (3+1)-dimensional
Boiti-Leon-Manna-Pempinelli equation

uyt + uzt + uxxxy + uxxxz − 3ux(uxy + uxz)− 3uxx(uy + uz) = 0 (1.1)

describes nonlinear wave propagation in incompressible fluid, where u is a function
depending on spatial variables (x, y, z) and temporal variable t. The researchers
have obtained some types of traveling wave solutions to Eq.(1.1) by many meth-
ods, such as bilinear method [2,14,16], extended three-wave approach [7], extended
homoclinic test technique [4,18], extended three-soliton method [12], Painlevé anal-
ysis [19], modified exponential function method [20], respectively. Liu [8] and Luo
[10] obtained non-traveling wave solutions of Eq.(1.1) by using (G′/G)-expansion
method and Bäcklund transformation, respectively. Although many researchers in-
vestigated exact traveling wave solutions of Eq.(1.1), there are few results on the
non-traveling wave solutions. In this paper, we will investigate non-traveling wave
solutions of Eq.(1.1) by utilizing the extended homoclinic test approach [22] and
the improved tanh function method [21].

The rest of this paper is organized as follows: In section 2, eight kinds of non-
traveling wave solutions are constructed by using the extended homoclinic test ap-
proach. When arbitrary functions in these solutions are taken as some special func-
tions, we will get kink solutions, periodic solitary wave solutions, singular solitary
wave solutions and single solitary wave solutions, which can be seen in [12, 18, 19].
In section 3, by constructing new ansatz solutions of equation (1.1), we employ the
improved tanh method to get twenty-seven types of non-traveling wave solutions
for Eq.(1.1). Furthermore, we can get one hundred and eight types of non-traveling
wave solutions for Eq.(1.1) based on the four forms of arbitrary functions η and b.
Moreover, we give the graphic analyses of solutions obtained in sections 2. At last,
some conclusions and discussions are given.
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2. Extended homoclinic test approach
In this section, we will apply the extended homoclinic test approach to get eight
kinds of non-traveling wave solutions of Eq.(1.1).

We assume that the solutions of equation (1.1) in form:

u(x, y, z, t) = φ(ξ, t) + q(z), (2.1)

where ξ = x+my+nt+ θ(z), m,n are two nonzero constants, φ(ξ, t), q(z) and θ(z)
are three functions to be determined later. Substituting (2.1) into (1.1), we obtain

(m+ θ′(z))φξξξξ + (mn+ nθ′(z)− 3q′(z))φξξ + (−6m− 6θ′(z))φξφξξ

+(m+ θ′(z))φξt = 0. (2.2)

To simplify equation (2.2), we let

mn+ nθ′(z)− 3q′(z) = 0. (2.3)

From (2.3), we get
q(z) =

n

3
θ(z) +

mn

3
z + c, (2.4)

where c is an integral constant. Therefore, in the condition of m+θ′(z) ̸= 0, Eq.(2.2)
reduces to

φξξξξ − 6φξφξξ + φξt = 0. (2.5)
Integrating (2.5) once with respect to ξ and taking the integral constant to be zero,
we get

φξξξ − 3φ2
ξ + φt = 0. (2.6)

In order to solving (2.6), we introduce a nonlinear function transformation of de-
pendent variable

φ = −2(lnϕ)ξ, (2.7)
where ϕ(ξ, t) is an undetermined function. Substituting (2.7) into (2.6), we can get
a bilinear equation

(DξDt +D4
ξ)ϕ · ϕ = 0, (2.8)

where the bilinear operator D is defined as

Dm
ξ Dn

t f · g = (∂ξ − ∂ξ′)m(∂t− ∂t′)nf(ξ, t)g(ξ′, t′)|(ξ′,t′)=(ξ,t).

In this section, we seek for the solution in the following form

ϕ = k1 cos(ζ1) + k2 exp(ζ2) + exp(−ζ2), (2.9)

where ζi = aiξ + bit, i = 1, 2, k1, k2 ∈ R and a1, a2, b1, b2 ∈ C are undeter-
mined constants. Substituting (2.9) into (2.8) and setting coefficients of cos2(ζ1),
cos(ζ1) exp(ζ2), cos(ζ1) exp(−ζ2), sin2(ζ1), sin(ζ1) exp(ζ2), sin(ζ1) exp(−ζ2) and the
constant term to zero, we obtain a set of nonlinear algebraic equations with respect
to ai, bi and ki, i = 1, 2

k21(4a
4
1 − a1b1) = 0,

k1k2(a
4
1 + a42 − 6a21a

2
2 + a2b2 − a1b1) = 0,

k1(a
4
1 + a42 − 6a21a

2
2 + a2b2 − a1b1) = 0,

k2(16a
4
2 + 4a2b2) = 0,

k1k2(4a1a
3
2 − 4a31a2 + a1b2 + a2b1) = 0,

k1(−4a1a
3
2 + 4a31a2 − a1b2 − a2b1) = 0.

(2.10)



Non-traveling wave solutions for BLMP equation 2055

Solving (2.10) with the aid of Maple, we have the following results.
Case 1: {

a1 = a1, b1 = b1, k1 = 0,

a2 = a2, b2 = −4a32, k2 = k2.
(2.11)

Collecting (2.11), (2.9), (2.7), (2.4) with (2.1), one obtains the solution

u(x, y, z, t) = −2a2
k2 exp(ζ2)− exp(−ζ2)

k2 exp(ζ2) + exp(−ζ2)
+

n

3
θ(z) +

mn

3
z + c, (2.12)

where ζ2 = a2(x+my + (n− 4a22)t+ θ(z)).
In particular, solution (2.12) can be written as follows:

u1(x, y, z, t) = −2a2 tanh(ζ2 +
1

2
ln k2) +

n

3
θ(z) +

mn

3
z + c, k2 > 0, (2.13)

u2(x, y, z, t) = −2a2 coth(ζ2 +
1

2
ln(−k2)) +

n

3
θ(z) +

mn

3
z + c, k2 < 0, (2.14)

where ζ2 = a2(x+my + (n− 4a22)t+ θ(z)).
Case 2: {

a1 = a1, b1 = 4a31, k1 = k1,

a2 = ±ia1, b2 = −4a32, k2 = k2.
(2.15)

Collecting (2.15), (2.9), (2.7), (2.4) with (2.1), we obtain the solution

u = 2a1
k1 sin(ζ1)∓ ik2 exp(ζ2)± i exp(−ζ2)

k1cos(ζ1) + k2 exp(ζ2) + exp(−ζ2)
+

n

3
θ(z) +

mn

3
z + c, (2.16)

where ζ1 = a1(x+my + (n+ 4a21)t+ θ(z)) and ζ2 = ±iζ1.
In particular, solution (2.16) becomes

u3(x, y, z, t) = 2a1
[K2 − (1− k2)

2] sin(ζ1)cos(ζ1)±K(1− k2)i

K2 cos2(ζ1) + (1− k2)2 sin
2(ζ1)

+
n

3
θ(z) +

mn

3
z + c, K = k1 + k2 + 1, a1 ∈ R, (2.17)

u4(x, y, z, t) = 2k3
k1 sinh(ζ

∗
1 )± 2

√
k2 sinh(±ζ∗1 + 1

2 ln(k2))

k1 cosh(ζ∗1 ) + 2
√
k2 cosh(±ζ∗1 + 1

2 ln(k2))

+
n

3
θ(z) +

mn

3
z + c, k2 > 0, a1 = k3i, k3 ∈ R, (2.18)

u5(x, y, z, t) = 2k3
k1 sinh(ζ

∗
1 )∓ 2

√
−k2 cosh(±ζ∗1 + 1

2 ln(−k2))

k1 cosh(ζ∗1 )− 2
√
−k2 sinh(±ζ∗1 + 1

2 ln(−k2))

+
n

3
θ(z) +

mn

3
z + c, k2 < 0, a1 = k3i, k3 ∈ R, (2.19)

where ζ1 = a1(x+my + (n+ 4a21)t+ θ(z)) and ζ∗1 = iζ1.
Case 3: {

a1 = a1, b1 = 4a31, k1 = k1,

a2 = ±ia1, b2 = −4a32, k2 = 0.
(2.20)

Collecting (2.20), (2.9), (2.7), (2.4) with (2.1), one gets

u = 2a1
k1sin(ζ1)± i exp(−ζ2)

k1cos(ζ1) + exp(−ζ2)
+

n

3
θ(z) +

mn

3
z + c, (2.21)
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where ζ1 = a1(x+my + (n+ 4a21)t+ θ(z)) and ζ2 = ±iζ1.
In particular, solution (2.21) becomes

u6(x, y, z, t) = 2a1
[(k1 + 1)2 − 1]sin(ζ1) cos(ζ1)± i(k1 + 1)

(k1 + 1)2 cos2(ζ1) + sin2(ζ1)

+
n

3
θ(z) +

mn

3
z + c, a1 ∈ R, (2.22)

u7(x, y, z, t) = 2k3
(k1 + 1) sinh(ζ∗1 )∓ cosh(ζ∗1 )

(k1 + 1) cosh(ζ∗1 )∓ sinh(ζ∗1 )

+
n

3
θ(z) +

mn

3
z + c, a1 = k3i, k3 ∈ R, (2.23)

where ζ1 = a1(x+my + (n+ 4a21)t+ θ(z)) and ζ∗1 = iζ1.
Case 4: {

a1 = 0, b1 = 0, k1 = k1,

a2 = a2, b2 = −a32, k2 = 0.
(2.24)

Collecting (2.24), (2.9), (2.7), (2.4) with (2.1), one obtains

u8(x, y, z, t) = 2a2
exp(−ζ2)

k1 + exp(−ζ2)
+

n

3
θ(z) +

mn

3
z + c, (2.25)

where ζ2 = a2(x + my + (n − a22)t + θ(z)). In u1 − u8, θ(z) is an arbitrary first
order derivable function. Moreover, when a1 = k4 + ik3, we can get many other
type solutions from (2.16) and (2.21), where k3, k4 are nonzero real numbers. Here,
we omit the detail expressions of these solutions.

3. Improved tanh function method

In this section, we will obtain many non-traveling wave solutions of Eq.(1.1) by
combining the improved tanh function method with a generalized Riccati equation.

Balancing the uxxxy and uxuxy, we construct the solution of the following new
form

u(x, y, z, t) = a(y, z, t)ϕ−1(kx+η(y, z, t))+b(y, z, t)+c(y, z, t)ϕ(kx+η(y, z, t)) (3.1)

with

ϕ′ = r + pϕ+ qϕ2, (3.2)

where k, r, p and q are all real constants, a(y, z, t), b(y, z, t), c(y, z, t) and η(y, z, t)
are all differentiable functions. As we known, Eq.(3.2) is the generalized Riccati
equation and has 27 solutions which were given by Zhang et al. [21](see Appendix 1).
Substituting (3.1) and (3.2) into (1.1), combining similar terms of ϕ(kx+η(y, z, t)),
and setting each coefficient to zero, we have the following system of over-determined
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partial differential equations for a(y, z, t), b(y, z, t), c(y, z, t) and η(y, z, t)

(24k3r4a+ 12k2r3a2)(ηy + ηz ) = 0,

(24k3q4c+ 12k2q3c2)(ηy + ηz ) = 0,

− 4kr3ηt(ηy + ηz) + (64k4r4q − 4k4r3p2)(ηy + ηz) + 12k3r3(by + bz) = 0,

4kq3ηt(ηy + ηz) + (−64k4q4r + 4k4q3p2)(ηy + ηz)− 12k3q3(by + bz) = 0,

2kr2(ηyt + ηzt)− 6kr2pηt(ηy + ηz) + (120k4r3pq − 6k4r2p3)(ηy + ηz)

+ 18k3r2p(by + bz) = 0,

2kq2(ηyt + ηzt) + 6kq2pηt(ηy + ηz) + (−120k4q3pr + 6k4q2p3)(ηy + ηz)

− 18k3q2p(by + bz) = 0,

(2arq + ap2)ηt(ηy + ηz)− ap(ηyt + ηzt) + (−2k4p4r + 64k4r3q2 + 52k4r2p2q)

(ηy + ηz) + (3k2p2a− 6k2rqa)(by + bz) = 0,

(2crq + cp2)ηt(ηy + ηz) + cp(ηyt + ηzt) + (2k4p4q − 64k4q3r2 − 52k4q2p2r)

(ηy + ηz) + (−3k2p2c− 6k2rqc)(by + bz) = 0,

(apq + cpr)ηt(ηy + ηz) + (cr − aq)(ηyt + ηzt) + 24k4q2r2p(ηy + ηz)

− (3k2pqa+ 3k2prc)(by + bz) + (byt + bzt) = 0.

(3.3)

Solving the system of (3.3), we can get the following non-trivial results.
Case 1:{

η(y, z, t) = F (t)G(y, z),

a(y, z, t) = −2kr, b(y, z, t) = b1(t)b2(y, z), c(y, z, t) = 2kq,

where F (t), G(y, z), b1(t) and b2(y, z) are all arbitrary differentiable functions sat-
isfying

b2y(y, z) + b2z(y, z) = 0, Gy(y, z) +Gz(y, z) = 0.

Case 2:{
η(y, z, t) = F (t)G(y, z),

a(y, z, t) = −2kr, b(y, z, t) = b1(t) + b2(y, z), c(y, z, t) = 2kq,

where F (t), G(y, z), b1(t) and b2(y, z) are all arbitrary differentiable functions sat-
isfying

b2y(y, z) + b2z(y, z) = 0, Gy(y, z) +Gz(y, z) = 0.

Case 3:{
η(y, z, t) = F (t) +G(y, z),

a(y, z, t) = −2kr, b(y, z, t) = b1(t)b2(y, z), c(y, z, t) = 2kq,

where F (t), G(y, z), b1(t) and b2(y, z) are all arbitrary differentiable functions sat-
isfying

b2y(y, z) + b2z(y, z) = 0, Gy(y, z) +Gz(y, z) = 0.

Case 4:{
η(y, z, t) = F (t) +G(y, z),

a(y, z, t) = −2kr, b(y, z, t) = b1(t) + b2(y, z), c(y, z, t) = 2kq,
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where F (t), G(y, z), b1(t) and b2(y, z) are all arbitrary differentiable functions sat-
isfying

b2y(y, z) + b2z(y, z) = 0, Gy(y, z) +Gz(y, z) = 0.

For simplification, in the rest of this paper, we take

M =

√
p2 − 4qr

2
, N =

√
4pr − q2

2
, w = kx+ η(y, z, t).

From case 1, (3.1) and Types 1-4 of Appendix 1 in [21], we have 27 solutions of
equation (1.1) as follows.
Family 1: When p2 − 4qr > 0 and pq ̸= 0 (or qr ̸= 0), we get twelve solutions

u1 = b1(t)b2(y, z) +
4kqr − k[p+ 2M tanh(Mw)]2

[p+ 2M tanh(Mw)]
,

u2 = b1(t)b2(y, z) +
4kqr − k[p+ 2M coth(Mw)]2

[p+ 2M coth(Mw)]
,

u3 = b1(t)b2(y, z) +
4kqr − k[p+ 2M tanh(2Mw)± isech(2Mw)]2

[p+ 2M tanh(2Mw)± isech(2Mw)]
,

u4 = b1(t)b2(y, z) +
4kqr − k[p+ 2M coth(2Mw)± csch(2Mw)]2

[p+ 2M coth(2Mw)± csch(2Mw)]
,

u5 = b1(t)b2(y, z) +
8kqr − 2k[p+M(tanh(Mw

2 ) + coth(Mw
2 ))]2

[2p+ 2M(tanh(Mw
2 ) + coth(Mw

2 ))]
,

u6 = b1(t)b2(y, z) +
−k[2M sinh(Mw)− p cosh(Mw)]2 + 4kqr[cosh(Mw)]2

cosh(Mw)[2M sinh(Mw)− p cosh(Mw)]
,

u7 = b1(t)b2(y, z) +
k[p sinh(Mw)− 2M cosh(Mw)]2 − 4kqr[sinh(Mw)]2

sinh(Mw)[p sinh(Mw)− 2M cosh(Mw)]
,

u8 = b1(t)b2(y, z)

− k[2M sinh(2Mw)− p cosh(2Mw)± 2iM ]2 − 4kqr[cosh(2Mw)]2

cosh(2Mw)[2M sinh(2Mw)− p cosh(2Mw)± 2iM ]
,

u9 = b1(t)b2(y, z)

− k[2M cosh(2Mw)− p sinh(2Mw)± 2M ]2 − 4kqr[sinh(2Mw)]2

sinh(2Mw)[2M cosh(2Mw)− p sinh(2Mw)± 2M ]
,

u10 = b1(t)b2(y, z) +
8kqr[Φ(w)]2 − 2k[−pΦ(w) + 2M cosh2(Mw

2 )−M ]2

Φ(w)[−2pΦ(w) + 4M cosh2(Mw
2 )− 2M ]

,

u11 = b1(t)b2(y, z) + F1(sinh, cosh),

u12 = b1(t)b2(y, z) +G1(cosh, sinh),

where

Φ(w) = sinh(
Mw

2
) cosh(

Mw

2
), (3.4)

F1(f, g) =
−4kqr[Ψ(w)]2 + k[−pΨ(w) + 2M

√
A2 +B2 − 2AMg(2Mw)]2

Ψ(w)[−pΨ(w) + 2M
√
A2 +B2 − 2AMg(2Mw)]

, (3.5)

G1(f, g) =
−4kqr[Ψ(w)]2 + k[−pΨ(w)− 2M

√
A2 +B2 − 2AMg(2Mw)]2

Ψ(w)[−pΨ(w)− 2M
√
A2 +B2 − 2AMg(2Mw)]

, (3.6)
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Ψ(w) = Af(2Mw) +B,

A and B are two nonzero real constants and satisfy B2 −A2 > 0.
Family 2: When p2 − 4qr < 0 and pq ̸= 0 (or qr ̸= 0), one obtains twelve solutions

u13 = b1(t)b2(y, z) +
−4kqr + k[−p+ 2N tan(Nw)]2

−p+ 2N tan(Nw)
,

u14 = b1(t)b2(y, z) +
4kqr − k[p+ 2N cot(Nw)]2

p+ 2N cot(Nw)
,

u15 = b1(t)b2(y, z) +
−4kqr + k[−p+ 2N(tan(2Nw)± sec(2Nw))]2

−p+ 2N(tan(2Nw)± sec(2Nw))
,

u16 = b1(t)b2(y, z) +
4kqr − k[p+ 2N(cot(2Nw)± csc(2Nw))]2

p+ 2N(cot(2Nw)± csc(2Nw))
,

u17 = b1(t)b2(y, z) +
−8kqr + 2k[−p+N(tan(Nw

2 )− cot(Nw
2 ))]2

−2p+ 2N(tan(Nw
2 )− cot(Nw

2 ))
,

u18 = b1(t)b2(y, z) +
k[2N sin(Nw) + p cos(Nw)]2 − 4kqr[cos(Nw)]2

cos(Nw)[2N sin(Nw) + p cos(Nw)]
,

u19 = b1(t)b2(y, z) +
−k[2N cos(Nw)− p sin(Nw)]2 + 4kqr[sin(Nw)]2

sin(Nw)[2N cos(Nw)− p sin(Nw)]
,

u20 = b1(t)b2(y, z) +
k[2N sin(2Nw) + p cos(2Nw)± 2N ]2 − 4kqr[cos(2Nw)]2

cos(2Nw)[2N sin(2Nw) + p cos(2Nw)± 2N ]
,

u21 = b1(t)b2(y, z) +
−k[2N cos(2Nw)− p sin(2Nw)± 2N ]2 + 4kqr[sin(2Nw)]2

sin(2Nw)[2N cos(2Nw)− p sin(2Nw)± 2N ]
,

u22 = b1(t)b2(y, z) +
8kqr[Φ1(w)]

2 − 2k[−pΦ1(w) + 2N cos2(Nw
2 )−N ]2

Φ1(w)[−2pΦ1(w) + 4N cos2(Nw
2 )− 2N ]

,

u23 = b1(t)b2(y, z) + F2(sin, cos),

u24 = b1(t)b2(y, z) +G2(cos, sin),

where

Φ1(w) = sin(
Nw

2
) cos(

Nw

2
), (3.7)

F2(f, g) =
−4kqr[Ψ1(w)]

2 + k[−pΨ1(w)± 2N
√
A2 −B2 − 2ANg(2Nw)]2

Ψ1(w)[−pΨ1(w)± 2N
√
A2 −B2 − 2ANg(2Nw)]

, (3.8)

G2(f, g) =
−4kqr[Ψ1(w)]

2 + k[−pΨ1(w)± 2N
√
A2 −B2 + 2ANg(2Nw)]2

Ψ1(w)[−pΨ1(w)± 2N
√
A2 −B2 + 2ANg(2Nw)]

,

(3.9)
Ψ1(w) = Af(2Nw) +B,

A and B are two nonzero real constants and satisfy A2 −B2 > 0.
Family 3: When r = 0 and pq ̸= 0, one gets two solutions

u25 = b1(t)b2(y, z) +
2krq[d+ cosh(pw)− sinh(pw)]2 − 2kp2d2

pd[d+ cosh(pw)− sinh(pw)]
,

u26 = b1(t)b2(y, z)
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+
2kqr[d+ cosh(pw) + sinh(pw)]2 − 2kp2[cosh(pw) + sinh(pw)]2

p[cosh(pw) + sinh(pw)][d+ cosh(pw) + sinh(pw)]
,

where d is an arbitrary constant.
Family 4: When q ̸= 0, r = p = 0, we obtain the solution

u27 = b1(t)b2(y, z) +
2kr(qw + d)2 − 2kq

qw + d
,

where d is an arbitrary constant.
From case 2, (3.1) and Types 1-4 of Appendix 1 in [21], we have 27 solutions of

equation (1.1) as follows.
Family 5: When p2 − 4qr > 0 and pq ̸= 0 (or qr ̸= 0), we obtain twelve solutions

u28 = b1(t) + b2(y, z) +
4kqr − k[p+ 2M tanh(Mw)]2

[p+ 2M tanh(Mw)]
,

u29 = b1(t) + b2(y, z) +
4kqr − k[p+ 2M coth(Mw)]2

[p+ 2M coth(Mw)]
,

u30 = b1(t) + b2(y, z) +
4kqr − k[p+ 2M tanh(2Mw)± isech(2Mw)]2

[p+ 2M tanh(2Mw)± isech(2Mw)]
,

u31 = b1(t) + b2(y, z) +
4kqr − k[p+ 2M coth(2Mw)± csch(2Mw)]2

[p+ 2M coth(2Mw)± csch(2Mw)]
,

u32 = b1(t) + b2(y, z) +
8kqr − 2k[p+M(tanh(Mw

2 ) + coth(Mw
2 ))]2

[2p+ 2M(tanh(Mw
2 ) + coth(Mw

2 ))]
,

u33 = b1(t) + b2(y, z) +
−k[2M sinh(Mw)− p cosh(Mw)]2 + 4kqr[cosh(Mw)]2

cosh(Mw)[2M sinh(Mw)− p cosh(Mw)]
,

u34 = b1(t) + b2(y, z) +
k[p sinh(Mw)− 2M cosh(Mw)]2 − 4kqr[sinh(Mw)]2

sinh(Mw)[p sinh(Mw)− 2M cosh(Mw)]
,

u35 = b1(t) + b2(y, z)

− k[2M sinh(2Mw)− p cosh(2Mw)± 2iM ]2 − 4kqr[cosh(2Mw)]2

cosh(2Mw)[2M sinh(2Mw)− p cosh(2Mw)± 2iM ]
,

u36 = b1(t) + b2(y, z)

− k[2M cosh(2Mw)− p sinh(2Mw)± 2M ]2 − 4kqr[sinh(2Mw)]2

sinh(2Mw)[2M cosh(2Mw)− p sinh(2Mw)± 2M ]
,

u37 = b1(t) + b2(y, z) +
8kqr[Φ(w)]2 − 2k[−pΦ(w) + 2M cosh2(Mw

2 )−M ]2

Φ(w)[−2pΦ(w) + 4M cosh2(Mw
2 )− 2M ]

,

u38 = b1(t) + b2(y, z) + F1(sinh, cosh),

u39 = b1(t) + b2(y, z) +G1(cosh, sinh),

where Φ(w), F1(sinh, cosh), G1(cosh, sinh) are defined as (3.4), (3.5) and (3.6),
respectively, A and B are two nonzero real constants and satisfy B2 −A2 > 0.
Family 6: When p2 − 4qr < 0 and pq ̸= 0 (or qr ̸= 0), one gets twelve soluitons

u40 = b1(t) + b2(y, z) +
−4kqr + k[−p+ 2N tan(Nw)]2

−p+ 2N tan(Nw)
,
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u41 = b1(t) + b2(y, z) +
4kqr − k[p+ 2N cot(Nw)]2

p+ 2N cot(Nw)
,

u42 = b1(t) + b2(y, z) +
−4kqr + k[−p+ 2N(tan(2Nw)± sec(2Nw))]2

−p+ 2N(tan(2Nw)± sec(2Nw))
,

u43 = b1(t) + b2(y, z) +
4kqr − k[p+ 2N(cot(2Nw)± csc(2Nw))]2

p+ 2N(cot(2Nw)± csc(2Nw))
,

u44 = b1(t) + b2(y, z) +
−8kqr + 2k[−p+N(tan(Nw

2 )− cot(Nw
2 ))]2

−2p+ 2N(tan(Nw
2 )− cot(Nw

2 ))
,

u45 = b1(t) + b2(y, z) +
k[2N sin(Nw) + p cos(Nw)]2 − 4kqr[cos(Nw)]2

cos(Nw)[2N sin(Nw) + p cos(Nw)]
,

u46 = b1(t) + b2(y, z) +
−k[2N cos(Nw)− p sin(Nw)]2 + 4kqr[sin(Nw)]2

sin(Nw)[2N cos(Nw)− p sin(Nw)]
,

u47 = b1(t) + b2(y, z) +
k[2N sin(2Nw) + p cos(2Nw)± 2N ]2 − 4kqr[cos(2Nw)]2

cos(2Nw)[2N sin(2Nw) + p cos(2Nw)± 2N ]
,

u48 = b1(t) + b2(y, z) +
−k[2N cos(2Nw)− p sin(2Nw)± 2N ]2 + 4kqr[sin(2Nw)]2

sin(2Nw)[2N cos(2Nw)− p sin(2Nw)± 2N ]
,

u49 = b1(t) + b2(y, z) +
8kqr[Φ1(w)]

2 − 2k[−pΦ1(w) + 2N cos2(Nw
2 )−N ]2

Φ1(w)[−2pΦ1(w) + 4N cos2(Nw
2 )− 2N ]

,

u50 = b1(t) + b2(y, z) + F2(sin, cos),

u51 = b1(t) + b2(y, z) +G2(cos, sin),

where Φ1(w), F2(sin, cos), G2(cos, sin) are defined as (3.7), (3.8) and (3.9) respec-
tively, A and B are two nonzero real constants and satisfy A2 −B2 > 0.
Family 7: When r = 0 and pq ̸= 0, one obtains two solutions

u52 = b1(t) + b2(y, z) +
2krq[d+ cosh(pw)− sinh(pw)]2 − 2kp2d2

pd[d+ cosh(pw)− sinh(pw)]
,

u53 = b1(t) + b2(y, z)

+
2kqr[d+ cosh(pw) + sinh(pw)]2 − 2kp2[cosh(pw) + sinh(pw)]2

p[cosh(pw) + sinh(pw)][d+ cosh(pw) + sinh(pw)]
,

where d is an arbitrary constant.
Family 8: When q ̸= 0, r = p = 0, we get the solution

u54 = b1(t) + b2(y, z) +
2kr(qw + d)2 − 2kq

qw + d
,

where d is an arbitrary constant.
From case 3, (3.1) and Types 1-4 of Appendix 1 in [21], we have 27 solutions of

equation (1.1) as follows.
Family 9: When p2 − 4qr > 0 and pq ̸= 0 (or qr ̸= 0), one gets twelve solutions

u55 = b1(t)b2(y, z) +
4kqr − k[p+ 2M tanh(Mw)]2

[p+ 2M tanh(Mw)]
,

u56 = b1(t)b2(y, z) +
4kqr − k[p+ 2M coth(Mw)]2

[p+ 2M coth(Mw)]
,
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u57 = b1(t)b2(y, z) +
4kqr − k[p+ 2M tanh(2Mw)± isech(2Mw)]2

[p+ 2M tanh(2Mw)± isech(2Mw)]
,

u58 = b1(t)b2(y, z) +
4kqr − k[p+ 2M coth(2Mw)± csch(2Mw)]2

[p+ 2M coth(2Mw)± csch(2Mw)]
,

u59 = b1(t)b2(y, z) +
8kqr − 2k[p+M(tanh(Mw

2 ) + coth(Mw
2 ))]2

[2p+ 2M(tanh(Mw
2 ) + coth(Mw

2 ))]
,

u60 = b1(t)b2(y, z) +
−k[2M sinh(Mw)− p cosh(Mw)]2 + 4kqr[cosh(Mw)]2

cosh(Mw)[2M sinh(Mw)− p cosh(Mw)]
,

u61 = b1(t)b2(y, z) +
k[p sinh(Mw)− 2M cosh(Mw)]2 − 4kqr[sinh(Mw)]2

sinh(Mw)[p sinh(Mw)− 2M cosh(Mw)]
,

u62 = b1(t)b2(y, z)

− k[2M sinh(2Mw)− p cosh(2Mw)± 2iM ]2 − 4kqr[cosh(2Mw)]2

cosh(2Mw)[2M sinh(2Mw)− p cosh(2Mw)± 2iM ]
,

u63 = b1(t)b2(y, z)

− k[2M cosh(2Mw)− p sinh(2Mw)± 2M ]2 − 4kqr[sinh(2Mw)]2

sinh(2Mw)[2M cosh(2Mw)− p sinh(2Mw)± 2M ]
,

u64 = b1(t)b2(y, z) +
8kqr[Φ(w)]2 − 2k[−pΦ(w) + 2M cosh2(Mw

2 )−M ]2

Φ(w)[−2pΦ(w) + 4M cosh2(Mw
2 )− 2M ]

,

u65 = b1(t)b2(y, z) + F1(sinh, cosh),

u66 = b1(t)b2(y, z) +G1(cosh, sinh),

where Φ(w), F1(sinh, cosh), G1(cosh, sinh) are defined as (3.4), (3.5) and (3.6) re-
spectively, A and B are two nonzero real constants and satisfy B2 −A2 > 0.
Family 10: When p2 − 4qr < 0 and pq ̸= 0 (or qr ̸= 0), we obtain twelve solutions

u67 = b1(t)b2(y, z) +
−4kqr + k[−p+ 2N tan(Nw)]2

−p+ 2N tan(Nw)
,

u68 = b1(t)b2(y, z) +
4kqr − k[p+ 2N cot(Nw)]2

p+ 2N cot(Nw)
,

u69 = b1(t)b2(y, z) +
−4kqr + k[−p+ 2N(tan(2Nw)± sec(2Nw))]2

−p+ 2N(tan(2Nw)± sec(2Nw))
,

u70 = b1(t)b2(y, z) +
4kqr − k[p+ 2N(cot(2Nw)± csc(2Nw))]2

p+ 2N(cot(2Nw)± csc(2Nw))
,

u71 = b1(t)b2(y, z) +
−8kqr + 2k[−p+N(tan(Nw

2 )− cot(Nw
2 ))]2

−2p+ 2N(tan(Nw
2 )− cot(Nw

2 ))
,

u72 = b1(t)b2(y, z) +
k[2N sin(Nw) + p cos(Nw)]2 − 4kqr[cos(Nw)]2

cos(Nw)[2N sin(Nw) + p cos(Nw)]
,

u73 = b1(t)b2(y, z) +
−k[2N cos(Nw)− p sin(Nw)]2 + 4kqr[sin(Nw)]2

sin(Nw)[2N cos(Nw)− p sin(Nw)]
,

u74 = b1(t)b2(y, z) +
k[2N sin(2Nw) + p cos(2Nw)± 2N ]2 − 4kqr[cos(2Nw)]2

cos(2Nw)[2N sin(2Nw) + p cos(2Nw)± 2N ]
,

u75 = b1(t)b2(y, z) +
−k[2N cos(2Nw)− p sin(2Nw)± 2N ]2 + 4kqr[sin(2Nw)]2

sin(2Nw)[2N cos(2Nw)− p sin(2Nw)± 2N ]
,
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u76 = b1(t)b2(y, z) +
8kqr[Φ1(w)]

2 − 2k[−pΦ1(w) + 2N cos2(Nw
2 )−N ]2

Φ1(w)[−2pΦ1(w) + 4N cos2(Nw
2 )− 2N ]

,

u77 = b1(t)b2(y, z) + F2(sin, cos),

u78 = b1(t)b2(y, z) +G2(cos, sin),

where Φ1(w), F2(sin, cos), G2(cos, sin) are defined as (3.7), (3.8) and (3.9) respec-
tively, A and B are two nonzero real constants and satisfy A2 −B2 > 0.
Family 11: When r = 0 and pq ̸= 0, one obtains two solutions

u79 = b1(t)b2(y, z) +
2krq[d+ cosh(pw)− sinh(pw)]2 − 2kp2d2

pd[d+ cosh(pw)− sinh(pw)]
,

u80 = b1(t)b2(y, z)

+
2kqr[d+ cosh(pw) + sinh(pw)]2 − 2kp2[cosh(pw) + sinh(pw)]2

p[cosh(pw) + sinh(pw)][d+ cosh(pw) + sinh(pw)]
,

where d is an arbitrary constant.
Family 12: When q ̸= 0, r = p = 0, we obtain the solution

u81 = b1(t)b2(y, z) +
2kr(qw + d)2 − 2kq

qw + d
,

where d is an arbitrary constant.
From case 4, (3.1) and Types 1-4 of Appendix 1 in [21], we have 27 solutions of

equation (1.1) as follows.
Family 13: When p2 − 4qr > 0 and pq ̸= 0 (or qr ̸= 0), we obtain twelve solutions

u82 = b1(t) + b2(y, z) +
4kqr − k[p+ 2M tanh(Mw)]2

[p+ 2M tanh(Mw)]
,

u83 = b1(t) + b2(y, z) +
4kqr − k[p+ 2M coth(Mw)]2

[p+ 2M coth(Mw)]
,

u84 = b1(t) + b2(y, z) +
4kqr − k[p+ 2M tanh(2Mw)± isech(2Mw)]2

[p+ 2M tanh(2Mw)± isech(2Mw)]
,

u85 = b1(t) + b2(y, z) +
4kqr − k[p+ 2M coth(2Mw)± csch(2Mw)]2

[p+ 2M coth(2Mw)± csch(2Mw)]
,

u86 = b1(t) + b2(y, z) +
8kqr − 2k[p+M(tanh(Mw

2 ) + coth(Mw
2 ))]2

[2p+ 2M(tanh(Mw
2 ) + coth(Mw

2 ))]
,

u87 = b1(t) + b2(y, z) +
−k[2M sinh(Mw)− p cosh(Mw)]2 + 4kqr[cosh(Mw)]2

cosh(Mw)[2M sinh(Mw)− p cosh(Mw)]
,

u88 = b1(t) + b2(y, z) +
k[p sinh(Mw)− 2M cosh(Mw)]2 − 4kqr[sinh(Mw)]2

sinh(Mw)[p sinh(Mw)− 2M cosh(Mw)]
,

u89 = b1(t) + b2(y, z)

− k[2M sinh(2Mw)− p cosh(2Mw)± 2iM ]2 − 4kqr[cosh(2Mw)]2

cosh(2Mw)[2M sinh(2Mw)− p cosh(2Mw)± 2iM ]
,

u90 = b1(t) + b2(y, z)

− k[2M cosh(2Mw)− p sinh(2Mw)± 2M ]2 − 4kqr[sinh(2Mw)]2

sinh(2Mw)[2M cosh(2Mw)− p sinh(2Mw)± 2M ]
,
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u91 = b1(t) + b2(y, z) +
8kqr[Φ(w)]2 − 2k[−pΦ(w) + 2M cosh2(Mw

2 )−M ]2

Φ(w)[−2pΦ(w) + 4M cosh2(Mw
2 )− 2M ]

,

u92 = b1(t) + b2(y, z) + F1(sinh, cosh),

u93 = b1(t) + b2(y, z) +G1(cosh, sinh),

where Φ(w), F1(sinh, cosh), G1(cosh, sinh) are defined as (3.4), (3.5) and (3.6) re-
spectively, A and B are two nonzero real constants and satisfy B2 −A2 > 0.
Family 14: When p2 − 4qr < 0 and pq ̸= 0 (or qr ̸= 0), one gets twelve solutions

u94 = b1(t) + b2(y, z) +
−4kqr + k[−p+ 2N tan(Nw)]2

−p+ 2N tan(Nw)
,

u95 = b1(t) + b2(y, z) +
4kqr − k[p+ 2N cot(Nw)]2

p+ 2N cot(Nw)
,

u96 = b1(t) + b2(y, z) +
−4kqr + k[−p+ 2N(tan(2Nw)± sec(2Nw))]2

−p+ 2N(tan(2Nw)± sec(2Nw))
,

u97 = b1(t) + b2(y, z) +
4kqr − k[p+ 2N(cot(2Nw)± csc(2Nw))]2

p+ 2N(cot(2Nw)± csc(2Nw))
,

u98 = b1(t) + b2(y, z) +
−8kqr + 2k[−p+N(tan(Nw

2 )− cot(Nw
2 ))]2

−2p+ 2N(tan(Nw
2 )− cot(Nw

2 ))
,

u99 = b1(t) + b2(y, z) +
k[2N sin(Nw) + p cos(Nw)]2 − 4kqr[cos(Nw)]2

cos(Nw)[2N sin(Nw) + p cos(Nw)]
,

u100 = b1(t) + b2(y, z) +
−k[2N cos(Nw)− p sin(Nw)]2 + 4kqr[sin(Nw)]2

sin(Nw)[2N cos(Nw)− p sin(Nw)]
,

u101 = b1(t) + b2(y, z) +
k[2N sin(2Nw) + p cos(2Nw)± 2N ]2 − 4kqr[cos(2Nw)]2

cos(2Nw)[2N sin(2Nw) + p cos(2Nw)± 2N ]
,

u102 = b1(t) + b2(y, z) +
−k[2N cos(2Nw)− p sin(2Nw)± 2N ]2 + 4kqr[sin(2Nw)]2

sin(2Nw)[2N cos(2Nw)− p sin(2Nw)± 2N ]
,

u103 = b1(t) + b2(y, z) +
8kqr[Φ1(w)]

2 − 2k[−pΦ1(w) + 2N cos2(Nw
2 )−N ]2

Φ1(w)[−2pΦ1(w) + 4N cos2(Nw
2 )− 2N ]

,

u104 = b1(t) + b2(y, z) + F2(sin, cos),

u105 = b1(t) + b2(y, z) +G2(cos, sin),

where Φ1(w), F2(sin, cos), G2(cos, sin) are defined as (3.7), (3.8) and (3.9) respec-
tively, A and B are two nonzero real constants and satisfy A2 −B2 > 0.
Family 15: When r = 0 and pq ̸= 0, we obtain two solutions

u106 = b1(t) + b2(y, z) +
2krq[d+ cosh(pw)− sinh(pw)]2 − 2kp2d2

pd[d+ cosh(pw)− sinh(pw)]
,

u107 = b1(t) + b2(y, z)

+
2kqr[d+ cosh(pw) + sinh(pw)]2 − 2kp2[cosh(pw) + sinh(pw)]2

p[cosh(pw) + sinh(pw)][d+ cosh(pw) + sinh(pw)]
,

where d is an arbitrary constant.
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Family 16: When q ̸= 0, r = p = 0, one gets the solution

u108 = b1(t) + b2(y, z) +
2kr(qw + d)2 − 2kq

qw + d
,

where d is an arbitrary constant.

4. Graphic analyses
In section 2, we employ the extended homoclinic test approach to get eight types
of solutions. These solutions have a tail. The tails in these solutions maybe give
a prediction of physical phenomenon and the free parameters in these solutions of
Eq.(1.1) have rich mathematical structures, which may be important for explaining
some physical phenomena in variety of branches. According to the expressions
of solutions, the non-traveling wave solutions u1, u4 with k1 + 2k2 ̸= 0, u5 with
k1 − 2k2 ≤ 0 or k1 + 2k2 ≥ 0 and u7 with k1 ≥ 0 or k1 ≤ −2 can be seen as
kink-like types. u2, u5 with −2k2 > k1 > 2k2 and u7 with −2 < k1 < 0 can
be regarded as singular solitary wave-like types. The non-traveling wave solutions
u3 and u6 can be seen as periodic solitary wave-like types. u8 can be regarded
as single solitary wave-like type. Especially, when θ(z) = z2, the solutions u1-u8

have a parabolic tail. As θ(z) = z, the solutions u1-u8 have a linear tail. These
results reveal the complex structures of the solutions for (3+1)-dimensional Boiti-
Leon-Manna-Pempinelli equation (1.1). Some cross sections of these solutions are
solitary wave forms. Here, through 3D graphic, we draw the cross sections of some
solutions with a linear tail or a parabolic tail.

Figure 1 and Figure 2 show the kink type solitary solution u1 with a linear
tail and kink-like type solution u1 with a parabolic tail, respectively. Figure 1 and
Figure 2 are kinking, but Figure 2 has a parabolic slot. Figure 3 and Figure 4
express the singular solitary wave solution u2 with a linear tail and singular solitary
wave-like solution u2 with a parabolic tail. The white parts of Figure 3 and Figure
4 represent singularities. Figure 5 shows the periodic solitary wave-like solution u3

with a parabolic tail. Figure 6 expresses the singular solitary wave-like solution u7

with a parabolic tail.

Figure 1. Exact kink type solitary so-
lution for u1 as a2 = −1, k2 = 1, n =
3,m = c = 0, θ(z) = z, x = y = 0.

Figure 2. Kink-like solution with a
parabolic tail for u1 as a2 = −1, k2 =
m = 1, n = 3, c = 0, θ(z) = z2, x = y = 0.
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Figure 3. Exact singular solitary wave
solution for u2 as a2 = k2 = −1, n =
3,m = c = 0, θ(z) = z, x = y = 0.

Figure 4. Singular solitary wave-like
solution with a parabolic tail for u2 as
a2 = k2 = −1,m = 1, n = 3, c =
0, θ(z) = z2, x = y = 0.

Figure 5. Periodic solitary wave-like solution
for u3 with a parabolic tail as a1 = k1 = m =
1, k2 = 2, n = 3, c = 0, θ(z) = z2, x = y = 0.

Figure 6. Singular solitary wave-like solution
with a parabolic tail for u7 as a1 = i, a2 =
ia1 = −1, k1 = −0.5, k3 = m = 1, n = 3, c =
0, θ(z) = z2, x = y = 0.

In a word, the figures of solutions will change greatly under the influence of a
tail, such as u1, u2 and u7, which have parabolic characteristics under the action of
parabolic tail.

5. Conclusion and discussion
In conclusion, though there are various effective methods to solve the solutions
of nonlinear partial differential equations during the past several decades, such as
homogeneous balance method, tanh-function method, Hirota’s bilinear operators
method, F-expansion method, auxiliary equation method, Exp-function method
and so on, these methods may only obtain one form or several forms of solutions.
The extended homoclinic test approach (EHTA) used in this manuscript, which is
based on the bilinear form of the nonlinear partial differential equations, is a fairly
effective method to seek solutions. Moreover, applying extended homoclinic test
approach, some new types of special solutions including breather type of soliton
and two soliton, and periodic type of soliton can be obtained.

In this paper, we firstly employ the multi-linear variable separation approach
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to reduce (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation (1.1) to (1+1)-
dimensional nonlinear equation with variable coefficients (2.2). Then, we introduce
an appropriate transformation to simplify (2.2) to a constant coefficients equa-
tion. Furthermore, by the extended homoclinic test approach, we solve the sim-
plified equation and obtain eight kinds of non-traveling wave solutions of (3+1)-
dimensional Boiti-Leon-Manna-Pempinelli equation in conditions of a1 ∈ R or
a1 = k3i, k3 ∈ R. Finally, combining the improved tanh function method with
a generalized Riccati equation, we obtain abundant new exact non-traveling wave
solutions of (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. These so-
lutions include kink-like type solutions, periodic solitary-wave-like type solutions,
singular solitary wave-like type solutions, and so on. As arbitrary functions included
in these solutions are taken as some special functions, kink-type solitons, singular
solitary wave solutions, periodic solitary wave solutions and so on are presented.
Also, the arbitrary functions in these solutions imply that these solutions have rich
local structures. Therefore, the results obtained in this paper are the supplement
and extension of the results of the existing literature [2, 4, 7, 8, 10,12,14,16,18–20].

From our abundant results obtained in this paper, the methods employed here
have been proved to be fairly effective methods for seeking non-traveling wave so-
lutions of higher-dimensional nonlinear partial differential equations. It is expected
that our results are helpful for theoretical study of the associated higher-dimensional
nonlinear partial differential equations in mathematics and physics. Moreover, in
practical applications, most of real nonlinear partial differential equations possess
variable coefficients. The exact solutions of the variable coefficients nonlinear partial
differential equations have a greater application value. As we known, there is few
research on solutions for (3+1)-dimensional variable coefficients Boiti-Leon-Manna-
Pempinelli equation. Next, we will set out to study the traveling wave solutions and
non-traveling wave solutions of (3+1)-dimensional variable coefficients Boiti-Leon-
Manna-Pempinelli(VC-BLMP) equation. As the special cases of (3+1)-VC-BLMP
equation, several generalized BLMP equations with different form and the corre-
sponding results of them will be given.
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